
0272-1732/17/$33.00 © 2017 IEEE Published by the IEEE Computer Society 13

Expert Opinion

Computer designers have traditionally
separated the roles of storage and com-
putation. Memories stored data. Proces-
sors computed them. Is this distinction
necessary? A human brain does not
separate the two so distinctly, so why
should a computer? Before addressing
this question, let us start with the well-
known memory wall problem.1

What is the memory wall in
today’s context? The memory wall
originally referred to the problem of
growing disparity in speed between fast
processors and slow memories. Since
2005 or so, as processor speed flat-
lined, memory latency has remained
about the same. But as the number of
processor cores per chip kept increas-
ing, memory bandwidth and memory
energy became more dominant issues.
A significant fraction of energy is spent
today in moving data back and forth
between memory and computing
units, a problem that is exacerbated in
modern data-intensive systems.

How do we overcome the mem-
ory wall in today’s computing world
that is increasingly dominated by data-
intensive applications? For well over
two decades, architects have tried a
variety of strategies to overcome the
memory wall. Most of them have cen-
tered on exploiting locality. Here is
an alternative: what if we could move
computation closer to memory—so

much that the line that divides compu-
tation and memory starts to blur?

The First Wave
Researchers discussed processing in
memory (PIM) in the 1990s2–6 (initial
suggestions date back to as early as the
1970s7) as an alternative solution to
scale the memory wall. The key idea was
to physically bring the computation and
memory units closer together by plac-
ing computation units inside the main
memory (DRAM). But this idea did
not quite take off back then, due to the
high cost of integrating computational
units within a DRAM die. Another fac-
tor may have been the fact that cheaper
optimizations were still possible, thanks
to Moore’s law and Dennard scaling.

The advent of commercially feasi-
ble 3D chip stacking technology, such
as Micron’s Hybrid Memory Cube
(HMC),8 has renewed our interest in
PIM. HMC stacks layers of DRAM
memory on top of a logic layer. Com-
putational units in the logic layer can
communicate with memory through
high-bandwidth through-silicon vias.
Thanks to 3D integration technology,
we can now take computational and
DRAM dies implemented in different
process technologies and stack them
on top of each other.

The additional dimension in 3D
PIM allows an order of magnitude

more physical connections between
the computational and memory units,
and thereby provides massive mem-
ory bandwidth to the computational
units.9–15 The available memory band-
width is so high in these systems that
a general-purpose multicore processor
with tens of cores is a poor candidate
to take advantage of 3D PIM. The
bandwidth of cheaper conventional
DRAM is mostly adequate for these
general-purpose processors. Better can-
didates are customized computational
units that can truly take advantage of
the abundant memory bandwidth in
3D PIM data-parallel accelerators,
such as a GPU, or even better, custom-
ized accelerators such as Google’s Ten-
sor Processing Unit.16

Although 3D PIM is a clear win-
ner in terms of memory bandwidth
compared to conventional DRAM, its
latency and energy advantages are per-
haps exaggerated in literature. 3D PIM
brings computation closer to DRAM
memory. It has no effect on the energy
spent accessing data within DRAM
layers, DRAM refresh and leakage, and
on-die interconnect in the logic layer,
which together happen to be the dom-
inant cost. To be clear, there is some
memory latency and energy reduction
as it eliminates communication over
the off-chip memory channels by inte-
grating computation in 3D PIM’s logic

Blurring the Lines between Memory
and Computation

Reetuparna Das
University of Michigan

14 IEEE Micro

Expert Opinion

layer. However, this benefit is not likely
to be a big win and paves a smaller
step toward reducing the steep data-
movement overheads.17,18

The Second Wave
Although PIM brings computational
and memory units closer together, the
functionality and design of memory
units remains unchanged. An even more
exciting technology is one that dissolves
the line that distinguishes memory from
computational units. Nearly three-
fourths of silicon in processor and main
memory dies is simply to store and
access data. What if we could take this
memory silicon and repurpose it to do
computation? Let us refer to the result-
ing unit as Compute Memory.

Compute Memory repurposes the
memory structures, the ones that are
traditionally used only to store data,
into active computational units for
near-zero area cost. Compute Memo-
ry’s biggest advantage is that its mem-
ory arrays morph into massive vector
computing units (potentially, one or
two orders of magnitude larger than
a GPU’s vector units), as data stored
across hundreds of memory arrays
could be operated on concurrently.
Because we do not have to move data
in and out of memory, the architec-
ture naturally saves the energy spent
in those activities, and memory band-
width becomes a meaningless metric.

Micron’s Automata Processor
(AP)19,20 is an example for Compute
Memory. It transforms DRAM struc-
tures to a Nondeterministic Finite
Automata (NFA) computational unit.
NFA processing occurs in two phases:
state match and state transition. AP
cleverly repurposes the DRAM array
decode logic to enable state matches.
Each of the several hundreds of mem-
ory arrays can now perform state
matches in parallel. The state-match
logic is coupled with a custom inter-
connect to enable state transition.
We can process as many as 1,053
regular expressions in Snort (a classic

network-intrusion detection system) in
one go using little more than DRAM
hardware. AP can be an order of mag-
nitude more efficient than GPUs and
nearly two orders of magnitude more
efficient than general-purpose multi-
core CPUs! Imagine the possibilities if
we can sequence a genome within min-
utes using cheap DRAM hardware.

AP repurposed just the decode
logic in DRAMs. Could we do bet-
ter? In our recent work on Compute
Caches,21,22 we showed that it is pos-
sible to repurpose SRAM array bit-lines
and sense-amplifiers to perform in-place
analog bit-line computation on the data
stored in SRAM. A cache is typically
organized as a set of sub-arrays; as many
as thousands of sub-arrays, depending
on the cache level.23–25 These sub-arrays
can all compute concurrently on several
hundred thousands of data elements
stored in them with little extensions
to the existing cache structures, while
incurring an overall area overhead of
4 percent. Thus, caches can effectively
function as large vector computational
units, whose operand sizes are orders
of magnitude larger than conventional
SIMD units. Of course, it also elimi-
nates the energy spent in moving data
in and out of caches. While our initial
work supports few useful operations
(logical, search, and copy), we believe
that it is just a matter of time before we
are able to support more complex oper-
ations (including comparisons, addi-
tion, multiplication, sorting).

Supporting Compute Caches’
style-in-place, analog bit-line comput-
ing in DRAMs is more challenging.
The problem is that DRAM reads are
destructive—one reason why DRAMs
need periodic refresh. Although in-place
DRAM computing may not be possible,
an interesting solution is to copy the
data to a temporary row in the DRAM8
and then do bit-line computing. This
approach will incur extra copies, but
retains the massive parallelism benefits.

Unlike DRAMs, bit-line com-
puting may work well in a diverse set

of nonvolatile memory technologies
(RRAMs, STT-MRAMs, and Flash).
Researchers have already found success
in repurposing structures in emerg-
ing NVMs to build efficient ternary
content-addressable memory (TCAM)26
and neural networks.27–29

Computational memories can be
massively data parallel—potentially,
an order of magnitude more perfor-
mance and energy efficient than mod-
ern data-parallel accelerators such as
GPUs. Such dramatic improvements
could have a transformative effect on
applications ranging from genome
sequencing to deep neural networks.
However, capabilities of computa-
tional memories may not be as gen-
eral purpose as GPUs are today, and
may impose additional constraints in
terms of where data is stored. Appli-
cation developers may have to rework
their algorithms to fully take advantage
of Compute Memory. Modern data-
parallel domain-specific language frame-
works such as CUDA and Tensorflow
can be adapted to help these developers.
It may also require runtime and system
software support to meet computa-
tional memory constraints such as data
placement.

A s the general-purpose core’s effi-
ciency flatlined over the past

decade, both industry and academia
have wholeheartedly embraced cus-
tomization of computational units.
It is high time for us to think about
customizing memory units as well.
While there are many ways that one
could think of customizing memory,
turning it into powerful accelerators
is one of the more exciting avenues to
pursue. Until recently, we have viewed
computing and memory units as two
separate entities. Even within a pro-
cessor, caches and computational logic
have operated as two separate entities
that served different roles. The time
has come to dissolve the line that sep-
arates them.

www.computer.org/micro November/December 2017 15

References
1. W.A. Wulf and S.A. McKee, “Hit-

ting the Memory Wall: Implica-
tions of the Obvious,” SIGARCH
Computer Architecture News, vol. 23,
no. 1, 1995, pp. 20–24.

2. M. Gokhale, B. Holmes, and K.
Iobst, “Processing in Memory: The
Terasys Massively Parallel PIM
Array,” Computer, 1995, vol. 28,
no. 4, 1995, pp. 23–31.

3. Y. Kang et al., “FlexRAM: Toward
an Advanced Intelligent Memory
System,” Proc. Int’l Conf. Com-
puter Design, 1999, pp. 192–201.

4. P. Kogge, “Execube: A New Ar-
chitecture for Scaleable MPPs,”
Proc. Int’l Conf. Parallel Processing,
vol. 1, 1994, pp, 77–84.

5. M. Oskin, F. Chong, and T.
Sherwood, “Active Pages: A Com-
putation Model for Intelligent
Memory,” Proc. 25th Ann. Int’l
Symp. Computer Architecture, 1998,
pp. 192–203.

6. D. Patterson et al., “A Case for In-
telligent RAM,” IEEE Micro, vol.
17, no. 2, 1997, pp. 34–44.

7. H.S. Stone, “A Logic-in-Memory
Computer,” IEEE Trans. Computers,
vol. C-19, no. 1, 1970, pp. 73–78.

8. Hybrid Memory Cube Specification,
2014; http://hybridmemorycube
.org.

9. J. Ahn et al., “PIM-Enabled Instruc-
tions: A Low-Overhead, Locality-
Aware Processing-in-Memory
Architecture,” Proc. 42nd Ann.
Int’l Symp. Computer Architecture,
2015, pp. 336–348.

10. A. Farmahini-Farahani et al.,
“NDA: Near-Dram Acceleration
Architecture Leveraging Com-
modity DRAM Devices and Stan-
dard Memory Modules,” Proc.
IEEE 21st Int’l Symp. High Per-
formance Computer Architecture,
2015, pp. 283–295.

11. D. Kim et al., “Neurocube: A Pro-
grammable Digital Neuromorphic
Architecture with High-Density
3D Memory,” Proc. 43rd Int’l

Symp. Computer Architecture, 2016,
pp. 380–392.

12. S. Pugsley et al., “NDC: Analyzing
the Impact of 3D-Stacked Memo-
ry1Logic Devices on MapReduce
Workloads,” Proc. IEEE Int’l Symp.
Performance Analysis of Systems and
Software, 2014, pp. 190–200.

13. V. Seshadri et al., “RowClone:
Fast and Energy-Efficient In-
DRAM Bulk Data Copy and Ini-
tialization,” Proc. 46th Ann. IEEE/
ACM Int’l Symp. Microarchitec-
ture, 2013, pp. 185–197.

14. D. Zhang et al., “Top-PIM:
Throughput-Oriented Program-
mable Processing in Memory,”
Proc. 23rd Int’l Symp. High-
Performance Parallel and Distrib-
uted Computing, 2014, pp. 85–98.

15. Q. Zhu et al., “A 3D-Stacked
Logic-in-Memory Accelerator for
Application-Specific Data Intensive
Computing,” Proc. IEEE Int’l 3D
Systems Integration Conf., 2013,
doi:10.1109/3DIC.2013.6702348.

16. N.P. Jouppi et al., “In-Datacenter
Performance Analysis of a Tensor
Processing Unit,” Proc. 44th Ann.
Int’l Symp. Computer Architecture,
2017, pp. 1–12.

17. K. Bergman et al., ExaScale Com-
puting Study: Technology Challenges
in Achieving Exascale Systems,
DARPA, 2008.

18. B. Dally, “Power, Programmabil-
ity, and Granularity: The Chal-
lenges of ExaScale Computing,”
Proc. IEEE Int’l Parallel Distributed
Processing Symp., 2011, p. 878.

19. Micron Automata Processing;
www.micronautomata.com.

20. P. Dlugosch et al., “An Efficient
and Scalable Semiconductor Ar-
chitecture for Parallel Automata
Processing,” IEEE Trans. Parallel
and Distributed Systems, vol. 25,
no. 12, 2014, pp. 3088–3098.

21. S. Aga et al., “Compute Caches,”
Proc. 23rd Int’l Symp. High Per-
formance Computer Architecture,
2017, pp. 481–492.

22. S. Jeloka et al., “A Configurable
TCAM/BCAM/SRAM using 28nm
Push-Rule 6T Bit Cell,” Proc.
IEEE Symp. VLSI Circuits, 2015,
pp. C272–C273.

23. W.J. Bowhill et al., “The Xeon
R Processor E5-2600 v3: A
22 nm 18-Core Product Family,”
J. Solid-State Circuits, vol. 51,
no. 1, 2016, pp. 92–104.

24. W. Chen et al., “A 22nm 2.5
MB Slice On-Die L3 Cache
for the Next Generation Xeon
R Processor,” Proc. IEEE Symp.
VLSI Technology, 2013, pp.
C132–C133.

25. M. Huang et al., “An Energy Effi-
cient 32-nm 20-MB Shared On-
Die L3 Cache for Intel R Xeon
R Processor E5 Family,” J. Solid-
State Circuits, vol. 48, no. 8, 2013,
pp. 1954–1962.

26. Q. Guo et al., “Resistive Ternary
Content Addressable Memory
Systems for Data-Intensive Com-
puting,” IEEE Micro, vol. 35,
no. 5, 2015, pp. 62–71.

27. M.N. Bojnordi and E. Ipek,
“Memristive Boltzmann Machine:
A Hardware Accelerator for Com-
binatorial Optimization and Deep
Learning,” Proc. IEEE Int’l Symp.
High Performance Computer Archi-
tecture, 2016, pp. 1–13.

28. P. Chi et al., “Prime: A Novel
Processing-in-Memory Architecture
for Neural Network Computation
in ReRAM-Based Main Memory,”
Proc. 43rd Int’l Symp. Computer Ar-
chitecture, 2016, pp. 27–39.

29. A. Shafiee et al., “Isaac: A Con-
volutional Neural Network Ac-
celerator with In-Situ Analog
Arithmetic in Crossbars,” Proc.
43rd Int’l Symp. Computer Archi-
tecture, 2016, pp. 14–26.

Reetuparna Das is an assistant profes-
sor in the Electrical Engineering and
Computer Science Department at the
University of Michigan. Contact her at
reetudas@umich.edu.

