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Modern web services run across hundreds of thousands of servers in a data center,
i.e., at hyperscale. With the end of Moore’s Law and Dennard scaling, successive
server generations running these web services exhibit diminishing performance
returns, resulting in architects adopting hardware customization. An important
question arises: Which web service software operations are worth building custom
hardware for? To answer this question, we comprehensively analyze important
Facebook production services and identify key acceleration opportunities. We then
develop an open-source analytical model, Accelerometer, to help make well-
informed hardware decisions for the acceleration opportunities we identify.

Modern web services such as social media,
online messaging, web search, video
streaming, and online banking often sup-

port billions of users, requiring data centers that scale
to hundreds of thousands of servers, i.e., hyperscale.
Whereas hyperscale web services once had largely
monolithic software architectures, modern web serv-
ices are composed of numerous independent, special-
ized, distributed microservices (e.g., key-value serving
in a social media service).1,2 Several companies such
as Amazon, Netflix, Gilt, LinkedIn, Facebook, and
SoundCloud have adopted microservice architectures
to improve web service development and scalability.3

While at face value, hyperscale web systems seem
instantaneously available at the touch of a button, exist-
ing microservices barely meet performance require-
ments. In reality, microservices have much more
stringent performance constraints than their monolithic
counterparts, since numerous microservices must be
invoked, often serially, to serve a user’s query. For exam-
ple, a Facebook news feed service query may flow
through a pipeline of many microservices invoked via
remote procedure calls (RPCs), such as 1) Sigma: a
spam filter; 2) McRouter: a protocol router; 3) Feed: a

news feed stories extractor; 4) Tao: a distributed social
graph data store; and 5) MyRocks: a user database.
Complex microservice interactions place stringent per-
formance constraints on individualmicroservices.

As hyperscale computing grows to drive more
sophisticated applications (e.g., virtual reality and con-
versational AI), existing microservice systems will face
greater efficiency challenges due to these more com-
plex tasks. Increasingly complex microservices can be
efficiently supported if the hardware rises to meet effi-
ciency requirements. However, with the end of
Moore’s Law and Dennard scaling, a key challenge to
realizing microservice efficiency is that successive
server generations running microservices exhibit
diminishing performance returns.

To improve hardware efficiency, several architects
today work on developing numerous specialized hard-
ware accelerators for important microservice domains
[e.g. machine learning (ML) tasks]. However, large-
scale internet operators have strong economic incen-
tives to limit hardware platform diversity to: 1) main-
tain fungibility of hardware resources; 2) preserve
procurement advantages that arise from economies
of scale; and 3) limit the overhead of developing and
testing on myriad specialized hardware platforms.
Hence, an important question arises: Which microser-
vice operations consume the most CPU cycles and
are worth accelerating?

To build specialized accelerators for these key
microservice operations, it is important to first
identify which type of accelerator meets microser-
vice requirements and is worth designing and
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deploying. Deploying specialized hardware is risky
at hyperscale, as the hardware might underperform
due to performance bounds from the microservi-
ce’s software interaction with the hardware, result-
ing in high monetary losses. To make well-informed
hardware decisions, it is crucial to answer the
following question early in the design phase of
a new accelerator: How much can the accelerator
realistically improve its targeted microservice
overhead?

To answer both the above questions, our article,4

presented at ASPLOS 2020, first undertakes a compre-
hensive characterization of how microservices spend
their CPU cycles. We study seven important hyper-
scale Facebook microservices in four diverse service
domains that run across hundreds of thousands of
servers, occupying a large portion of Facebook’s global
server fleet. Our detailed breakdown of CPU cycles
consumed by various microservice operations identi-
fies key overheads and potential design optimizations.
To make well-informed hardware decisions for these
microservice overheads, we contribute Accelerometer,
an analytical model that projects realistic microser-
vice speedup for various hardware acceleration strate-
gies. We also demonstrate Accelerometer’s utility
in Facebook’s production microservices via three ret-
rospective case studies conducted when serving live
user traffic.

HOWDOMICROSERVICES SPEND
THEIR CPU CYCLES?

To identify microservice overheads, we comprehen-
sively characterize how seven important Facebook
production microservices spend their CPU cycles
when serving live user traffic. Very few prior works
study how cycles are spent in data centers. Kanev
et al.1 investigate the “data center tax” across Google’s
server fleet by studying cycles spent in seven types of
leaf functions invoked at the end of a call trace [e.g.,
memcpy()]. However, a leaf function study alone does not
holistically provide insight into whether acceleration
might improve a microservice functionality (e.g.,
encryption).

To analyze microservice functionalities, we must
comprehensively characterize a microservice’s entire
call stack to measure the CPU cycles spent in each
phase of the microservice’s operation after it receives
a request. Characterizing microservice functionalities
helps determine 1) whether diverse microservices exe-
cute common types of operations (e.g., compression,
serialization, and encryption) and 2) the overheads
such operations induce. Analyzing both leaf functions
and microservice functionalities helps identify key
acceleration opportunities that might inform future
software and hardware designs.

We characterize the CPU cycles spent by Face-
book’s production microservices in both leaf functions

FIGURE 1. Breakdown of cycles spent in various leaf functions (leaf categories defined in the table to the right): Memory func-

tions consume a significant portion of total cycles.
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and microservice functionalities. We study 1) Web: a
front-end microservice that implements PHP and
Hack; 2) Feed1 and Feed2: news feed microservices that
aggregate, rank, and display stories; 3) Ads1 and Ads2:
advertisement microservices that compute user-spe-
cific and ad-specific data; and 4) Cache1 and Cache2: large
distributed-memory object caching microservices.

Leaf Function Characterization
We present key leaf function breakdowns for Face-
book’s microservices in Figure 1, comparing them with
Google’s services1 and SPEC CPU2006 benchmarks.5

We find that many leaf function overheads are signifi-
cant and common across microservices. We detail our
observations for dominant leaf categories.

Memory. Most microservices spend a significant
fraction of cycles on memory functions that include
memory copy, free, allocation, move, set, and com-
pare. Memory copies are by far the greatest consum-
ers of memory cycles. Data is primarily copied during
microservice operations such as 1) I/O pre- or
postprocessing, 2) I/O sends and receives, 3) RPC seri-
alization/deserialization, and 4) microservice business
logic execution (e.g., executing key-value stores in
Cache).

We observe significant diversity in dominant service
functionalities that invoke memory copies across micro-
services. This diversity suggests a strategy to specialize
copy optimizations to suit each microservice’s distinct
needs. For example, Web can benefit from reducing copies
in I/O pre- or postprocessing, whereas Cache2 can gain
from fewer copies in network protocol stacks.

Freeing memory incurs a high overhead for several
microservices, as the free() function does not take a
memory block size parameter, performing extra work
to determine the size class to return the block to.
TCMalloc performs a hash lookup to get the size class.
This hash tends to cache poorly, especially in the TLB,
leading to performance losses. Although C++11 ameli-
orates this problem by allowing compilers to invoke
delete() with a parameter for memory block size, over-
heads still arise from 1) removing pages faulted in
when memory was written to and 2) merging neighbor-
ing freed blocks to produce a more valuable large free
block. While numerous prior works optimize memory
allocations,6 very few recognize that optimizing free()
can result in significant performance wins.

Kernel.Microservices with high OS kernel overhead,
Cache1 and Cache2, invoke OS scheduler functions fre-
quently. Software/hardware optimizations that reduce
scheduler latency (e.g., intelligent thread switching7

and coalescing I/O) might considerably improve

their performance. Cache2 also spends significant cycles
in I/O and network interactions, and can benefit from
optimizations such as kernel-bypass and multiqueue
NICs.

Synchronization. Microservices such as Cache over-
subscribe threads to improve throughput.8 Hence,
such microservices spend significant cycles synchro-
nizing frequent communication between distinct
thread pools. Cache also spends a large fraction of
cycles in spin locks that are typically deemed perfor-
mance inefficient.9 However, Cache implements spin
locks since it is a microsecond-scale microservice,8

and is hence more prone to microsecond-scale perfor-
mance penalties that can otherwise arise from thread
re-scheduling, wakeups, and context switches.7

C Libraries. We observe that Feed2, Ads1, and Ads2

invoke C libraries for vector operations, as they deal
with large ML feature vectors. Web spends significant
cycles parsing and transforming strings to process
queries from many URL endpoints. Interestingly, unlike
memory or kernel leaf functions, C libraries’ instruc-
tions per cycle (IPC) scales well across CPU genera-
tions, as many hardware vendors primarily rely on
open-source SPEC benchmarks that heavily use C
libraries to make architecture design decisions.

Other observations.ML microservices such as Ads2
and Feed2 spend only up to 13% of cycles on mathemati-
cal operations that constitute ML inference using mul-
tilayer perceptrons. Cache2 spends 6% of cycles in leaf
encryption functions since it encrypts a high number of
queries per second (QPS). Additionally, Google’s break-
down for a few leaf function categories, such as mem-
ory or kernel, is similar to Facebook’s breakdowns. In
contrast, SPEC CPU2006 benchmarks do not capture
key leaf overheads faced by ourmicroservices.

Service Functionality Characterization
We show a broad microservice functionality break-
down in Figure 2.

FIGURE 2. Breakdown of cycles spent in the main application

logic versus orchestration work: Orchestration overheads sig-

nificantly dominate.
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We find that application logic disaggregation across
microservices has resulted in significant microservice
functionality overheads. Several microservices spend
only a small fraction of their execution time serving their
main application logic (e.g., ML-based ads recommenda-
tion or key-value serving), squandering significant cycles
facilitating the main logic via orchestration work that is
not critical to the main application logic (e.g., compres-
sion, serialization, and I/O processing). For example,
microservices that perform ML inference—Feed1, Feed2,
Ads1, and Ads2—spend as few as 33% of cycles onML infer-
ence, consuming 42%–67% of cycles in orchestrating
inference. Hence, even if modern inference accelera-
tors10 were to offer an infinite inference speedup, the net
microservice performance would only improve by 1.49x–
2.38x. There is hence an urgent need to accelerate the
significant orchestration work that facilitates the main
application logic.

Orchestration overheads arise since a microservice,
upon receiving an RPC, must often perform operations
such as I/O processing, decompression, deserialization,
and decryption, before executing its main functionality.
Hence,manymicroservices face commonorchestration
overheads despite great diversity inmicroservices’main
application logic, as shown in Figure 3.

We make several observations about these signifi-
cant and common orchestration overheads. First, Web,
Cache1, and Cache2 spend a large portion of cycles exe-
cuting I/O, i.e., sending and receiving RPCs, and conse-
quent I/O compression and serialization overheads
dominate. Web incurs a high I/O overhead since it imple-
ments many URL endpoints and communicates with a
large back-end microservice pool. Cache1 and Cache2 are

leaf microservices that support a high request rate8—
they frequently invoke RPCs to communicate with
mid-tier microservices. These microservices can bene-
fit from I/O optimizations such as kernel-bypass, multi-
queue NICs, and efficient I/O notification paradigms.

Second, Web spends only 18% of cycles in its main
web serving logic (parsing and processing client
requests), consuming 23% of cycles in reading and
updating logs. It is unusual for applications to incur
such high logging overheads; only few academic stud-
ies focus on optimizing them in hardware.

Third, Ads1, Feed1, Feed2, and Cache1 incur a high thread
pool management overhead. Intelligent thread sched-
uling and tuning7 can help these microservices.

We conclude application logic disaggregation
across microservices and the consequent increase
in inter-service communication at hyperscale has
resulted in significant and common orchestration
overheads in modern data centers. In Table 1, we
report acceleration opportunities that might inform
future software and hardware designs. We believe
that our rich overhead characterization and taxonomy
of existing optimizations will guide researchers in miti-
gating these overheads.

ACCELEROMETER: AN
ANALYTICAL MODEL FOR
HARDWARE ACCELERATION

Accelerating key common orchestration overheads in
production requires 1) designing new hardware; 2)
testing it; and 3) carefully planning capacity to provi-
sion the hardware to match projected load. Given the

FIGURE 3. Breakdown of CPU cycles spent in various microservice functionalities (service functionality categories defined in the

table to the right): Orchestration overheads are significant and fairly common across microservices.
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uncertainties inherent in projecting customer
demand, deploying diverse custom hardware is risky
at scale as the hardware might underperform due to
performance bounds from the microservice’s software
interactions with the hardware.

TO EASILY AND ACCURATELY MODEL
WHETHER AN ACCELERATOR IS
WORTH DESIGNING AND DEPLOYING
FOR AMICROSERVICE OPERATION,
WE DEVELOP AN ANALYTICAL
MODEL, ACCELEROMETER.

To easily identify performance bounds early in the
hardware design phase and estimate realistic gains from
hardware acceleration, there is an urgent need to
develop a simple, yet, accurate analytical model for hard-
ware acceleration. The state-of-the-art analytical model
for acceleration, LogCA,11 falls short for microservices as
it assumes that the CPU synchronously waits while the
offload operates. However, for many microservice func-
tionalities, offload is asynchronous; the processor con-
tinues doing useful work concurrent with the offload.
Capturing this concurrency-induced performance
bounds will help realistically model microservice
speedup for various hardware acceleration strategies.

To easily and accurately model whether an accelera-
tor is worth designing and deploying for a microservice
operation, we develop an analytical model, Accelerome-
ter. Accelerometer models both synchronous and

asynchronous offloads for three hardware acceleration
strategies—on-chip, off-chip, and remote.

Accelerometer assumes an abstract system with
three components: 1) host: a general-purpose CPU; 2)
accelerator: custom hardware to accelerate a kernel (or
microservice operation); and 3) interface: the
communication layer between the host and the acceler-
ator (e.g., a PCIe link). Accelerometer models both the
microservice throughput speedup (referred to as
“speedup”) and the per-request latency speedup
(referred to as “latency reduction”). Modeling both
speedup and latency reduction ensures that accelera-
tion enables a higher throughput (i.e., more QPS) without
violating microservice latency service level objectives
(SLOs). When work is offloaded to an accelerator, the
speedup and latency reduction depend on the accelera-
tion strategy and the threading design used to offload,
i.e., synchronous versus asynchronous offload.

Synchronous Offload
In a synchronous offload (Sync), the host awaits the
accelerator’s response before resuming execution

TABLE 1. Summary of findings and suggestions for future optimizations.

Finding Acceleration opportunity

Significant orchestration overheads Software and hardware acceleration for orchestration rather than just app. logic

Several common orchestration overheads Accelerating commonoverheads (e.g., compression) can provide fleet-widewins

Poor IPC scaling for several functions Optimizations for specific leaf/service categories

Memory copies & allocations are
significant

Dense copies via SIMD, copying in DRAM, Intel’s I/OAT, DMAvia accelerators, PIM

Memory frees are computationally expensive Faster software libraries, hardware support to remove pages

High kernel overhead and low IPC Coalesce I/O, user-space drivers, in-line accelerators, kernel-bypass

Logging overheads can dominate Optimizations to reduce log size or number of updates

High compression overhead Bit-plane compression, Buddy compression, dedicated compression hardware

Cache synchronizes frequently Better thread pool tuning and scheduling, Intel’s TSX, coalesce I/O, vDSO

High event notification overhead Hardware support for notifications (e.g., RDMA-style), spin versus block
hybrids

FIGURE 4. Example timeline of host and accelerator.
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(see Figure 4), putting the accelerator’s operation
cycles (a�CA ) in the critical path of the host’s execution,
impacting speedup and per-request latency. The host
can consume additional cycles to 1) prepare the kernel
for offload, o0; 2) transfer the kernel to the accelerator,
L; and 3) wait in a queue for the accelerator to become
available, Q.

Synchronous OffloadWith Thread
Oversubscription
In reality, several microservices (e.g., Web and Cache)
oversubscribe threads to improve throughput by hav-
ing more threads than available cores. With synchro-
nous offload, a microservice oversubscribing threads
(Sync-OS) allows the host to schedule an available
thread to process new work, while the thread that off-
loaded work blocks awaiting the accelerator’s
response. Hence, the accelerator’s cycles do not criti-
cally affect speedup, but impact the per-request
latency. Moreover, OS overheads from the host
switching to an available thread after an offload, o1,
affect both speedup and latency reduction. The micro-
second-scale o1 overhead dominates in microsecond-
scale microservices (e.g., Caching), making it feasible
to incur a throughput gain at the cost of a per-request
latency slowdown. In such cases, Accelerometer can
help ensure that the microservice still meets its
latency SLO.

Asynchronous Offload
In an asynchronous offload (Async), the host does use-
ful work concurrent with the accelerator’s operation
on the offload, removing the accelerator’s cycles from
the critical path. Depending on whether the response
is picked up by the same thread that sent the request
or a different thread, OS thread switch penalties can
impact speedup and latency reduction.

Accelerometer models all these cases as well as
other nuanced scenarios to project realistic gains
early in the hardware design phase and make well-
informed hardware investments. We expect Acceler-
ometer to have the following use cases. 1) Data center
operators can estimate fleet-wide gains from optimiz-
ing key service overheads. 2) Architects can make bet-
ter accelerator design decisions and estimate realistic
gains by considering offload overheads due to micro-
service software design.

VALIDATING AND APPLYING
ACCELEROMETER

We validate Accelerometer’s utility via three retro-
spective case studies on production systems, by

comparing model-estimated speedup with real micro-
service speedup determined via A/B testing. Each
study covers a distinct microservice threading sce-
nario (i.e., Sync, Sync-OS, and Async). We analyze 1) an on-
chip accelerator: a specialized hardware instruction
for encryption, AES-NI; 2) an off-chip accelerator: an
encryption device connected to the host CPU via a
PCIe link; and 3) a remote accelerator: a general-pur-
pose CPU that solely performs ML inference and is
connected to the host CPU via commodity network.
In all three studies, we show that Accelerometer
estimates the real microservice speedup with � 3:7%
error.

Finally, we use Accelerometer to project speedup
for the acceleration recommendations derived from
three key common overheads identified by our charac-
terization: compression, memory copy, and memory
allocation.

LONG-TERM IMPLICATIONS
We discuss long-term implications, highlighting the
impact this work has already had.

Accelerometer in Production
As microservices evolve, Accelerometer’s generality
makes it even more suitable in determining new hard-
ware requirements early in the design phase. Since we
validated Accelerometer in production and made it
open-source,12 we are happy to report that it has been
adopted by multiple hyperscale companies (e.g., with
developing their encryption and compression acceler-
ators) to make well-informed hardware decisions. We
expect Accelerometer to trigger research in develop-
ing more complex models that account for overheads
induced by offloading to specific accelerators (e.g.,
software batching implications on FPGA memory
bandwidth versus latency).

Influence on Real Hardware Designs
In this work, we take a step back and answer the
Amdahl’s Law question of: Which overheads prevail
even after offloading a microservice’s main functional-
ity to accelerators? Our comprehensive study of real-
world microservices definitively indicates the need for
a qualitatively different approach to future accelerator
efforts. So far, data center hardware acceleration
efforts have primarily focused on the most costly
operations of a few “killer” applications (e.g., ML infer-
ence). However, accelerating orchestration overheads
can offer greater benefits as they are significant and
common across microservices.
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As web service architectures grow more frag-
mented (e.g., deeper microservice pipelines and serv-
erless architectures), it becomes more important to
optimize the increasingly ubiquitous orchestration
overheads. However, accelerating orchestration
overheads is nontrivial as 1) orchestration libraries
are already well-optimized in software and 2) orches-
tration function invocations are frequent, involve
small data granularity, and are interspersed between
other microservice code. Hence, accelerating orche-
stration overheads will require different techniques
than those used in throughput-based specialization
blocks with coarse-grained offloads (e.g., video
processing).

ALTHOUGH ACCELEROMETER
PROVIDES THE FIRST STEP IN
DETERMINING REQUIRED
ACCELERATION STRATEGIES, WE
EXPECT SIGNIFICANT ACADEMIC AND
INDUSTRIAL INTEREST IN RETHINKING
ACCELERATORS FOR FINE-GRAINED
ORCHESTRATION OPERATIONS.

Although Accelerometer provides the first step in
determining required acceleration strategies, we
expect significant academic and industrial interest in
rethinking accelerators for fine-grained orchestration
operations. Already, a few hardware vendors have
used our study’s insights to influence hardware cus-
tomization for orchestration operations.

Characterization Approach and Tool
While it is relatively simple to measure the CPU cycles
spent in leaf functions, it is extremely difficult to cate-
gorize every path’s functionality in a microservice’s
entire call stack, as microservices have deep, complex
software stacks that are hard to parse and classify.
We developed a methodology to systematically clas-
sify each call trace path: We applied expert insights to
identify service functionality classification rules that
we then used to categorize cycles spent in various
microservice functionalities.

We integrated this characterization tool into our
fleet-wide performance monitoring infrastructure; it
currently assimilates statistics from hundreds of thou-
sands of servers from around the world to help devel-
opers visualize the performance impact of their code
changes at hyperscale. With the decline of hardware

performance scaling, there is a greater need for
researchers to develop such tools for performance
monitoring and optimization at all levels of the sys-
tems stack.

Industry-Academia Collaborative
Benchmarking Efforts
Many hardware vendors rely on open-source bench-
marks such as SPEC that heavily use C libraries to
make architecture decisions. Hence, in our characteri-
zation, we observe that only C libraries’ IPC scales well
across CPU generations, but the other overheads (e.g.,
memory movement and encryption) show little to no
improvement.

There is immense value in validating commonly
used benchmarks with real-world application behav-
iors. Our characterization drove a hardware vendor to
consider more representative benchmarks (in place of
traditional ones they used for decades) when evaluat-
ing hardware designs. This work has resulted in an
industry–academia joint collaborative effort to design
and open-source scale-out cloud benchmarks that
represent the hyperscale behaviors identified in our
characterization. We expect our comprehensive study
to drive continued benchmarking efforts that repre-
sent the severity of overheads in production-grade
software.

End-to-End Thinking in Accelerator
Design
Oftentimes, when designing accelerators, architects
tend to miss the end-to-end picture, i.e., overheads
that might arise from other system parts. When trying
to adopt these accelerators at hyperscale, we have
often found that they degrade performance due to
overlooked offload-induced overheads. Accelerometer
is a simple, powerful tool to help architects analytically
estimate offload-induced overheads that arise from
the end-to-end path, projecting realistic gains early in
the hardware design phase.
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