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Expert Opinion

Computer designers have traditionally  
separated the roles of storage and com-
putation. Memories stored data. Proces-
sors computed them. Is this distinction 
necessary? A human brain does not 
separate the two so distinctly, so why 
should a computer? Before addressing 
this question, let us start with the well-
known memory wall problem.1

What is the memory wall in 
today’s context? The memory wall 
originally referred to the problem of 
growing disparity in speed between fast 
processors and slow memories. Since 
2005 or so, as processor speed flat-
lined, memory latency has remained 
about the same. But as the number of 
processor cores per chip kept increas-
ing, memory bandwidth and memory 
energy became more dominant issues. 
A significant fraction of energy is spent 
today in moving data back and forth 
between memory and computing 
units, a problem that is exacerbated in 
modern data-intensive systems.

How do we overcome the mem-
ory wall in today’s computing world 
that is increasingly dominated by data- 
intensive applications? For well over 
two decades, architects have tried a 
variety of strategies to overcome the 
memory wall. Most of them have cen-
tered on exploiting locality. Here is 
an alternative: what if we could move 
computation closer to memory—so 

much that the line that divides compu-
tation and memory starts to blur?

The First Wave
Researchers discussed processing in 
memory (PIM) in the 1990s2–6 (initial 
suggestions date back to as early as the 
1970s7) as an alternative solution to 
scale the memory wall. The key idea was 
to physically bring the computation and 
memory units closer together by plac-
ing computation units inside the main 
memory (DRAM). But this idea did 
not quite take off back then, due to the 
high cost of integrating computational 
units within a DRAM die. Another fac-
tor may have been the fact that cheaper 
optimizations were still possible, thanks 
to Moore’s law and Dennard scaling.

The advent of commercially feasi-
ble 3D chip stacking technology, such 
as Micron’s Hybrid Memory Cube 
(HMC),8 has renewed our interest in 
PIM. HMC stacks layers of DRAM 
memory on top of a logic layer. Com-
putational units in the logic layer can 
communicate with memory through 
high-bandwidth through-silicon vias. 
Thanks to 3D integration technology, 
we can now take computational and 
DRAM dies implemented in different 
process technologies and stack them 
on top of each other.

The additional dimension in 3D 
PIM allows an order of magnitude 

more physical connections between 
the computational and memory units, 
and thereby provides massive mem-
ory bandwidth to the computational 
units.9–15 The available memory band-
width is so high in these systems that 
a general-purpose multicore processor 
with tens of cores is a poor candidate 
to take advantage of 3D PIM. The 
bandwidth of cheaper conventional 
DRAM is mostly adequate for these 
general-purpose processors. Better can-
didates are customized computational 
units that can truly take advantage of 
the abundant memory bandwidth in 
3D PIM data-parallel accelerators, 
such as a GPU, or even better, custom-
ized accelerators such as Google’s Ten-
sor Processing Unit.16

Although 3D PIM is a clear win-
ner in terms of memory bandwidth 
compared to conventional DRAM, its 
latency and energy advantages are per-
haps exaggerated in literature. 3D PIM 
brings computation closer to DRAM 
memory. It has no effect on the energy 
spent accessing data within DRAM 
layers, DRAM refresh and leakage, and 
on-die interconnect in the logic layer, 
which together happen to be the dom-
inant cost. To be clear, there is some 
memory latency and energy reduction 
as it eliminates communication over 
the off-chip memory channels by inte-
grating computation in 3D PIM’s logic 
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layer. However, this benefit is not likely 
to be a big win and paves a smaller 
step toward reducing the steep data- 
movement overheads.17,18

The Second Wave
Although PIM brings computational 
and memory units closer together, the 
functionality and design of memory 
units remains unchanged. An even more 
exciting technology is one that dissolves 
the line that distinguishes memory from 
computational units. Nearly three-
fourths of silicon in processor and main 
memory dies is simply to store and 
access data. What if we could take this 
memory silicon and repurpose it to do 
computation? Let us refer to the result-
ing unit as Compute Memory.

Compute Memory repurposes the 
memory structures, the ones that are 
traditionally used only to store data, 
into active computational units for 
near-zero area cost. Compute Memo-
ry’s biggest advantage is that its mem-
ory arrays morph into massive vector 
computing units (potentially, one or 
two orders of magnitude larger than 
a GPU’s vector units), as data stored 
across hundreds of memory arrays 
could be operated on concurrently. 
Because we do not have to move data 
in and out of memory, the architec-
ture naturally saves the energy spent 
in those activities, and memory band-
width becomes a meaningless metric.

Micron’s Automata Processor 
(AP)19,20 is an example for Compute 
Memory. It transforms DRAM struc-
tures to a Nondeterministic Finite 
Automata (NFA) computational unit. 
NFA processing occurs in two phases: 
state match and state transition. AP 
cleverly repurposes the DRAM array 
decode logic to enable state matches. 
Each of the several hundreds of mem-
ory arrays can now perform state 
matches in parallel. The state-match 
logic is coupled with a custom inter-
connect to enable state transition. 
We can process as many as 1,053 
regular expressions in Snort (a classic  

network-intrusion detection system) in 
one go using little more than DRAM 
hardware. AP can be an order of mag-
nitude more efficient than GPUs and 
nearly two orders of magnitude more 
efficient than general-purpose multi-
core CPUs! Imagine the possibilities if 
we can sequence a genome within min-
utes using cheap DRAM hardware.

AP repurposed just the decode 
logic in DRAMs. Could we do bet-
ter? In our recent work on Compute 
Caches,21,22 we showed that it is pos-
sible to repurpose SRAM array bit-lines 
and sense-amplifiers to perform in-place 
analog bit-line computation on the data 
stored in SRAM. A cache is typically 
organized as a set of sub-arrays; as many 
as thousands of sub-arrays, depending 
on the cache level.23–25 These sub-arrays 
can all compute concurrently on several 
hundred thousands of data elements 
stored in them with little extensions 
to the existing cache structures, while 
incurring an overall area overhead of 
4 percent. Thus, caches can effectively 
function as large vector computational 
units, whose operand sizes are orders 
of magnitude larger than conventional 
SIMD units. Of course, it also elimi-
nates the energy spent in moving data 
in and out of caches. While our initial 
work supports few useful operations 
(logical, search, and copy), we believe 
that it is just a matter of time before we 
are able to support more complex oper-
ations (including comparisons, addi-
tion, multiplication, sorting).

Supporting Compute Caches’ 
style-in-place, analog bit-line comput-
ing in DRAMs is more challenging. 
The problem is that DRAM reads are 
destructive—one reason why DRAMs 
need periodic refresh. Although in-place 
DRAM computing may not be possible, 
an interesting solution is to copy the 
data to a temporary row in the DRAM8 
and then do bit-line computing. This 
approach will incur extra copies, but 
retains the massive parallelism benefits.

Unlike DRAMs, bit-line com-
puting may work well in a diverse set 

of nonvolatile memory technologies 
(RRAMs, STT-MRAMs, and Flash). 
Researchers have already found success 
in repurposing structures in emerg-
ing NVMs to build efficient ternary  
content-addressable memory (TCAM)26 
and neural networks.27–29

Computational memories can be 
massively data parallel—potentially, 
an order of magnitude more perfor-
mance and energy efficient than mod-
ern data-parallel accelerators such as 
GPUs. Such dramatic improvements 
could have a transformative effect on 
applications ranging from genome 
sequencing to deep neural networks. 
However, capabilities of computa-
tional memories may not be as gen-
eral purpose as GPUs are today, and 
may impose additional constraints in 
terms of where data is stored. Appli-
cation developers may have to rework 
their algorithms to fully take advantage 
of Compute Memory. Modern data- 
parallel domain-specific language frame-
works such as CUDA and Tensorflow 
can be adapted to help these developers. 
It may also require runtime and system 
software support to meet computa-
tional memory constraints such as data 
placement.

A s the general-purpose core’s effi-
ciency flatlined over the past 

decade, both industry and academia 
have wholeheartedly embraced cus-
tomization of computational units. 
It is high time for us to think about 
customizing memory units as well. 
While there are many ways that one 
could think of customizing memory, 
turning it into powerful accelerators 
is one of the more exciting avenues to 
pursue. Until recently, we have viewed 
computing and memory units as two 
separate entities. Even within a pro-
cessor, caches and computational logic 
have operated as two separate entities 
that served different roles. The time 
has come to dissolve the line that sep-
arates them. 



www.computer.org/micro November/December 2017  15

References
1. W.A. Wulf and S.A. McKee, “Hit-

ting the Memory Wall: Implica-
tions of the Obvious,” SIGARCH 
Computer Architecture News, vol. 23,  
no. 1, 1995, pp. 20–24.

2. M. Gokhale, B. Holmes, and K. 
Iobst, “Processing in Memory: The 
Terasys Massively Parallel PIM 
Array,” Computer, 1995, vol. 28,  
no. 4, 1995, pp. 23–31.

3. Y. Kang et al., “FlexRAM: Toward 
an Advanced Intelligent Memory 
System,” Proc. Int’l Conf. Com-
puter Design, 1999, pp. 192–201.

4. P. Kogge, “Execube: A New Ar-
chitecture for Scaleable MPPs,” 
Proc. Int’l Conf. Parallel Processing,  
vol. 1, 1994, pp, 77–84.

5. M. Oskin, F. Chong, and T.  
Sherwood, “Active Pages: A Com-
putation Model for Intelligent 
Memory,” Proc. 25th Ann. Int’l 
Symp. Computer Architecture, 1998,  
pp. 192–203.

6. D. Patterson et al., “A Case for In-
telligent RAM,” IEEE Micro, vol. 
17, no. 2, 1997, pp. 34–44.

7. H.S. Stone, “A Logic-in-Memory 
Computer,” IEEE Trans. Computers, 
vol. C-19, no. 1, 1970, pp. 73–78.

8. Hybrid Memory Cube Specification,  
2014; http://hybridmemorycube 
.org.

9. J. Ahn et al., “PIM-Enabled Instruc-
tions: A Low-Overhead, Locality- 
Aware Processing-in-Memory 
Architecture,” Proc. 42nd Ann. 
Int’l Symp. Computer Architecture, 
2015, pp. 336–348.

10. A. Farmahini-Farahani et al., 
“NDA: Near-Dram Acceleration 
Architecture Leveraging Com-
modity DRAM Devices and Stan-
dard Memory Modules,” Proc. 
IEEE 21st Int’l Symp. High Per-
formance Computer Architecture, 
2015, pp. 283–295.

11. D. Kim et al., “Neurocube: A Pro-
grammable Digital Neuromorphic 
Architecture with High-Density 
3D Memory,” Proc. 43rd Int’l 

Symp. Computer Architecture, 2016,  
pp. 380–392.

12. S. Pugsley et al., “NDC: Analyzing 
the Impact of 3D-Stacked Memo-
ry1Logic Devices on MapReduce 
Workloads,” Proc. IEEE Int’l Symp. 
Performance Analysis of Systems and 
Software, 2014, pp. 190–200.

13. V. Seshadri et al., “RowClone: 
Fast and Energy-Efficient In-
DRAM Bulk Data Copy and Ini-
tialization,” Proc. 46th Ann. IEEE/
ACM Int’l Symp. Microarchitec-
ture, 2013, pp. 185–197.

14. D. Zhang et al., “Top-PIM: 
Throughput-Oriented Program-
mable Processing in Memory,” 
Proc. 23rd Int’l Symp. High- 
Performance Parallel and Distrib-
uted Computing, 2014, pp. 85–98.

15. Q. Zhu et al., “A 3D-Stacked 
Logic-in-Memory Accelerator for  
Application-Specific Data Intensive  
Computing,” Proc. IEEE Int’l 3D 
Systems Integration Conf., 2013, 
doi:10.1109/3DIC.2013.6702348.

16. N.P. Jouppi et al., “In-Datacenter 
Performance Analysis of a Tensor 
Processing Unit,” Proc. 44th Ann. 
Int’l Symp. Computer Architecture, 
2017, pp. 1–12.

17. K. Bergman et al., ExaScale Com-
puting Study: Technology Challenges 
in Achieving Exascale Systems, 
DARPA, 2008.

18. B. Dally, “Power, Programmabil-
ity, and Granularity: The Chal-
lenges of ExaScale Computing,” 
Proc. IEEE Int’l Parallel Distributed 
Processing Symp., 2011, p. 878.

19. Micron Automata Processing; 
www.micronautomata.com.

20. P. Dlugosch et al., “An Efficient 
and Scalable Semiconductor Ar-
chitecture for Parallel Automata 
Processing,” IEEE Trans. Parallel 
and Distributed Systems, vol. 25, 
no. 12, 2014, pp. 3088–3098.

21. S. Aga et al., “Compute Caches,” 
Proc. 23rd Int’l Symp. High Per-
formance Computer Architecture, 
2017, pp. 481–492.

22. S. Jeloka et al., “A Configurable 
TCAM/BCAM/SRAM using 28nm  
Push-Rule 6T Bit Cell,” Proc. 
IEEE Symp. VLSI Circuits, 2015,  
pp. C272–C273.

23. W.J. Bowhill et al., “The Xeon 
R Processor E5-2600 v3: A  
22 nm 18-Core Product Family,”  
J. Solid-State Circuits, vol. 51,  
no. 1, 2016, pp. 92–104.

24. W. Chen et al., “A 22nm 2.5 
MB Slice On-Die L3 Cache 
for the Next Generation Xeon 
R Processor,” Proc. IEEE Symp. 
VLSI Technology, 2013, pp. 
C132–C133.

25. M. Huang et al., “An Energy Effi-
cient 32-nm 20-MB Shared On-
Die L3 Cache for Intel R Xeon 
R Processor E5 Family,” J. Solid- 
State Circuits, vol. 48, no. 8, 2013, 
pp. 1954–1962.

26. Q. Guo et al., “Resistive Ternary 
Content Addressable Memory 
Systems for Data-Intensive Com-
puting,” IEEE Micro, vol. 35,  
no. 5, 2015, pp. 62–71.

27. M.N. Bojnordi and E. Ipek, 
“Memristive Boltzmann Machine:  
A Hardware Accelerator for Com-
binatorial Optimization and Deep  
Learning,” Proc. IEEE Int’l Symp. 
High Performance Computer Archi-
tecture, 2016, pp. 1–13.

28. P. Chi et al., “Prime: A Novel 
Processing-in-Memory Architecture 
for Neural Network Computation 
in ReRAM-Based Main Memory,” 
Proc. 43rd Int’l Symp. Computer Ar-
chitecture, 2016, pp. 27–39.

29. A. Shafiee et al., “Isaac: A Con-
volutional Neural Network Ac-
celerator with In-Situ Analog 
Arithmetic in Crossbars,” Proc. 
43rd Int’l Symp. Computer Archi-
tecture, 2016, pp. 14–26.

Reetuparna Das is an assistant profes-
sor in the Electrical Engineering and 
Computer Science Department at the 
University of Michigan. Contact her at 
reetudas@umich.edu.


