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Visual IoT: Architectural
Challenges and Opportunities

RAVI IYER
Intel

......The emergence of ultra-low-

power sensing devices along with con-

nectivity to gateways and cloud services

has led to an end-to-end Internet of

Things (IoT) architecture for many real-

world usages. Visual IoT is one such

class of IoT that poses significant end-to-

end challenges due to the need for sens-

ing and processing of visual data. The

richness of visual data provides many

opportunities for analytics, while at the

same time requiring high computational

capabilities and therefore potentially

high-bandwidth data transfer to a more

powerful node in the end-to-end architec-

ture. Memory and storage needs are

also more pronounced in visual IoT solu-

tions, requiring careful thought to devel-

oping an intelligent memory hierarchy for

visual storage and retrieval. In this article,

I examine the computing, memory, and

interface implications for end-to-end vis-

ual IoT architectures and discuss poten-

tial solutions and tradeoffs in each of

these areas. Before we start, let’s go

over a brief overview of visual IoT usage

domains.

Visual IoT Overview
Beyond photography, cameras have

been used widely in multiple domains,

ranging from security (for example, sur-

veillance and monitoring), entertainment

(recording of public and personal events,

such as sports and music), and, more

recently, interactive environments (aug-

mented, virtual, and merged reality; see

www.intel.com/content/www/us/en/

architecture-and-technology/virtual-reality-

overview.html) and robotics and drones1

(navigation, delivery, interaction, and

assistance). With the emergence of

depth-sensing cameras, such as Intel

RealSense (www.intel.com/content/www/

us/en/architecture-and-technology/real-

sense-overview.html), analysis of the

captured visual scene becomes even

more attractive for many of these

scenarios.

In many of these scenarios, three

types of platforms compose the end-to-

end IoT architecture (see Figure 1):

� visual sensing nodes that capture

the data and potentially do some

local processing;

� gateways, phones, or on-

premise platforms that can stage

the data and provide higher com-

puting capability; and

� cloud servers that provide serv-

ices for search, analytics, or sim-

ply storage.

Much like real estate, the key to effi-

ciently architecting a visual IoT architec-

ture is location (where to perform the

computation), location (where to store

the data), and location (where to enable

interfaces and tools for analytics). Let’s

start by examining the computing loca-

tion challenge and then move to memory

and interfaces.

Computing in Visual IoT: Partitioning and
Heterogeneity
Partitioning the work in an end-to-end

visual IoT architecture is a challenge,

because it requires the balancing of mul-

tiple important dimensions:

� the sensing node’s battery life,

� the latency of the interaction,

� throughput benefits on the

server versus bandwidth costs of

the transfer, and

� security and privacy implications

of the data.

The partitioning problem is essentially

across heterogeneous platforms as well

as within heterogeneous processing ele-

ments (cores versus GPUs versus accel-

erators) within a platform. Also, the

application can dictate the partitioning

strategy in some cases, in which a sub-

set of operations on the sensor node can

deliver some minimal useful experience,

while the processing at the server is

used for heavier computations.

Let’s take an example scenario of a

visual agent monitoring a home environ-

ment. The key aspects of a home agent

include

1. anomaly detection,

2. saliency and summarization,

Editors' note: We invited two industry experts to discuss the opportunities and

challenges surrounding the Internet of Things. The following are their views on

the topic. —Vijay Janapa Reddi and Hyesoon Kim

0272-1732/16/$33.00�c 2016 IEEE Published by the IEEE Computer Society

.............................................................

45

Expert Opinion



3. detection of patterns of behav-

ior, and

4. recognition and interaction with

a person in the home from a

Q&A standpoint.

The scenario becomes even more

complicated if the visual agent is mobile

(like a robot) versus a static visual agent

in which the backgrounds can be prede-

termined. For aspects 1 and 4, the

response time is critical, so local proc-

essing is desirable, whereas for aspects

2 and 3, batch processing is more useful

because of the large amount of data

needed before processing.

Such scenarios are common and

require careful examination of whether

the processing can be performed on the

computing core of the sensor node itself,

offloaded to a local accelerator, sent to a

gateway within the home, or offloaded

to a private cloud where the analysis can

be accomplished. A static solution would

end up determining how to employ the

most efficient engine (fixed function or

configurable accelerator) at each node in

the end-to-end architecture. Instead of

statically determining this heterogene-

ous architecture and partitioning balance,

a dynamic partitioning solution is even

more suitable if the solution has to be

customized for different homes and simi-

lar environments. As a result, solutions

such as remote offloading are becoming

more important from a flexibility and cus-

tomization point of view.2 Research and

development in heterogeneous architec-

tures with partitioning capabilities that

retain flexibility while maximizing effi-

ciency and customizability will continue

to be predominant for visual IoT, as well

as other rich environments.

Memory in Visual IoT: Saliency, Storage,
and Hierarchy
Another major challenge in the end-to-

end visual IoT architecture is manage-

ment of the visual data. Although the

richness of visual data is attractive, it is

also true that much of the visual data

captured can be potentially discarded,

and only a summary typically needs to

be retained. The key is to figure out

what visual data summary must be

retained by potentially extracting the sali-

ent segments of the visual stream. The

basis for saliency depends entirely on

the usage in question. For example, in

the home scenario, the salient aspects

might be the key activities that hap-

pened throughout the day and the

anomalies and novel occurrences that

were identified. In a recent study,3 the

authors demonstrated the ability to sum-

marize a video by optimizing for similar-

ity and coverage. Analyzing such

algorithms and capabilities and convert-

ing them into appropriate computing and

memory implementations4 is a critical

area of research for future visual sensor

nodes, as well as the gateways and

servers that maintain the data.

Beyond saliency and summarization

of frames, it is also critical to identify key

entities and activities in visual data to

enable fast search and indexing. The

question becomes what metadata needs

to be extracted and where such meta-

data should be stored (on the sensor

node, in the gateway, or on the cloud

server). In addition, there is a question of

what type of memory is most suitable

for the metadata in question. This calls

for an end-to-end heterogeneous mem-

ory architecture consisting of different

memory types, ranging from cache to

DRAM to nonvolatile memory to storage.

Identifying the right balance of such het-

erogeneous memory across each of the

nodes in the end-to-end architecture is

critical as visual IoT usages explode and

cause bandwidth challenges for retrieval

of data.

Visual
IoT

Sensor node

Sensor node

CPU CPU Accel

NVM Remote platform Cloud storage

Remote platform Cloud storage

DRAMSRAM

Sensor node

Learning capabilities: Offline or online? Continuous?

Heterogeneous computation: Where to run? Dynamic partitioning

Heterogeneous memory: Where to store? What to store?

Interfaces and tools: What interfaces to expose? What type of tools?

Gateway

Figure 1. Visual IoT. Example implications on architecture research include how to dynamically partition the computation

across the heterogeneous architectures, manage the memory across the end-to-end system, and integrate offline/online

learning capabilities and tools.
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Interfaces and Tools for Visual IoT: Learning
and Development
Finally, it is important to consider appro-

priate interfaces for visual IoT platforms.

For example, as machine learning techni-

ques get adopted to analyze sensor data,

it becomes important to understand how

to take advantage of both offline and

online learning techniques. As an exam-

ple, if the visual agent wants to under-

stand gestures made by the people in a

home, it is extremely useful to enable

interfaces and tools that allow the agent

to train on and download these capabil-

ities. By making such capabilities broadly

available, developers will be able to pro-

vide many analytics capabilities employ-

ing rich sensor data and potentially

crowdsourced training data. Especially

as sensor nodes become more capable

(such as the Intel Curie Module5 with

pattern matching capability), new tools

that enable developers to use such capa-

bilities (such as the Intel Knowledge

Builder toolkit [http://software.intel.com/

en-us/intel-knowledge-builder-toolkit]) are

critical for the rapid deployment of IoT

solutions.

V isual IoT is a rapidly growing class

of usages with the proliferation of

smart cameras with increasing capabil-

ities. Future areas of research include

developing heterogeneous architectures

and dynamic partitioning capabilities

across end-to-end visual IoT, examining

heterogeneous memory stores for visual

data management and retrieval, and

tools and interfaces for fast deployment

of analyzing visual and other IoT

solutions. MICRO
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Toward a Self-Learning and
Energy-Neutral IoT
EMRE OZER
ARM

......A typical Internet of Things

(IoT) device comprises five components:

sensor, microcontroller, memory, bat-

tery/energy harvester, and radio. It is a

device that collects, preprocesses,

stores, and transfers data received from

a sensor to a host (for example, a reader

via RFID, a smartphone via Bluetooth, or

the cloud through a gateway) wherein

data processing is performed. The micro-

controller is mainly responsible for con-

trol and simple data preprocessing, and

the radio is used to transmit short data

packets. Hence, the battery can last for

years before it is recharged or replaced.

Such a simple IoT device is no longer

adequate because emerging applications

(such as medical, structural/environmen-

tal monitoring, and e-textiles) demand

ambient intelligence or cognition and

real-time response from IoT devices. A

new class of IoT devices called self-

learning IoT devices will emerge to pro-

vide cognitive services, such as situa-

tional awareness, anomaly detection,

activity, and pattern and emotion recog-

nition, which are essentially machine

learning algorithms. Real-time response

from self-learning IoT devices is needed

because an anomaly or critical activity

must be detected or recognized in situ

and reported immediately, because

transmitting the sensor data via radio to

its host to do this will be costly in terms

of energy and latency.1 For this reason,

the cognitive action must take place in

the device, not in the host. For example,

an implantable chip must detect an

abnormal condition in the organ and

must take an action in real time. It cannot

afford to wait for a critical decision to be

made by the host.

A self-learning IoT device will accom-

modate multiple sensors and a more

powerful computation engine to perform

.............................................................
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computationally intensive sensor fusion

and to run machine learning algorithms.

It will need a good size on-device mem-

ory (SRAM and nonvolatile memory) to

store the code and buffer the streaming

sensor data before and after data fusion.

Integrating multiple sensors, a relatively

higher-performance computation engine,

and more on-chip storage in a self-

learning IoT device will consume more

energy than a simple IoT device, and will

put incredible pressure on the battery.

Self-learning IoT devices will be deployed

in such environments in which recharg-

ing or replacing the battery is not possi-

ble—for example, an IoT device

implanted in a human body, integrated

into a building’s foundation, or

embedded in the textile fabric. Hence,

the battery in the device must operate

for a long time (for example, more than

10 years) and be charged by multiple

energy harvesters that are integrated

into the device to harvest ambient

energy (such as thermal, vibration, solar,

pressure) in order to charge the battery.

This is a concept called energy neutrality,2

in which the battery will always be

charged by energy harvesters in the

device3 and should never be recharged

by human intervention.

The next phase in the IoT’s evolution

is self-learning and energy-neutral devi-

ces having the properties of cognition,

real-time response, and perpetual

energy. The main challenge is to run

computation and memory-intensive sen-

sor fusion and machine learning algo-

rithms in a device powered only by the

harvested energy. This opens up oppor-

tunities to design novel computation

engines, memory subsystems, and

energy management units, considering

not only energy efficiency but also

energy neutrality. The computation

engine in the device must be equipped

with single-instruction, multiple data/

digital signal processing capabilities and

be coupled with one or more machine

learning hardware accelerators (such as

a deep neural network). Alternatively, the

computation engine can be tightly

coupled with sensors that will stream

data directly to the computation engine,

such that it may have an analog prepro-

cessing front end tightly coupled to the

sensors, and the machine learning algo-

rithms will run on the engine’s digital

back end engine. Today, state-of-the-art

microcontrollers have up to 4 Mbytes of

flash memory and much less static

RAM, and future IoT devices will not

have orders of magnitude larger on-chip

storage because of the cost issues.

Machine learning algorithms—in particu-

lar, deep neural networks—take up a sig-

nificant storage space, so it will be a

challenge to store a large number of net-

work parameters on chip. Hardware and

software compression techniques will

be used to deal with the large parameter

space in deep neural networks. Also,

alternative machine learning algorithms

that are more adaptive, resource effi-

cient, and energy efficient (such as non-

parametric Bayesian methods4) can be

developed for self-learning and energy-

neutral IoT devices. The management of

the harvested energy is a critical process,

and the data must be sensed, fused,

stored, and processed, and the response

given, before the harvested energy in the

battery depletes. The harvested energy

management must be performed by a

combination of innovative software and

hardware techniques, such as the predic-

tion of the harvested energy before task

execution, or new instructions to control

the energy harvesting process.

Self-learning and energy-neutral IoT

devices will also emerge in the printed

electronics world.5 Printed electronics

offers cost-effective fabrication of elec-

tronics with low-cost substrates and

materials (such as plastic and paper),

simpler processing and patterning

steps, and disposability. It has found

applications in sensors, RFIDs, solar

cells, batteries, and displays in the fields

of medical, wearable, textile, automo-

tive, and packaging applications. Smart

printed devices have already been dem-

onstrated as smart tags, labels, pack-

ages, e-textiles, and wearables. For

example, T.E. Halterman built a printed

alarm armband that monitors the vital

signs of hospital patients.6 The flexible

armband contains a solar panel, piezo-

electric speaker, temperature sensor,

and power supply circuit, all of which

are organic components in a wearable

form factor. It is self-powered by the

solar panel, and the speaker sounds an

alarm when the temperature sensor

measures a temperature between 36.5

to 38.5 degrees Celsius. These early

demonstrators are the precursors of

future self-learning and energy-neutral

printed IoT devices. The main advantage

of printed electronics is that they allow

low-cost customization thanks to the

low-cost flexible substrate and materi-

als, and do not require costly clean

rooms, unlike silicon. This offers a

unique opportunity, in particular, to cus-

tomize the computation engine to the

needs of the cognitive application that

will be running on the device. For exam-

ple, an energy-efficient support vector

machine (SVM) can be designed as a

custom computation engine (rather

than using a less energy-efficient gen-

eral-purpose computation engine) and

printed for a single-use smart packaging

product, because it will run only the

SVM. This will not be possible in silicon,

because customization (that is, ASIC) is

extremely costly. Thus, printed elec-

tronics will pave the way to low-cost

customization of efficient computation

engines for future printed self-learning

and energy-neutral IoT devices.

F uture IoT devices will become more

intelligent and aware of their envi-

ronment, and will integrate more capable

computation engines to perform cogni-

tive activities. However, these devices

will still be constrained by energy effi-

ciency and limited energy capacity, as in

today’s dumb IoT devices. They will be

so deeply embedded that they will not

be accessible to replace or recharge their

batteries, and will have to depend on

energy harvesters to become self-

sustained or energy-neutral. This will be

even more prominent for printed elec-

tronic devices that will be manufactured

for a single use. The main engineering
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challenge is to design an energy-neutral

device that will be deployed in critical

missions and stay operational for a long

time, but at the same time run computa-

tionally complex machine learning algo-

rithms. Nevertheless, this challenge

brings up unique opportunities for sys-

tem architects, designers, and software

developers to come up with holistic solu-

tions not only for the self-learning and

energy-neutral IoT devices in silicon, but

also in emerging printed electronics. MICRO
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