
SymbiFlow and VPR: An
Open-Source Design
Flow for Commercial
and Novel FPGAs

Kevin E. Murray

University of Toronto

Tim Ansell and Keith Rothman

Google

Alessandro Comodi

Antmicro

Mohamed A. Elgammal and Vaughn Betz

University of Toronto

Abstract—As the benefits of Moore’s Law diminish, computing performance, and efficiency

gains are increasingly achieved through specializing hardware to a domain of computation.

However, this limits the hardware’s generality and flexibility. Field-programmable gate

arrays (FPGAs), microchips which can be reprogrammed to implement arbitrary digital

circuits, enable the benefits of specializationwhile remaining flexible. A challenge to

using FPGAs is the complex computer-aided design flow required to efficientlymap a

computation onto an FPGA. Traditionally, these design flows are closed-source and highly

specialized to a particular vendor’s devices. We propose an alternate data-driven approach,

which uses highly adaptable and retargettable open-source tools to target both commercial

and research FPGA architectures. While challenges remain, we believe this approach

makes the development of novel and commercial FPGA architectures faster andmore

accessible. Furthermore, it provides a path forward for industry, academia, and the open-

source community to collaborate and combine their resources to advance FPGA

technology.

Digital Object Identifier 10.1109/MM.2020.2998435

Date of publication 28 May 2020; date of current version

30 June 2020.

Theme Article: Agile and Open-Source HardwareTheme Article: Agile and Open-Source Hardware

July/August 2020 Published by the IEEE Computer Society This work is licensed under a Creative Commons
Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

49

& MOORE’S LAW HAS tracked our ability to per-

form increasingly efficient and complex compu-

tation over the past 55 years, enabling general

purpose devices like CPUs (and more recently

GPUs) to continually improve performance and

power efficiency. However as the traditional ben-

efits of manufacturing process technology scal-

ing diminish, so are the performance and

efficiency gains of these devices. At the same

time, demand for computation from domains

such as machine learning and wireless signal

processing continues to rapidly increase.

This has led computer architects to investi-

gate domain-specific computing architectures,

which focus on efficiently implementing a spe-

cific domain of related computational applica-

tions. While such approaches offer significant

benefits, these are largely derived from their spe-

cialization and lack of flexibility. Furthermore,

developing such architectures is expensive

(designing and fabbing a custom chip may cost

hundreds of millions of dollars), and is risky (e.g.,

what if some unsupported operation becomes

required?). As a result, relatively few application

domains are stable enough and garner sufficient

financial support for this approach.

Field-programmable gate arrays (FPGAs)

present an alternative approach, which com-

bines flexibility and general applicability, with

the performance and efficiency benefits of

domain specific architectures (DSAs). Instead of

designing a DSA which must then be manufac-

tured as an Application Specific Integrated Cir-

cuit (a process which usually takes years), a DSA

can be implemented and reprogrammed onto an

FPGA in a few hours or days. As shown in

Figure 1, an FPGA consists of programmable

logic blocks (which can implement arbitrary

boolean logic functions), data storage (FFs and

BRAMs), and a programmable routing fabric to

interconnect them. This enables an FPGA to be

quickly reprogrammed to implement an arbi-

trary digital circuit.

The architecture of FPGAs themselves contin-

ues to evolve in many ways, such as the integra-

tion of increasingly heterogeneous blocks such

as digital signal processing blocks, diverse I/O

controllers, embedded networks-on-chip and

more. The evolution of FPGAs and the creation

of FPGAs with unique features to benefit new

domains is hindered by the very complex com-

puter-aided design (CAD) system needed to map

a high-level computation description to the mil-

lions of configuration bits which control the

FPGA. The creation of such tooling is a daunting

task: FPGA vendors such as Xilinx and Intel

employ more software engineers than hardware

engineers in their FPGA divisions to develop their

(closed-source) CAD systems.1 Furthermore,

without a prototype CAD system for each FPGA

architecture of interest, an FPGA architect cannot

quantitatively evaluate new architectural ideas.

In this article, we discuss the SymbiFlow proj-

ect, which seeks to create an open-source CAD

flow for FPGAs that can be used not only to pro-

gram commercial FPGAs, but also to evaluate

new FPGA architectures. This dual goal creates a

challenge. On the one hand, creating a program-

ming file for a specific FPGA requires that every

device detail is perfectly supported by the CAD

system. On the other hand, for a CAD system to

be able to target a wide range of FPGA archi-

tectures it must be very flexible and avoid chip-

specific coding. We show that a data-driven

approach is possible: SymbiFlow can fully map

designs to the commercial Xilinx Artix 7 devices

with open-source synthesis, placement, routing,

and bitstream generation tools that can still be

retargeted to other (existing or novel) FPGAs. In

this article, we quantify the current feature sup-

port and result quality of this flowwhen targeting

commercial devices. While much remains to be

done, we believe SymbiFlow has the potential

Figure 1. (Left) An FPGA consisting of configurable

logic blocks (CLBs) for computation and Block RAMs

(BRAMs) for storage, along with programmable

routing to interconnect them. (Right) EachCLB

contains lookup tables (LUTs) and flip-flops (FFs).

RoutingMuxes are configured to interconnect

elements within each block, or interblock routingwires.

Agile and Open-Source Hardware

50 IEEE Micro

both to allow a much larger community to

develop CAD flows for current FPGAs and to

make the development of new FPGA architec-

tures faster andmore accessible.

RELATED WORK
FPGA CAD flows serve two main purposes:

implementing designs in a completely specified

FPGA architecture and quantitatively evaluating

new hardware architectures before their crea-

tion. Each FPGA vendor has a CAD flow for the

first purpose—generating a programming file for

their devices—and several also have CAD flows

to evaluate new architecture ideas for future

microchips, such as Intel/Altera’s FPGA Model-

ing Toolkit (FMT).2 These tools are closed

source however, so they cannot be

used by academic or other

researchers to test new CAD algo-

rithms, to investigate new architec-

tures, or to implement designs on

novel FPGAs.

Some interfaces to commercial

tools have been documented, allow-

ing some interaction between exter-

nal open source tools and these

commercial CAD flows. Torc3 and

RapidSmith II4 use Xilinx Design Lan-

guage (XDL) to pass intermediate

CAD result information to Xilinx’s (now legacy)

ISE CAD flow. RapidWright5 uses similar techni-

ques to read and write partial CAD results to and

from Xilinx’s Vivado CAD tool, enabling customi-

zation of some portions of the design flow. While

these interfaces are helpful to the open source

community, they do not address all usage scenar-

ios. First, device programming information is not

exposed. Second, the code bases to which they

interface are closed, and the devices targeted are

limited to existing commercial devices. This pla-

ces limits on how much the CAD flow can be

changed and precludes investigation of or sup-

port for novel FPGA architectures.

To overcome these limitations, several stand-

alone open-source frameworks have been cre-

ated. The VTR framework combines Odin II for

verilog synthesis, ABC for technology mapping

and VPR for packing, placement, and routing.6

VPR takes a human-readable description of an

FPGA architecture as input and has been used

for a wide variety of FPGA architecture research

in academia and industry (Altera’s FMT was orig-

inally derived from VPR). VPR/VTR have also

been used as a framework for investigating many

new CAD algorithms, allowing researchers to

implement or modify only their novel part of the

CAD flow.

While VTR has been extensively used for

research, it has historically seen less use for pro-

graming actual devices. VTR-to-Bitstream7 pro-

posed a toolchain based on VTR that can

program a Virtex 6 commercial FPGA, using

Xilinx’s tools only for the final programming. Sev-

eral start-ups have made private copies of VPR

and developed implementation tool flows for

their devices on top of it—but their tools are

closed source. Similarly, several

academic research teams created

novel spatial architectures, which

use VTR as their CAD flow,8 but

they all required significant cus-

tom coding to create a full device

model and programming flow.

This has led to a significant dupli-

cate work across these projects.

Hence, a major recent focus of the

VTR project, and this article, has

been to enhance the tool flow in

a data-driven way to support full implementa-

tion flows for both existing and future novel

FPGAs with little (or ideally no) custom coding.

The OpenFPGA project further builds on the

VTR infrastructure to allow automatic layout of

a full FPGA, enabling a complete idea-evalua-

tion-layout-programming flow.9

Nextpnr10 is another open source FPGA

placement and routing tool that has been cre-

ated to enable a complete open-source FPGA

implementation flow for the Lattice Ice40 and

ECP5 devices. Unlike VTR, its main purpose is to

target existing commercial FPGA architectures

with an open-source flow; as such it is more ame-

nable to custom coding.

In this article we detail Symbiflow: enhance-

ments to VPR and a data-driven bitstream

generator that allow a complete open-source

implementation flow for a Xilinx Artix 7 com-

mercial device, without significant custom cod-

ing. We believe this new flow fills an important

In this article, we

discuss the SymbiFlow

project, which seeks to

create an open-source

CAD flow for FPGAs

that can be used not

only to program com-

mercial FPGAs, but

also to evaluate new

FPGA architectures.

July/August 2020 51

gap by enabling rapid creation of full implemen-

tation CAD flows for both existing and new

FPGA devices.

DESIGN FLOW
The open source design flow we focus on is

shown in Figure 2. The end-user provides a

behavioral specification of the computations

they wish to perform in a hardware description

language (HDL). This description is then trans-

formed by several tools to map the computation

to the target architecture, finally producing a bit-

stream used to configure the FPGA. This map-

ping occurs in several stages.

First, Yosys converts the behavioral HDL into

a circuit consisting of soft logic (boolean equa-

tions) and hard architectural primitives (like

adders, multipliers, and RAMs). For hard primi-

tives Yosys’ technology mapping, library lowers

generic HDL operations (such as addition) to

architecture specific primitives (e.g., full add-

ers).� The soft logic is then optimized by ABC

and technology mapped to the primitive compu-

tational elements (e.g., LUTs).

VPR then takes the technology mapped net-

list along with a detailed model of the FPGA

device and determines, where to place each cir-

cuit element (placement) and how to intercon-

nect them (routing) while minimizing the wiring

required and maximizing circuit speed. The

resulting circuit implementation is then con-

verted to a low-level FPGA Assembly (FASM)

description, which can be directly translated

into the binary bitstream which programs an

FPGA.

Specifying Architectures

FPGA architectures can be described at vari-

ous levels of detail, as shown in Figure 3. While

the lower level descriptions are more complete

they are also unstructured, making it impractical

to have CAD tools target them directly. Instead

CAD tools operate on a “Device Model,” which

captures the key information about an FPGA

architecture/device in a structured manner. This

allows tools to effectively optimize and imple-

ment designs based on the targeted device

model. In our data-driven approach, the device

model serves as an intermediate representation

(IR), which can model a range of hypothetical

and commercial FPGA devices.

FPGA architects developing new architec-

tures often take a top-down approach, using

high-level descriptions to quickly describe and

evaluate a wide range of architectures and archi-

tectural parameters. These descriptions leave

many aspects underspecified, leaving it up to

the tools to automatically fill in the details (i.e.,

the “Elaborate” step in Figure 4). This approach

is highly productive for architecture exploration

and research, and if an FPGA device matches the

data model well, it can produce a reasonably

accurate device model. For instance, Murray

et al.11 used VPR to model commercial Intel

Stratix IV FPGAs. However, this method can

make it challenging to precisely model the

details of a specific device.

To implement designs targeting commercial

FPGAs and produce valid bitstreams (i.e., the bot-

tom half of Figure 4) requires modeling the target

device with bit-level accuracy. This requires a

bottom-up approach, which constructs the

device model from the low-level device details

Figure 2. Design flow.

Figure 3. FPGA architecture representation.

�
Further lowering is later performed to ensure primitives match the VPR

device model.

Agile and Open-Source Hardware

52 IEEE Micro

(i.e., the “Extract” step in Figure 4). With such a

device model, the CAD flow in Figure 2 can then

be used tomap applications to that device.

Recently, these low-level device descriptions

have become available for some FPGAs, includ-

ing Lattice’s ICE and ECP5 families, and Xilinx’s

Artix 7. These low-level descriptions provide

detailed information about the FPGA structure

(logic and how routing resources interconnect),

and how their use is described in the bitstream.

However as noted previously, merely having

access to the low-level details is insufficient to

successfully target these devices. The CAD flow

requires higher level context and structure to

correctly implement and effectively optimize appli-

cations for the device. The process of converting

these low-level device descriptions into the higher

level device model can be challenging, as the low-

level details are relatively unstructured. This pro-

cess is typically performed through a combination

of automated processing and human-driven

modeling (“Extract” in Figure 4). While much of

this processing can be reused within a particular

device family (or potentially across related fami-

lies from a particular vendor), each vendor makes

a variety of different architectural, implementa-

tion, and terminology choices. The broadness and

significance of these differences have often been at

the root of concerns about whether flexible archi-

tecture agnostic tools like VPR can target commer-

cial FPGAs.

Enhancements to Target Commercial FPGAs

A variety of new tools and enhancements are

required in order to enable a fully open-source

FPGA tool flow, which can be reused and retar-

geted to multiple devices.

VPR Enhancements: In order to support

commercial devices, we have extend VPR’s

device model and flexibility to capture the

details required to produce valid bitstreams.

The changes include:

� generic device grids (to model the precise

layouts of commercial devices)6;

� support for loading the detailed routing

architecture from a file (rather than build-

ing it from a high-level specification)6;

� nonconfigurable routing graph edges

(to model multisegment and nonlinear

wiring)6;

� support for routing clocks on dedicated

clock networks;

� extensions to timing analysis to capture

clock network delays and fan-out related

loading effects.

Device Model Extraction: As described

above, low-level device databases exist for some

commercial FPGAs but are very low level and

unstructured. This makes them an unsuitable

description for place and route tools, which

aim to optimize higher level characteristics like

resource usage, wirelength, and timing. It is

therefore necessary to extract additional higher

level structural information, which tools like

VPR can target.

Figure 5 illustrates the major steps in Symbi-

flow required to convert the low-level device

database for Xilinx’s Artix 7 family into an appro-

priate device model for use in VPR. The resulting

device model captures all the details correctly

and includes the higher level structural

Figure 4. Architecture and implementation flows.

Figure 5. Architecture model generation.

July/August 2020 53

information required for effective place and

route optimizations.

The first step involves extracting higher level

structural information about the interblock rout-

ing network (form channels). For instance, it is

important to align the block and routing network

coordinate systems, which ensures both the

placer and router have aligned understandings

of what components of the device are physically

close together.

The second step (Construct RR Graph) builds

the routing resource (RR) graph describing what

routing wires exist between blocks and how they

interconnect. Each routing resource is also anno-

tated with information about its location and the

characteristics of the switches to which it con-

nects. Some routing architecture details also

need to be translated to fit in the RR Graph

description. For instance, the Artix 7 family

includes “U”-shaped wires, which are converted

into three linear wires connected by nonconfig-

urable edges.

The third step (Create Tiles) defines the rout-

ing interface between the RRGraph and the differ-

ent block types (e.g., CLBs, BRAMs) within the

FPGA. It also constructs the device grid which

specifies what block types exist at each coordi-

nate in the FPGA, and tags them with FASMmeta-

data used by the assembler to relocate their

configuration bits within the bitstream.

The fourth step (Model Blocks) creates a

model of the logic and internal routing within

each block type. For instance, it would model the

resources available within a CLB (e.g., LUTs, FFs,

Adders) and the connectivity between them.

These components are all tagged with FASM

metadata used to drive bitstream generation.

These steps are sufficient to generate a func-

tionally correct device model, which captures the

low-level details of the device and can be used

with VPR to implement designs and generate valid

bitstreams for real Artix 7 devices. However, addi-

tional information is required to enable VPR to

optimize circuit implementationswell.

To enable timing-driven optimization, it is

necessary to provide a timing model for the vari-

ous architecture components (routing wires,

LUTs, FFs etc.). This is done by creating a timing

model (“Build Timing Model”) from a database of

timing information extracted from Vivado. The

timing model is used by Tatum,12 VPR’s Static

Timing Analysis (STA) engine, for timing analysis

and to drive timing-based optimizations.

Additionally, at each stage it is necessary to

extract higher level information to enable VPR

to effectively optimize the use of various rout-

ing and logic resources. For example, grouping

the numerous wires in the RR graph into a

smaller number of “types,” which share similar

electrical and connectivity characteristics

(e.g., rare but fast long wires, common but

slower and more flexible short wires), enables

VPR to tradeoff which signals use the different

wire types.

Generic Bitstream Assembler To create a

generic bitstream assembler, a generic FPGA

assembly (FASM) format was devised. FASM is a

textual format which lists “features” to enable

within the FPGA fabric. A feature might be the

LUT truth-table or the input wire selected by a

routing mux. Generally a FASM feature will

enable one or more bits, and may also require

that one or more bits remain cleared in the out-

put bitstream.

FPGA bitstream contents can be roughly bro-

ken down into three categories: primitive block

configurations (e.g., LUTs, FFs), intrablock rout-

ing muxes, and interblock routing muxes. During

device model extraction, information about the

FASM features associated with each of these cat-

egories are tagged as metadata on the relevant

components. The corresponding FASM features

are then set based on component usage in the

final design implementation.

Verification and Correctness

Multiple levels of verification have been per-

formed to ensure the resulting bitstreams are

functionally correct on various example and

benchmark designs. This includes programming

Table 1. VPR 8 quality and runtime targeting Stratix IV model on Titan

benchmarks.

LABs
Routed

WL

Routed

CPD

Pack

Time

Place

Time

Route

Time

Total

Time

0.95 1.26 1.20 1.18 1.00 0.34 0.83

Geomean of 20 mutually implementable Titan benchmarks,11 normalized

to Intel Quartus 18.0.6

Agile and Open-Source Hardware

54 IEEE Micro

the bitstreams onto real devices and testing

functionality (e.g., manually, or using built in

self-test), reimporting the produced implementa-

tion into Vivado, and formally verifying the

equivalence of the postsynthesis and post-place-

and-route netlists.

FLOW QUALITY
To quantitatively evaluate the quality and

run-time of our open-source design flow, we

compare it in two scenarios: one where VPR

understands the higher level structure of the

architecture, and another which captures the

full details of a commercial Xilinx device.

In the first scenario we use a mixed open and

closed source flow, where we use Intel’s Quartus

(closed-source) for logic synthesis and technol-

ogy mapping, and either Quartus or VPR (our

open-source place and route tool) to perform

the physical implementation.y In this scenario

VPR targets a somewhat abstracted model6 of

Intel’s Stratix IV FPGA family, since the low-level

details of Stratix IV are unavailable. Both tools

are used to implement the Titan benchmark

suite,11 which consists of modern large scale

benchmarks (90K-1.9 M netlist primitives) which

use all the types of heterogeneous resources

available in the Stratix IV family. Table 1 shows

that compared to Quartus, VPR uses similar

amounts of logic (LABs) and requires a compara-

ble amount of run-time to implement all designs.

However VPR’s implementations use approxi-

mately 26% more wiring and operate 20% slower

than those produced by Quartus. These results

show that when our tools comprehend the over-

all device (including higher-level structure),

their implementation and optimization

algorithms achieve good run-time and reason-

able result quality compared to a highly tuned

architecture specific tool like Quartus.

In the second scenario, we use the fully open-

source Symbiflow (with VPR) design flow shown

in Figure 2 to target a Xilinx Artix 7 device

for which the full low-level device details are

available, and compare the results with Xilinx’s

closed-source Vivado 2017.12 tool suite.z

The results are shown in Table 2. Here, we

see that Symbiflow uses roughly double the

amount of logic (CLBs) to implement these

designs, and produces circuits which have 2:3�
longer critical paths. A significant portion of this

gap is due to logic synthesis and technology

mapping, with Vivado producing smaller and

better optimized netlists.{ From a tool run-time

perspective, Symbiflow’s average run-time is

lower than Vivado’s. Symbiflow spends less time

on synthesis, more time on placement and com-

pletes routing faster than Vivado.

It is important to note that the results in

Table 2 are achieved while targeting the full

details of Artix 7, and as a result produce valid

bitstreams which can be programmed onto an

Artix 7 device without any closed-source tooling.

We believe that many of the run-time and quality

issues can be alleviated through either improv-

ing the modeling of Artix 7’s high-level character-

istics, or improving the adaptability of VPR’s

algorithms.

CONCLUSION and FUTURE WORK
FPGAs offer a compelling approach to achieve

the performance, power, and cost benefits of

y
This allows us to evaluate only the impact of placement and routing (since

the same synthesis result is used).

z
Note the reported critical path delays are calculated by Vivado’s timing ana-

lyzer for both design flows.
{
When Vivado uses the same netlist as VPR, VPR uses 24% fewer CLBs than

Vivado (indicating Vivado packs the design less densely than VPR) and the

critical path delay gap reduces to 1:6�.

Table 2. Symbiflow& VPR quality and runtime on Artix 7 (XC7A50TFGG484).

July/August 2020 55

domain specific architectures while retaining the

flexibility to adapt to changing computational

requirements and supporting a wide range of

application domains. However, the complex CAD

flow required to target FPGAs has hindered prog-

ress in this direction. We believe open-source

tools for FPGAs are an important step toward

addressing this challenge, allowing the broader

academic, commercial, and open-source commu-

nities to pool their efforts in order to advance

this technology.

We have shown that with a data-driven

approach, it is possible to create architecture

agnostic tools, like VPR, which can target the full

details of commercial FPGAs and produce valid

bitstreams. These same tools enable FPGA archi-

tects to experiment with and evaluate new FPGA

architectures, while also providing a ready-made

functional CAD flow

for targeting such

devices.

However, there

is plenty of work

still to be done.

When architectures

match VPR’s data

model well, it is pos-

sible to achieve rea-

sonable implemen-

tation quality and

run-time (see

Table 1). However, for architectures which

do not match well the results are more mixed. It

will be important to continue improving the

quality of architecture captures given

to VPR, and continue extending VPR’s device

model to allow better descriptions of such

architectures.

Working from low-level device descriptions is

challenging as many of the important structural

characteristics of an FPGA architecture are

implicit. This requires complex processing and

manual efforts to extract this higher level struc-

ture from the low-level data, but is key to

achieve high-quality optimization and reason-

able run-times. If vendors provided this higher

level device information along with their chips

this effort would be eased significantly.

Finally, there remains significant room for

improving the quality and run-time of VPR’s

optimization algorithms. There are many iden-

tified areas for improvement,6 which we hope

the community will collaborate together to

enhance.

ACKNOWLEDGMENTS
This work was supported in part by Google,

the NSERC/Intel Industrial Research Chair in

Programmable Silicon, as well as NSERC CGS-D

and Ontario Graduate Scholarships. We would

like to thank Q. Xu, X. Hou, and Y. Wang for

assistance collecting benchmark data, as well

as the numerous community members who

have contributed to the development of VPR

and Symbiflow through writing documentation,

filling bugs, and submitting code fixes and

enhancements.

& REFERENCES

1. S. Trimberger, “Three ages of FPGAs: A

retrospective on the first thirty years of FPGA

technology,” Proc. IEEE, vol. 103, no. 3,

pp. 318–331, Mar. 2015.

2. D. Lewis et al., “The stratixTM10 highly pipelined FPGA

architecture,” in Proc. Int. Symp. Field-Programmable

Gate Arrays, 2016, pp. 159–168.

3. N. Steiner et al., “Torc: Towards an open-source tool

flow,” in Proc. Int. Symp. Field Programmable Gate

Arrays, 2011, pp. 41–44.

4. T. Haroldsen, B. Nelson, and B. Hutchings,

“RapidSmith 2: A framework for BEL-level CAD

exploration on Xilinx FPGAs,” in Proc. Int. Symp.

Field-Programmable Gate Arrays, 2015, pp. 66–69.

5. C. Lavin and A. Kaviani, “RapidWright: Enabling

custom crafted implementations for FPGAs,” in Proc.

Int. Symp. Field-Programmable Custom Comput.

Mach., 2018, pp. 133–140.

6. K. E. Murray et al., “VTR 8: High performance CAD

and customizable FPGA architecture modelling,”

ACM Trans. Reconfigurable Technol. Syst., vol. 13,

p. 55, 2020, Art. no. 9. [Online]. Available: https://

doi.org/10.1145/3388617

7. E. Hung, F. Eslami, and S. J. E. Wilton, “Escaping the

academic sandbox: Realizing VPR circuits on xilinx

devices,” in Proc. Int. Symp. Field-Programmable

Custom Comput. Mach., 2013, pp. 45–52.

8. DARPA, “Reconfigurable imaging (ReImagine),” 2016.

[Online]. Available: https://www.darpa.mil/attachments/

Final_Compiled_ReImagineProposersDay.pdf

We have shown that

with a data-driven

approach, it is possible

to create architecture

agnostic tools, like

VPR, which can target

the full details of

commercial FPGAs

and produce valid

bitstreams.

Agile and Open-Source Hardware

56 IEEE Micro

https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://www.darpa.mil/attachments/Final_Compiled_ReImagineProposersDay.pdf
https://www.darpa.mil/attachments/Final_Compiled_ReImagineProposersDay.pdf

9. B. Chauviere et al., “OpenFPGA: Complete open source

framework for FPGAprototyping,” inProc.Workshop

OpenSourceDes. Autom., 2019, pp. 367–374.

10. D. Shah et al., “Yosys+nextpnr: An open source

framework from verilog to bitstream for commercial

FPGAs,” in Proc. Int. Symp. Field-Programmable

Custom Comput. Mach., 2019, pp. 1–4. [Online].

Available: http://doi.org/10.1109/FCCM.2019.00010

11. K. E. Murray et al., “Timing-driven titan: Enabling

large benchmarks and exploring the gap between

academic and commercial CAD,” ACM Trans.

Reconfigurable Technol. Syst., vol. 8, no. 2,

pp. 10:1–10:18, 2015.

12. K. E. Murray and V. Betz, “Tatum: Parallel timing

analysis for faster design cycles and improved

optimization,” in Proc. Int. Conf. Field-Programmable

Technol., 2018, pp. 110–117.

Kevin E. Murray is currently working toward the

Ph.D. degree at the University of Toronto, and has

been the lead developer of the VTR project since

2014. His research interests include FPGA CAD and

architecture, machine-learning-enhanced CAD, and

modular hardware design flows. Murray received the

M.A.Sc. degree in electrical and computer engineer-

ing, and the B.A.Sc. degree in engineering science

from the University of Toronto. He is a student member

of IEEE. Contact him at k.murray@mail.utoronto.ca.

Tim Ansell is a Software Engineer at Google. His

research interests include open-source EDA tooling,

open-source RTL design, and software speed hard-

ware accelerator development. Ansell received the

B.A. degree in philosophy and cognitive science and

the B.Eng. degree in information technology and tele-

communications from the University of Adelaide. He is

a member of IEEE. Contact him at tansell@google.com.

Keith Rothman is a Software Engineer at Goo-

gle. His research interests include open-source

EDA tooling, open-source RTL design, and soft-

ware speed hardware accelerator development.

Rothman received the B.S. and M.S. degrees in

aerospace engineering from California Polytechnic

State University—San Luis Obispo. Contact him

at keithrothman@google.com.

Alessandro Comodi is a Software Engineer at

Antmicro. His research interests include FPGAs,

EDA tools, and hardware design methodologies.

Comodi received the Master’s degree in computer

science and engineering from the Politecnico di

Milano. Contact him at acomodi@antmicro.com.

Mohamed A. Elgammal is currently working

toward the Ph.D. degree at the University of Toronto.

His research interests include reinforcement learn-

ing, CAD tools, and FPGAs. Elgammal received the

B.Sc. and M.A.Sc degrees (Hons.) in electronics

engineering from Cairo University. Contact him at

mohamed.elgammal@mail.utoronto.ca.

Vaughn Betz is a Professor and NSERC/Intel

Industrial Research Chair at the University of Tor-

onto. His research interests include programmable

hardware architectures and CAD tools. Previously

he was Senior Director of Software Engineering at

Altera Corporation, where he was one of the archi-

tects of the Quartus II CAD system and the Stratix

and Cyclone FPGA architectures. Betz received

the B.S.E.E. degree from the University of Mani-

toba, the M.S.E.E. degree from the University of Illi-

nois at Urbana–Champaign, and the Ph.D. degree

in electrical and computer engineering from the

University of Toronto. He is a Fellow of IEEE.

Contact him at vaughn@eecg.utoronto.ca.

July/August 2020 57

http://doi.org/10.1109/FCCM.2019.00010

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

