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The rapidly growing compute demands of AI necessitate the creation of new
computing architectures and approaches. Tenstorrent designed its architecture
(embodied in Grayskull and Wormhole devices) to tackle this challenge via two
fundamental and synergistic approaches. The first is via compute-on-packets fabric
that is built from ground up for massive scaleout. The second is the ability to
execute dynamic computation, built into the compiler, runtime software and
hardware architecture. By combining these approaches, TensTorrent will enable
continued scaling of AI workloads.

Compute demand of AI is skyrocketing at a rate
that far outpaces the compute density
improvements that can be gained by Moore’s

Law alone3,4 and approaches based on monolithic
shared memory models. We have chosen to attack
this challenge via two approaches, dynamic computa-
tion and massive scaleout. We design dynamic com-
putation to enable a wide range of techniques that
intelligently “forgo unnecessary computation” or
“compute only what is relevant to input,” akin to what
our brains do.

Large clusters are already the norm for training of
AI models, while inference for some large models also
requires multi-device execution. The shared memory
paradigm cannot enable the required scale, which
necessitates a paradigm shift to a multicore private-
memory model, a foundation in our scaleout architec-
ture. On top of this, we build a push-based data move-
ment in which data transfers are explicitly planned
and controlled.

These two approaches can be synergistically com-
bined to take the current steep slope of increasing AI

compute and storage requirements and reduce it down
to somethingmuchmore compatible withMoore’s Law.

In the “Hardware” section, we present the details
of our hardware, with primary focus on the Grayskull
device. The “Software” section presents our software
stack. The “Full Stack Performance Optimizations”
section deep dives into several full stack performance
optimizations enabled by our hardware and software.
The “Dynamic Execution” section summarizes various
dynamic execution approaches enabled by our archi-
tecture. Performance results are presented in the
“Results” section. Finally, the “Conclusion” section
concludes this article.

HARDWARE
Devices
Over the last four years, Tenstorrent designed three
chips, shown in Figure 2 and summorized in Table 1.

Jawbridge is a small 14-nm test-chip, containing six
first-generation Tensix cores.

Grayskull, shown in Figure 1, is our first production
chip in 12-nm technology, and is currently in evalua-
tion with multiple customers. It is first incarnation of
our large cluster-on-a-chip multicore architecture and
is composed of 120 compute cores. The physical area
of the 10x12 grid of cores is 477 mm2. Each core oper-
ates independently; it has its own unique instruction
queue and progresses at its own pace, in contrast to
monolithic chip-scale SIMD, VLIW or single-kernel
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GPU models. A network-on-chip is used to transfer
data between the cores and to synchronize cores at
various points during the program execution.

The Network-on-Chip (NoC) is a 2-D, bi-directional
torus, with a bandwidth of 192 GB/s per node. The
NoC was architected internally alongside the Tensix
core, and it has been optimized for ML workloads,
described in more detail in the “Block Sparsity” sec-
tion. The NoC connects all the cores, as well as off-
chip communication and memory controller blocks.
As a result, each of the 120 compute cores has access
to the PCIe and to the DRAM off-chip memory.

The chip includes a Gen4x16 PCIe block for com-
munication with the host processor and other Gray-
skull devices. Eight channels of LPDDR4 are located
along the north and south edges of the compute grid.

In terms of numerical precision, Grayskull
supports:

1. full fp16/BFLOAT at 92 TFLOPs;
2. reduced precision mode of fp16/BFLOAT, at 122

TFLOPs;
3. block-based 8-bit floating point at 368 FLOPs.

The Wormhole device (12 nm) contains 16 ports of
100-Gb Ethernet, an integrated network switch, and six
channels of GDDR6. The compute fabric is composed of
Tensix cores similar to Grayskull. This communication-
oriented architecture realizes our vision of converged
networking and accelerated AI compute on a single
device. The large number of dedicated communication
links onWormhole enablemany-device scaleout, by con-
necting Wormhole devices directly to each other, with-
out a central host CPU processor or Ethernet switches.

Tensix Core
TensTorrent architecture operates on the basis of pack-
ets. The data units moved between thememories on the
NoC are packets. Also, compute is executed directly on
packets, shown in Figure 4. A single Tensix core contains
a packet processor, a packet manager, SRAM, and five
RISC processors. The RISC processors execute the run-
time software which dispatches instructions to
the packet processor and to the packet manager. On
Grayskull, the SRAM has a capacity of 1 MB, with a

FIGURE 1. Grayskull 75W PCIe board.

FIGURE 2. TensTorrent devices. (a) Jawbridge (2019). (b) Grayskull (2020). (c) Wormhole (2021).

TABLE 1. TensTorrent devices.

Jawbridge Grayskull Wormhole

Manufactured 2019 2020 2021

Technology 14 nm 12 nm 12 nm

Compute grid 2x3 grid of
cores

10x12 grid
of cores

10x8 grid of
cores

On-chip
SRAM

6 MB 120 MB 120 MB

Off-chip IO 1 ch.
LPDDR4,
PCIe
Gen4x4

8 ch.
LPDDR4,
PCIe
Gen4x16

16 ports of
100G Ethernet,
6 ch. GDDR6,
PCIe Gen4x16

CPUs 4 core
OoO ARC

4 core
OoO ARC

4 core OoO
ARC
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384-GB/s read/write bandwidth. The memory space is
primarily used by the local core, but it is directly accessi-
ble by remote cores aswell.

Packet Compute Engine
The packet compute is a SIMD-based matrix and vec-
tor engine with a high degree of flexibility and
programmability. Peak compute density is 3 TOPs at
8-bit precision, or 0.75 TFLOPs at 16-bit floating-point
precision. The packet compute engine is software-
programmable via the associated RISC cores, which
execute kernels written in standard C language and
issue matrix and vector instructions to the engine. A
large number of PyTorch and TensorFlow deep learn-
ing instructions are supported. The matrix and vector
engine support operations on a range of integer and
floating-point formats. Most importantly it natively
handles sparse computation to achieve speedup,
reduce power, and memory footprint.

The packet compute engine does not have a global
view of execution across the multicore system. Its
operation is driven primarily by the packet manager:
incoming packets from the packet manager are com-
puted and returned to the packet manager for storage
or data transfer.

Packet Manager Engine
The packet manager, depicted in Figure 3, is com-
posed of data transfer engine, router, and tensor
manipulation engine.

The data transfer engine is responsible for execut-
ing all data movement and synchronization among the
compute engines, as well as between on-chip SRAM,
off-chip memory and I/O. The packet manager and
compute engine each receive their own unique instruc-
tion queues from the compiler, and they execute con-
currently. The packet manager completely de-burdens

the compute engine from the complexity of datamove-
ment and multicore synchronization. These features of
the packet manager realize the push-based transfer
model, which maximizes the overlap between compute
and data transfers.

The router moves packets across the NoC. It pro-
vides guaranteed ordering, manages flow control and
backpressure, and has deadlock-free operation. It is
also optimized for the way AI workloads are parallel-
ized across our multicore architecture and has effi-
cient multicast and gather capabilities.

Finally, the tensor manipulation engine can per-
form dynamic packet compression; the smaller mem-
ory footprint enabled by compression results in faster
data transfers and an increase in data locality. Fur-
thermore, tensor manipulation instructions can be
executed by this engine, described in the “Optimiza-
tion of Tensor Manipulation Instructions” section.

SOFTWARE
The software is composed of three main pieces.

1. The machine learning framework integration and
plugin software.

2. The runtime software, executing on the RISC
processors.

3. The ahead-of-time graph compiler.

Framework Integration
The Tenstorrent compiler and runtime have been
natively integrated into PyTorch, and support both
inference and training flows. The user can target execu-
tion on a single device, or multidevice cluster. In either
case, the hardware is visible to the user as a single
device. The multidevice scheduling and parallelization
are orchestrated behind the scenes by the software
stack. In addition, the software stack can execute

FIGURE 3. Single Tensix core.
FIGURE 4. Packets flowing between compute operations. (a)

Tensor decomposed into packets. (b) Packets flowing

between compute operations.
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ONNX networks as well, enabling a funnel from the
frameworks that export into the ONNX format.

Graph Compiler
The graph compiler is composed of three main compo-
nents, the front end, optimizer, and back end. The primary
role of the front end is to lower a wide range of instruc-
tions to a smaller number of optimized instructions sup-
ported by the hardware. Instructions are parallelized and
scheduled onto the device cores by the optimizer, which
maximizes performancebybalancing compute, data local-
ity, anddatamovement. Theback-end translates the com-
piled graph down into instruction queues for each core.

The packet managers and NoC connecting the
cores is are visible to the software and the data move-
ment and synchronization are both controlled explicitly
by the compiler. To schedule the data movement, the
compiler packetizes each tensor by splitting it into
“mini-tensors,” and each mini-tensor is combined with
a packet header. Each packet header contains a unique
packet ID, and all data is referenced via unique packet
IDs. The header also contains routing information,
enabling the packet manager to perform the desired
data transfers between the cores across the NoC.

Runtime Software
The runtime software runs concurrently on RISC pro-
cessors within every core. The compiled executable
contains instruction queues for the packet processor
and the packet manager of every core. The runtime
software manages the queues, and dispatches instruc-
tions to the packet compute and the packetmanager.

Buffers containing packets are dynamically allo-
cated and de-allocated during runtime. The runtime
software works in tight collaboration with the packet
manager to store packets into the allocated buffers.
The runtime also controls the storage target, allowing
for buffers that do not fit into a core’s local SRAM to
spill to either remote SRAM, or to an off-chip memory.

The architecture also supports various types of
conditional executions such as if-statements, and for
and while loops. The runtime software interprets the
instruction queues generated for each core and can
execute jumps to a specific instruction in the instruc-
tion queues to reflect control flow decisions.

FULL STACK PERFORMANCE
OPTIMIZATIONS
Optimization of Data Transfers: The
Push-Based Model
Traditional multicore devices operate on a pull-based
data transfer model. For example, when a compute

core is ready to begin computing, as a first step it
issues a request to copy remotely stored data (from
another core’s cache, or from DRAM) into its local
memory or cache. After the copy has been completed,
the compute core starts computing. The read request
latency combined with a data transfer through a
potentially congested NoC or memory port, could
result in the consumer core being idle while waiting
for its data to arrive.

In contrast, our architecture operates on a push-
based data transfer model. A core that produces an
output buffer is aware of the consumer core that
needs to receive it. Instead of waiting for the con-
sumer core to issue a remote read request, the pro-
ducer core proactively copies the buffer to the
consumer core. This approach minimizes the idle time
of the consumer core.

The data transfer engine executes all the required
flow control for the push-based data transfer model. It
receives an instruction queue from the graph compiler
containing information about the producer-consumer
connectivity. The instructions enable the data transfer
engine to execute data transfers using a number of
multicore synchronization instructions, including
exchange of data transfer status, such as data-ready
or memory-space-ready.

Optimization of Tensor Manipulation
Instructions
Instructions that make up deep neural networks fall
into two main categories: 1) math instructions, and 2)
tensor manipulation (TM) instructions. TM instruc-
tions do not modify the data inside the tensor, but
simply reshuffle the tensor contents. Common TM
instructions in NLP networks include reshape, trans-
pose, flatten, and permute.

The TM reshuffling is performed on the intermedi-
ate activation data, and hence must be executed dur-
ing runtime. One implementation approach is to issue
and execute each TM instruction independently to
hardware during runtime. This typically involves a spe-
cific read/write pattern from/to memory, where the
patterns match the particular TM to be implemented.
GPUs execute TMs using this approach, shown in
Figure 5(c), which idles compute cores while perform-
ing potentially complex memory access.

In contrast, our architecture overlaps the execu-
tion of math instructions performed by the compute
engine and the TM instructions performed by the ten-
sor manipulation engine. This process is facilitated by
the graph compiler. The execution trace in Figure 5(b)
shows the overlapping of compute and TMs. The
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MM_1 compute instruction and the Reshape and
Transpose instructions execute concurrently, in a
pipelined fashion.

The tensor manipulation engine is programmable –

it receives its own unique instruction queue from the
compiler. TM instructions are executed using a combi-
nation of two methods. First, it contains a small stor-
age that it uses as a scratch pad to load a packet and
reshuffle it in place. Second, it can execute complex
memory read/write patterns. Using a combination of
these approaches, any tensor manipulation instruc-
tion can be implemented inline as the packets are
being streamed out of the packet compute engine
and being written into local SRAM.

Flexible Scheduling and Parallelization
The TensTorrent architecture unlocks a tremendous
amount of concurrency. All building blocks receive
their own unique instruction queues from the compiler
and can progress at their own pace. As a result, the
overlap between compute and data transfers is
maximized.

However, any single parallelization approach even-
tually plateaus, hence the desire to support flexible
parallelization approaches along all available dimen-
sions for any given compute layer. Each individual
deep learning operation can be parallelized across a
variable number of cores, combining a number of par-
allelization approaches. In addition, operations can be
run in parallel, be pipelined, or sequential, across the
many cores of a device, shown in Figure 6.

DYNAMIC EXECUTION
Dynamic execution is an umbrella term representing
various approaches that reduce the computational
complexity of a network at runtime. Some approaches
can be represented within the topology of network
itself, such as Mixture-of-Experts (MoE), while others
can be used to augment the network execution during
runtime. Four approaches enabled by the Tenstorrent
architecture are described next.

Block Sparsity
Tensors feeding into math operations within networks
contain a variable amount of sparsity within them.
Certain models have been tuned to take advantage of
sparsity of trained parameters,2 or take advantage of
block sparsity in model parameters.5 However, these
approaches do not tap into a large potential of spar-
sity in activations, which can be inherent or induced
at runtime.7 To fully utilize this potential, in addition to
model parameter sparsity, our architecture supports
block sparsity of activations, which enables quadratic
gains from run-time activation sparsity.

Dynamic Precision
Similar to scientific computing applications, numerical
precision can be traded off for an increase in perfor-
mance and a reduction in power. The Tenstorrent
architecture enables a numerical precision to be set
at a fine grain level, per each packet in the neural net-
work. The setting can be specified both ahead-of-time
by the compiler, as well as during runtime.

FIGURE 5. Tensor manipulation instructions executed on

Grayskull and a GPU. (a) Application graph received from

PyTorch. (b) Execution trace on a Grayskull Tensix core. (c)

Execution trace on a GPU.

FIGURE 6. Flexible scheduling and parallelization. (a) Pipeline

parallelism. (b) Model parallelism.
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Runtime Compression
Tensors can be compressed and decompressed dur-
ing runtime via dedicated hardware blocks. Parame-
ters can be compressed at compile time, and de-
compressed at runtime by the hardware. Similarly, dur-
ing runtime, the output activations of a math layer can
be compressed inline as they are being produced.
Both approaches result in reduced memory footprint,
in addition to power savings from smaller and faster
data transfers.

Conditional Computation
MoE1 involves the use of conditional computations,
where only parts of the network are computed, on a
per-input basis. This allows a significant increase in
model capacity, without a proportional increase in
computational complexity. A host CPU can easily
implement such conditional computation, however
that approach involves unnecessary data transfers
between host and the AI processor and is impractical
for large scaleout implementations. The Tenstorrent
architecture is the first architecture, to the best of our
knowledge, that tightly couples native conditional
computation together with the dense compute within
an AI processor fabric.

RESULTS
We measured a baseline result for BERT-base in
BFLOAT16 precision at 2830 sequences/s. Significant
speedup is achievable by applying two optimizations
on top of this baseline: dynamic activation sparsity
and use of 8-bit floating point. In our experiments we
observe that 75% sparsity in activations (induced
dynamically at runtime) results in 4x speedup on BERT
layers. Similarly, we observe that using block-based
8-bit floating point precision provides a factor of two.
The two optimizations can be combined synergisti-
cally—they both reduce the activation memory foot-
print linearly for a total of 8x reduction, and 8-bit floats
reduce the model parameter memory footprint by 2x.
This enables the majority of the model parameters to
fit on chip allowing the sparsified layers to be fed from
local SRAM. Realizing this on an entire BERT-base is
work in progress and we project a score of 23 345
sequences/s.

CONCLUSION
We solve the private memory parallel computing prob-
lem and tensor manipulations in a way that removes
communication, synchronization, and data shuffle bot-
tlenecks and enables keeping all the compute units
highly utilized.

In comparison to alternative and competing archi-
tectures, Tenstorrent’s architecture is the only one
which has all the features of the next-generation com-
puting architecture, one that allows fusion of Software
2.0 (“neural nets”)8 and Software 1.0 (“classical
programs”):

› Sameprogrammingmodel for single-chip andmul-
tichip scaleout. Parallelization for private memory
combinedwith direct compute-on-packets.

› Flexible parallelization across all tensor dimensions
and approaches, including the time dimension.

› Native ability to intermingle dense-math-heavy
nodes of a neural net with sparse nodes, proce-
dural nodes (i.e., “classical programs”), and vari-
ous dynamic and conditional execution
techniques. These are all critical building blocks
for a compute substrate that allows fusion of
Software 1.0 and Software 2.0., entirely removing
the need for host CPU fallback.

› Fully programmable: kernels and runtime system
(firmware) are written in standard C language.

› Scaleout capability and flexibility: scaleout via
standard Ethernet that seamlessly integrates
into our NoC.
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