
6 Published by the IEEE Computer Society 0272-1732/17/$33.00 © 2017 IEEE

Expert Opinion

Modern computer systems at all scales,
from datacenters to wearable and
biomedical devices, depend on vir-
tual memory. Virtual memory gives
software developers the illusion that
memory is always sufficient and linear,
easing the task of programming. The
hardware and OS manage the rela-
tionship between virtual and physical
memory address spaces. Perhaps the
biggest testament to virtual memory’s
success is that programmers do not
even think about it when writing code
today. And yet, consider what would
happen in its absence. Without vir-
tual memory, it would be practically
impossible to program modern sys-
tems, which have a complex assort-
ment of on- and off-package memory
devices, hard disks, solid-state disks,
and more. Programmers would have
to rewrite their code for every change
in memory capacity or configuration.
We would not be able to run multiple
applications concurrently on computer
systems, because applications would be
able to overwrite one another’s mem-
ory. Malicious programs would be able
to corrupt the memory of other pro-
grams. In short, virtual memory is fun-
damental to system programmability,
code portability, memory protection,
system security, and indeed the very
success of computing.

The Challenges Facing Virtual
Memory Today
Troublingly, virtual memory is under
threat today. The main problem is
this: the core virtual memory abstrac-
tion was conceived decades ago, and
its basic components have remained
largely unchanged since. In that time,
hardware and software have changed
dramatically. Massive mainframes
made with discrete electronic com-
ponents have evolved into systems
integrating not just tens or hundreds
of CPUs, but also exotic specialized
hardware. Hardware accelerators for
graphics, video and signal processing,
face recognition, and deep learning are
being rapidly developed. This fleet of
emerging hardware targets new and
sophisticated algorithms on vast sets
of data, maintains them in big key-
value stores, interacts with users using
speech and gestures, and enables new
paradigms like virtual and augmented
reality. And yet, remarkably, we con-
tinue to use traditional virtual mem-
ory concepts in this drastically altered
computing landscape.

Consequently, virtual memory has
become a system performance bottle-
neck. Consider virtual memory perfor-
mance for an application that analyzes
a large graph. Graph processing often
involves chasing pointers over terabytes

of data in irregular and unpredict-
able ways, with poor memory access
locality. Poor access locality is known
to stress hardware caches, degrading
system performance. But recent stud-
ies reveal a lesser-known but crucial
insight—poor access locality hampers
the performance of the key hardware
component of virtual memory, the
translation look-aside buffer (TLB)
cache. TLBs are used to translate the
virtual to physical addresses and often
consume as much as 20 to 40 per-
cent of the runtime on these sorts of
workloads.1–4

Industry’s Response
This performance crisis constitutes an
“address translation wall,” analogous
to the notion of the memory wall that
has plagued the computing industry
for several decades. These performance
problems have prompted a strong
response from processor vendors, who
are designing increasingly sophisti-
cated virtual memory support today.
Figure 1 compares the virtual memory
components of a typical system we
might use today with those found in
systems just 10 to 15 years ago. Over-
all, the changes have been staggering.

For example, architects tradition-
ally implemented a single TLB to cache
frequently accessed entries in the page

Preserving Virtual Memory
by Mitigating the Address
Translation Wall

Abhishek Bhattacharjee
Rutgers University

www.computer.org/micro September/October 2017 7

table maintained in main memory.
Contrast this with the virtual mem-
ory support used today. Vendors are
budgeting ever-increasing chip area for
TLBs in a bid to improve capacity and
reduce misses. Consequently, modern
processors have extremely large and
highly associative two-level TLBs per
CPU—for example, Intel’s Skylake chip
uses 64-entry level-1 (L1) TLBs and
12-way, 1,536-entry level-2 (L2) TLBs.
These structures require almost as much
area as L1 caches today, and can con-
sume as much as 10 to 15 percent of
the chip energy.5,6 Additionally, the fact
that each CPU needs its own dedicated
TLBs means that translation coherence,
analogous to cache coherence, becomes
a first-class performance bottleneck, too,
often consuming more than 10 percent
of the workload runtime.7–9

Worse still, despite these increases
in TLB capacity, misses remain
unavoidable. Put simply, modern work-
loads are often memory-intensive and
have poor access locality. The prob-
lem is compounded by trends such as

virtualization, which requires multi-
ple page tables (see Figure 1) for guest
operating systems and the hypervisor.
Consequently, processor vendors also
implement hardware to accelerate page
table lookup. For example, CPUs tra-
ditionally responded to TLB misses
by trapping to the OS and executing a
lightweight OS routine to look up the
page table. Today, these mode-switch
overheads are deemed too expensive.
Instead, CPUs are equipped with hard-
ware page table walkers (PTWs), which
can perform page table lookups with-
out context-switching the application
from the CPU. Furthermore, modern
PTWs can often service multiple misses
in parallel (for example, AMD’s Ryzen
and Skylake chips can service two to
four TLB misses in parallel per CPU).
PTWs, in turn, interface with new
caching structures that store different
portions of the radix-tree-based page
tables. Consider, for example, MMU
caches10,11 and nested TLBs,12 which
cumulatively take up almost as much
space as the L1 TLB in each CPU today.

Perhaps even more radical changes
to virtual memory can be seen in the
non-CPU components of modern sys-
tems. For example, Figure 1 shows that
hardware accelerators such as GPUs and
network interface cards (NICs) require
address translation support, too.13,14
This support takes the form of large
TLBs with several thousands of entries
in the devices themselves, as well as
dedicated I/O MMUs, which main-
tain even larger TLBs, MMU caches,
and heavily multithreaded hardware
PTWs.15

The bottom line is that engineers
are investing significant effort and
resources in tackling the problems
faced by virtual memory today. And
yet, despite these efforts, the address
translation wall remains a vexing prob-
lem with real-world consequences. An
important recent example of this can
be found in systems used for mining
crypto-currencies such as Bitcoin and
Ethereum. In particular, Ethereum
miners find that their workloads face
performance cliffs from inadequate
TLB capacity on the GPUs they use.
Consequently, TLB capacity is one
of the first-order design parameters
they consider in their choice of GPU
architecture.16–18

Promising Research
Approaches
The research community has not
remained blind to these problems
and has proposed several innovative
solutions.

Hardware–Software Codesign
Beyond obviously important work on
topics such as superpages (including
recent work on Ingens19 and noncon-
tiguous superpages20), a particularly
intriguing idea is that of direct seg-
ments, first proposed by Arkaprava
Basu and colleagues.1 This work goes
back to virtual memory basics and
asks what aspects of virtual memory
are being used by modern workloads.
It turns out that for an important and

Virtual memory then Virtual memory now

CPU

TLB L1$

Memory

Page table

L

4x PTW

L2 TLB
nTLB

MMU$

L1$L1
TLB

CPU
CPU GPU

SM

Dev.
TLB L1$

NIC

I/O MMU

I/O TLB 16x
PTWI/O MMU$

Memory

Guest page table Host page table

SM

Figure 1. While traditional virtual memory implementations consisted of a single
hardware translation look-aside buffer (TLB) and software page table, today’s
virtual memory stack comprises a complex assortment of multilevel TLBs, hardware
page table walkers (PTWs), memory management unit (MMU) caches, nested TLBs,
and multiple page tables for guest operating systems and hypervisors. Furthermore,
this assortment of hardware is integrated not only in CPUs but also in hardware
accelerators such as GPUs and network interface cards (NICs).

8 IEEE Micro

Expert Opinion

wide class of memory-intensive work-
loads, there is little paging activity or
fine-grained memory protection usage.
Furthermore, most memory accesses
in these workloads are to large anon-
ymous regions of allocated memory
space. This is because these workloads
often initialize memory at startup and
are generally run on systems in which
memory capacity is more than ample,
as they are latency critical. These seem-
ingly simple observations yield a pow-
erful insight: If the OS can provide
applications with a direct segment
memory abstraction (essentially acting
as a more massive and flexible version
of a superpage), while retaining the
paging abstraction for the remainder
of the address space, TLB misses can
be reduced dramatically. This brand of
hardware–software codesign is an excit-
ing direction and has been followed up
with ideas such as range translations.21

Another promising direction is
that studied by Hanna Alam and col-
leagues,22 who ask a different question.
Suppose there are situations in which it
may be possible for application devel-
opers to posit virtual-to-physical page
mappings amenable to fast address
translation. In these cases, what kinds
of mechanisms should the OS expose
to the programmer to implement these
mechanisms efficiently? In a sense, this
idea adds to a rich body of work that
decouples virtual-to-physical map-
pings from access permissions. Natu-
rally, this idea begs the question, how
successfully can programmers identify
and use such mapping schemes? Study-
ing such approaches, particularly in the
context of separating memory protec-
tion from translation (most recently
represented by the CHERI capability
system23), may be fruitful for upcom-
ing big-memory systems.

Hardware Approaches
While approaches that require hard-
ware–software codesign are promising,
purely hardware approaches are also
valuable. For example, we have shown

that real-world applications and OSes
often (although they don’t have to) allo-
cate memory in a manner where tens
of contiguous virtual pages are mapped
to tens of physical pages.2,24,25 This
enables lightweight TLB coalescing, in
which a single entry can store informa-
tion about multiple contiguous map-
pings. Such hardware schemes are easy
to implement and require no OS or
software changes. Consequently, TLB
coalescing schemes are being adopted
by industry (for example, AMD’s
Ryzen chip supports TLB coalescing
today). Furthermore, these types of
approaches are equally applicable to
caching structures beyond TLBs, such
as MMU caches.10 Looking ahead,
recent work by Chang Hyun Park and
colleagues has further expanded on this
notion of coalescing.26 We believe that
it will be interesting to study whether
there may be lightweight techniques at
the OS level that can create more pat-
terns amenable to these types of hard-
ware coalescing efforts.

Equally intriguingly, several recent
studies suggest that there is perfor-
mance to be extracted from nontradi-
tional TLB designs. Recent work by Jee
Ho Ryoo and colleagues is an exciting
example of this.3 Conventional wis-
dom suggests that TLBs must be small
to ensure fast access time. However,
Ryoo’s part-of-memory TLBs show that
alternate designs may be possible for
multilevel TLB hierarchies, in which
it may be beneficial to back latency-
critical L1/L2 TLBs with slower but
considerably larger in-DRAM TLBs.
This is an interesting direction worthy
of further investigation, and it may be
an especially promising approach to
enabling address translation support
for emerging near-memory processing
accelerators, too.

Recent work also targets address-
translation problems beyond capac-
ity issues. For example, consider stud-
ies on mechanisms to accelerate TLB
misses. This problem is particularly
pertinent on GPUs, where TLB misses

are unavoidably frequent. In particu-
lar, studies show the need for heavily
multithreaded hardware PTWs for
good GPU address translation perfor-
mance.13–15 Other approaches, target-
ing CPUs, leverage the notion of TLB
speculation.27,28 The basic idea with this
approach is to speculate on the value of
a physical page associated with a virtual
page. If the translation is absent in the
TLB, the page table walk is performed
in the background to verify whether
speculation was correct, whereas the
CPU continues to execute independent
instructions out of order. Past work sug-
gests that there are low-overhead ways
to perform this prediction with reason-
ably high accuracy, and we believe that
future work may discover additional
opportunities for speculation.

Looking Beyond TLB Hit Rates
and Miss Penalties
Some recent work from our group also
suggests that there may be traditionally
overlooked aspects of address transla-
tion contributing to performance over-
heads. Specifically, we ask the question,
when a memory access prompts a
TLB miss, what is the overhead of its
replay once the TLB miss is handled?
Although it seems intuitive that page
table walks that miss in the cache
are almost always followed by cache
misses for the replay, replays have not
traditionally been optimized for bet-
ter performance. Consequently, we
have proposed techniques that trigger
prefetches of replay data into caches
when TLB misses occur, improving
performance.29

Beyond capacity and miss penalties,
translation coherence is fast becoming a
major performance sink on modern sys-
tems. In particular, we are beginning to
integrate memory devices with differing
latency, bandwidth, and density char-
acteristics on the same system, using
them to realize heterogeneous memory
architectures. To fully benefit from the
complementary characteristics of these
architectures, pages must be migrated

www.computer.org/micro September/October 2017 9

among them. Consequently, recent
studies show that translation coher-
ence, which is currently an expensive
operation implemented in software on
most systems, consumes 10 to 30 per-
cent of the application runtime. Many
recent techniques in software have been
proposed to solve this problem,8,9 but
it may also be time to consider mecha-
nisms that enable hardware translation
coherence.7,30–32 A particularly intrigu-
ing approach to achieve this may be to
overlay translation coherence atop exist-
ing cache-coherence protocols. After
all, translation coherence operations are
invoked when page tables are modified,
which already invokes cache-coherence
messages. Folding translation coherence
atop cache coherence has several useful
properties. For example, translation
coherence scaling challenges could be
addressed with techniques already used
to achieve cache-coherence scaling.
Moreover, one could verify both types
of coherence jointly. Pioneering work
on the UNITD protocol proposed by
Bogdan Romanescu and colleagues
shows how one might architect such
joint coherence protocols.30 Our recent
work on HATRIC builds on UNITD’s
initial proposal, but we believe that
this remains a rich area for further
exploration.7

Correctness Issues
Finally, a word of caution: as we pro-
pose solutions to the address trans-
lation wall, we must also carefully
address the design verification chal-
lenges that they will inevitably pose.
This task is particularly crucial because
the virtual memory hardware–software
interface is notoriously prone to
design bugs.33,34 As systems integrate
features like concurrent PTWs and
TLB coalescing, performance may be
improved, but system complexity and
hence the scope of design bugs is wors-
ened. While the research community
has begun tackling the challenges of
address translation verification, with
seminal work by Romanescu and

colleagues34 and our follow-up stud-
ies,33 much remains to be done.

S uccessfully preserving virtual
memory will require rearchitect-

ing the hardware–software interface
so that these layers operate in tandem,
rather than at odds with one another.
Encouragingly, there is evidence that
both chip vendors and OS designers
are willing to innovate at this layer, as
seen by a recent implementation of
CPU TLB coalescing techniques and
rapid changes in GPU address-transla-
tion hardware. But several important
open problems persist, and new ones
are presenting themselves rapidly. As
just one example, a recent work by
Javier Picorel and colleagues looks at
the challenges posed by address trans-
lation on near-memory accelerators.35
The bottom line is that these trends
present both an opportunity and a
challenge for researchers in computer
systems. The evolving landscape of
hardware and software means that
virtual memory abstraction is in flux,
but also that simple mechanisms to
mitigate the address translation wall
are likely to be useful to real-world
systems and products.

References
1. A. Basu et al., “Efficient Virtual

Memory for Big Memory Serv-
ers,” Proc. 40th Ann. Int’l Symp.
Computer Architecture (ISCA 13),
2013, pp. 237–248.

2. B. Pham et al., “CoLT: Coalesced
Large-Reach TLBs,” Proc. 45th
Ann. IEEE/ACM Int’l Symp. Mi-
croarchitecture (MICRO), 2012,
doi:10.1109/MICRO.2012.32.

3. J.H. Ryoo et al., “Rethinking
TLB Designs in Virtualized En-
vironments: A Very Large Part-
of-Memory TLB,” Proc. 44th Ann.
Int’l Symp. Computer Architecture
(ISCA 17), 2017, pp. 469–480.

4. M.-M. Papadopoulou et al., “Pre-
diction-Based Superpage-Friendly

TLB Designs,” Proc. IEEE 21st
Int’l Symp. High Performance
Computer Architecture (HPCA),
2015, doi:10.1109/HPCA.2015
.7056034.

5. A. Basu, M. Hill, and M. Swift,
“Reducing Memory Reference
Energy with Opportunistic Vir-
tual Caching,” Proc. 39th Ann.
Int’l Symp. Computer Architecture
(ISCA 12), 2012, pp. 297–308.

6. V. Karakostas et al., “Energy-
Efficient Address Translation,” Proc.
Int’l Symp. High Performance Com-
puter Architecture (HPCA), 2016,
doi:10.1109/HPCA.2016.7446100.

7. Z. Yan et al., “Hardware Trans-
lation Coherence for Virtual-
ized Systems,” Proc. 44th Ann.
Int’l Symp. Computer Architecture
(ISCA 17), 2017, pp. 430–443.

8. M. Oskin and G.H. Loh, “A Soft-
ware-Managed Approach to Die-
Stacked DRAM,” Proc. Int’l Conf.
Parallel Architecture and Compila-
tion (PACT), 2015, pp. 188–200.

9. N. Amit, “Optimizing the TLB
Shootdown Algorithm with Page
Access Tracking,” Proc. USENIX
Ann. Conf., 2017, pp. 27–39.

10. A. Bhattacharjee, “Large-Reach
Memory Management Unit
Caches,” Proc. 46th Ann. IEEE/
ACM Int’l Symp. Microarchitecture
(MICRO), 2013, pp. 383–394.

11. T.W. Barr, A.L. Cox, and S. Rixner,
“Translation Caching: Skip, Don’t
Walk (the Page Table),” Proc. 37th
Ann. Int’l Symp. Computer Architec-
ture, 2010, pp. 48–59.

12. R. Bhargava et al., “Accelerating
Two-Dimensional Page Walks for
Virtualized Systems,” Proc. 13th
Int’l Conf. Architectural Support for
Programming Languages and Op-
erating Systems (ASPLOS), 2008,
pp. 26–35.

13. B. Pichai, L. Hsu, and A. Bhattachar-
jee, “Architectural Support for
Address Translation on GPUs,”
Proc. 19th Int’l Conf. Architec-
tural Support for Programming

10 IEEE Micro

Expert Opinion

Languages and Operating Systems,
2014, pp. 743–758.

14. J. Power, M. Hill, and D. Wood,
“Supporting x86-64 Address
Translation for 100s of GPU
Lanes,” Proc. IEEE 20th Int’l Symp.
High Performance Computer Archi-
tecture (HPCA), 2014; doi:10.1109
/HPCA.2014.6835965.

15. J. Vesely et al., “Observations
and Opportunities in Architect-
ing Shared Virtual Memory for
Heterogeneous Systems,” Proc.
IEEE Int’l Symp. Performance
Analysis of Systems and Software
(ISPASS), 2016, doi: 10.1109/
ISPASS.2016.7482091.

16. “ETH Mining: Lower VRAM
GPUs to be Rendered Unprof-
itable in Time,” Tech Power
Up, blog, 19 June 2017; www
. t e chpower up . com/234482
/eth-mining-lower-vram-gpus
-to-be-rendered-unprofitable-in-time.

17. “Ethereum Hashrate Drop for
Radeon RX400/RX500 GPUs Is
Incoming,” Crypto Mining Blog, 18
June 2017; http://cryptomining
-blog.com/8822-ethereum-hashrate
-drop-for-radeon-rx400rx500
-gpus-is-incoming.

18. I. King, “Chipmakers Nvidia, AMD
Ride Cryptocurrency Wave—for
Now,” SlashDot, blog, 17 July
2017; www.bloomberg.com/news
/articles/2017-07-17/chipmakers
-nvidia-amd-ride-cryptocurrency
-wave-for-now.

19. Y. Kwon et al., “Coordinated and
Efficient Huge Page Management
with Ingens,” Proc. 12th USENIX
Conf. Operating Systems Design
and Implementation (OSDI 16),
2016, pp. 705–721.

20. Y. Du et al., “Supporting Superpages
in Non-Contiguous Physical Mem-
ory,” Proc. IEEE 21st Int’l Symp.
High Performance Computer Archi-
tecture (HPCA), 2015, doi:10.1109
/HPCA.2015.7056035.

21. V. Karakostas et al., “Redundant
Memory Mappings for Fast Access

to Large Memories,” Proc. 42nd
Ann. Int’l Symp. Computer Architec-
ture (ISCA 15), 2015, pp. 66–78.

22. H. Alam et al., “Do It Yourself
Virtual Memory Translation,”
Proc. 44th Ann. Int’l Symp. Com-
puter Architecture (ISCA 17),
2017, pp. 457–468.

23. J. Woodruff et al., “The CHERI
Capability Model: Revisiting RISC
in an Age of Risk,” Proc. 41st Ann.
Int’l Symp. Computer Architecture
(ISCA 14), 2014, pp. 457–468.

24. B. Pham et al., “Increasing TLB
Reach by Exploiting Clustering
in Page Translations,” Proc. IEEE
21st Int’l Symp. High Performance
Computer Architecture (HPCA),
2014, doi:10.1109/HPCA.2014
.6835964.

25. G. Cox and A. Bhattacharjee,
“Efficient Address Translation
for Architectures with Multiple
Page Sizes,” Proc. 22nd Int’l Conf.
Architectural Support for Pro-
gramming Languages and Oper-
ating Systems (ASPLOS), 2017,
pp. 435–448.

26. C.H. Park et al., “Hybrid TLB
Coalescing: Improving TLB
Translation Coverage Under Di-
verse Fragmented Memory Allo-
cation,” Proc. 44th Ann. Int’l Symp.
Computer Architecture (ISCA 17),
2017, pp. 444–456.

27. B. Pham et al., “Large Pages
and Lightweight Memory Man-
agement in Virtualized Envi-
ronments: Can You Have It
Both Ways?” Proc. 48th Ann.
IEEE/ACM Int’l Symp. Microar-
chitecture (MICRO), 2015,
doi:10.1145/2830772.2830773.

28. T.W. Barr, A.L. Cox, and S. Rix-
ner, “SpecTLB: A Mechanism
for Speculative Address Transla-
tion,” Proc. 38th Ann. Int’l Symp.
Computer Architecture (ISCA 11),
2011, pp. 307–318.

29. A. Bhattacharjee, “Translation-
Triggered Prefetching,” Proc. 22nd
Int’l Conf. Architectural Support for

Programming Languages and Op-
erating Systems (ASPLOS), 2017,
pp. 63–76.

30. B.F. Romanescu et al., “Unified
Instruction/Translation/Data
(UNITD) Coherence: One Pro-
tocol to Rule Them All,” Proc.
IEEE 21st Int’l Symp. High Per-
formance Computer Architecture
(HPCA), 2010, doi:10.1109
/HPCA.2010.5416643.

31. A. Awad et al., “Avoiding TLB
Shootdown with Self-Invalidating
TLB Entries,” to be published in
Proc. Int’l Conf. Parallel Architec-
tures and Compilation Techniques
(PACT), 2017.

32. C. Villavieja et al., “DiDi: Miti-
gating the Performance Impact of
TLB Shootdowns Using a Shared
TLB Directory,” Proc. Int’l Conf.
Parallel Architectures and Compi-
lation Techniques (PACT), 2011,
doi:10.1109/PACT.2011.65.

33. D. Lustig et al., “COATCheck:
Verifying Memory Ordering at
the Hardware-OS Interface,” Proc.
21st Int’l Conf. Architectural Sup-
port for Programming Languages
and Operating Systems (ASPLOS),
2016, pp. 233–247.

34. B.F. Romanescu, A.R. Lebeck,
and D.J. Sorin, “Specifying and
Dynamically Verifying Address
Translation-Aware Memory Con-
sistency,” Proc. 15th Conf. Archi-
tectural Support for Programming
Languages and Operating Systems
(ASPLOS), 2010, pp. 323–334.

35. J. Picorel, D. Jevdjic, and B.
Falsafi, “Near-Memory Address
Translation,” to be published
in Proc. 26th Int’l Conf. Parallel
Architectures and Compilation
Techniques (PACT), 2017.

Abhishek Bhattacharjee is an asso-
ciate professor of computer science
at Rutgers University and a CV Starr
Fellow at the Neuroscience Institute at
Princeton University. Contact him at
abhib@cs.rutgers.edu.

