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Abstract— Epilepsy treatment in clinical practices with sur-
face electroencephalogram (EEG) often faces training dataset
shortage issue, which is aggravated by seizure pattern variation
among patients. To facilitate future optimization of the detection
accuracy as new datasets are available, a fully programmable
patient-specific closed-loop epilepsy tracking and suppression
system-on-chip (SoC) is proposed with the first-in-literature one-
shot learning and online tuning to the best of our knowledge. The
proposed two-cycle analog front end (2C-AFE) obtains a 9.8-b
effective number of bits (ENOB) with 8× capacitive digital-to-
analog converter (CAPDAC) area reduction and 4× switching
energy saving compared to a conventional 10-b SAR with an
identical unit capacitor size. The entire SoC with 16 surface EEG
recording channels consumes an ultra-low energy of 0.97 µJ/class
and occupies a miniaturized area of 0.13 mm2/ch. in 40-nm
CMOS, achieving real-time concurrent seizure detection and raw
EEG recording. Verified with the CHB-MIT database, the guided
time–channel averaging (GTCA) neural processor achieves the
vector-based sensitivity, the specificity, and the latency of 97.8%,
99.5%, and <1 s, respectively. The initial one-shot learning
and follow-up online tuning function is validated with the EEG
recording from a local hospital patient, which demonstrates a
1.8× vector-based sensitivity boost.

Index Terms— Area–energy efficiency, analog front end (AFE),
closed loop, digital back end (DBE), electroencephalogram
(EEG), epilepsy management, fully programmable stimulation,
guided time–channel averaging (GTCA), neural processor, one-
shot learning, online tuning, patient-specific, seizure detection,
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I. INTRODUCTION

EPILEPSY is a chronic neurological disorder that affects
over 50 million people worldwide [1]. Traditional treat-

ments of the symptom include recording long-term electroen-
cephalogram (EEG) with bulky systems [2] and medications to
suppress the unwanted neural activities [3], which are inconve-
nient and difficult to provide timely and patient-specific seizure
suppression. In contrast, closed-loop systems on chip (SoCs)
in a wearable form factor that are capable of EEG recording,
seizure classification, and programmable stimulation aim to
realize ambulatory epilepsy treatment (see Fig. 1) [4].

Surface EEG and intracranial EEG (iEEG) are frequently
adopted for seizure tracking. While seizure-related pattern in
the surface EEG is concentrated between 0.5 and 30 Hz [4],
iEEG can utilize a higher frequency band oscillation (HFO)
(up to ∼500 Hz) that shows a good correlation with seizure
pattern [5], at the cost of larger bandwidth and higher com-
putation speed, and, most importantly, invasive incision on a
subject. In contrast, surface EEG has a great advantage for its
non-invasiveness.

In most seizure tracking clinical cases with surface EEG,
only a few seizure onset datasets per patient are avail-
able [6], [7]. Hence, patients are periodically hospitalized for
EEG recording at a huge societal expense. The seizure pattern
varies from person to person, and unlike in the iEEG case,
seizure from surface EEG is particularly muffled and can be
inconspicuous and often what is a seizure pattern for a patient
may well be a normal pattern for another patient. Also, the
spectral energy of seizure onset can be even lower than the
normal pattern (instead of normally being higher as in iEEG
with HFO) [6], [7]. To make matters worse, it may vary with
aging even for the same patient. Therefore, the algorithm
needs to be trained with only several onset data (one-shot
learning) and has the flexibility to record and apply new data
to the classifier (online tuning) for long-term seizure tracking
and treatment. As the seizure pattern variation also requires
customized stimulation parameters [8], a fully programmable
stimulator is necessary to provide efficient and patient-specific
seizure treatment (see Fig. 1).

For closed-loop EEG systems that utilize the classification
result to suppress the seizure through stimulation, prompt
and accurate stimulator response for both onset/termination
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Fig. 1. Closed-loop epilepsy management SoC with its problems and
proposed solutions.

Fig. 2. Vector-based versus event-based detection.

detection is critical. There are two methods of evaluating
seizure detection accuracy in the literature. In an event-based
detection [9], the target is to detect seizure occurrence regard-
less of seizure duration; as shown in Fig. 2, the stimulation
following the seizure detection could happen after a long
while of actual seizure onset and finish before the seizure
ceases (cases B–D). In contrast, the vector-based detection [7]
accurately captures both the seizure onset and termination
and hence is possible to provide prompt and accurate seizure
suppression via stimulation (see case A). In all four cases,
event-based sensitivity would be 100%, but only case A would
show the vector-based sensitivity of 100%, while cases B–D
show only 60%, 60%, and 20%, respectively (which would
miss the accurate time to activate the stimulation). Therefore,
having high vector-based sensitivity is crucial for a closed-loop
epilepsy management system.

To address the aforementioned issues, this article presents
the fully programmable closed-loop epilepsy management SoC
(see Fig. 1), where surface EEG is selected over intracranial
EEG to save energy and to avoid intracranial surgery [7].
The surface EEG noise is handled by time–channel averag-
ing. To adapt to the inter-patient and intra-patient seizure
pattern variations, real-time concurrent seizure detection and
raw EEG recording enable offline classifier retraining with
newly recorded datasets. Furthermore, initial one-shot learning

Fig. 3. Proposed closed-loop epilepsy management SoC architecture.

and follow-up online tuning function is proposed to tune
the decision boundary while facing limited training datasets.
Finally, a fully programmable (waveform, amplitude, fre-
quency, and phase) current stimulator is implemented to close
the loop and provide better stimulation efficacy.

This article is organized as follows. Section II describes the
SoC architecture with design motivation. Sections III and IV
detail the design considerations and circuits of the two-cycle
analog front end (2C-AFE) and the guided time–channel aver-
aging (GTCA) support-vector-machine (SVM) neural proces-
sor, respectively. Section V discusses the measurement results
and analysis. Finally, Section VI concludes this article.

II. SYSTEM ARCHITECTURE

The proposed closed-loop epilepsy management SoC is
shown in Fig. 3. To optimize area–energy efficiency, the
16-channel 2C-AFE reuses the amplifier + 7-b binary SAR
to re-amplify the residual voltage from the first cycle and to
generate an additional 3 b at the second cycle (see Fig. 4);
the resulting 10-b data are processed by the GTCA neural
processor that realizes the real-time concurrent vector-based
seizure detection and raw EEG recording for long-term ambu-
latory treatment. The GTCA neural processor adopts the time–
channel averaging feature extraction (TCA-FE) to mitigate
the signal instability from gain mismatch and motion/emotion
artifact, thus achieving high vector-based seizure detection
accuracy. With the classification result, a bi-phasic current
stimulator (2 μ–930 μA) with full programmability is pro-
posed to provide prompt and accurate patient-specific seizure
suppression.

Various state-of-the-art epilepsy management systems are
proposed to realize accurate seizure detection and suppression.
The NURIP processor [9] reduces noise and feature dimension
with an autoencoder, achieving 97.7% event-based seizure
detection sensitivity on the EU-iEEG database, but with a
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Fig. 4. 2C-AFE architecture and its operation principle.

high digital back-end (DBE) energy of 168.8 μJ/class. A two-
level classification [10] realizes 97.8% vector-based sensitivity
on the CHB-MIT database [11], but it is challenging for
the threshold-based coarse classifier to detect inconspicuous
seizure patterns where the spectral energy decreases dur-
ing seizure onset. An energy-efficient decision tree classi-
fier [12] consumes only 41.2 nJ/class with a relatively low
vector-based sensitivity of 83.7% on the IEEG.ORG database.
A convolutional neural network (CNN) classifier with
hardware-efficient implementation works well [13], but the
huge training data requirement makes it difficult to apply
to clinical cases with only limited training sets. An online
training function [14], [15] performs optimization algorithms
in real time to improve the seizure detection accuracy for
long-term usage, but the optimization algorithm takes time
to show the effects and yields a high system power of
2.9 mW in [14]. Current epilepsy tracking systems are facing
several pain points while being used in practical cases, which
are addressed in the proposed work. First, transient and
localized noise-induced false-positive/false-negative (FP/FN)
classification results are reduced by TCA-FE, which aver-
ages the feature in both temporal and spatial domains. Sec-
ond, for long-term epilepsy management, real-time concurrent
seizure detection and raw EEG recording can store new
seizure patterns for retraining of the classifier. Furthermore,
the online tuning function can tune the decision bound-
ary with only several new support vectors added. Third,
the system area–energy efficiency is optimized by the low
sampling rate of 2C-AFE and the efficient implementation
of the SVM classifier. Finally, the proposed programmable
current stimulator provides effective stimulation with indepen-
dent programmability of amplitude, frequency, duration, and
waveform.

III. TWO-CYCLE ANALOG FRONT END (2C-AFE)

For a multi-channel closed-loop SoC, area efficiency is
an important design consideration. Also, surface EEG of
μV-amplitude resides in the baseband range, which requires
a low-noise and high-resolution sensor interface to retain the
signal fidelity [16]. Compared to the conventional amplifier
cascaded by an ADC structure, the proposed 2C-AFE stands
out in area–energy efficiency and accuracy with the two-cycle
operation.

Fig. 5. Unit capacitance size versus ADC resolution of a two-cycle
SAR (blue) and a conventional SAR (red), assuming that the overall CAPDAC
area remains constant.

A. Residual Voltage Feedback-Based 2C-AFE

Among the Nyquist-rate ADCs, a binary SAR ADC has
been extensively chosen for energy efficiency. Exponentially
increasing with the resolution, the large capacitive digital-
to-analog converter (CAPDAC) sets stringent constraints for
the amplifier drivability and multi-channel scalability in a
wearable form factor. The switching energy and RC settling
time also scale up proportionally. Furthermore, the higher
resolution requires a faster comparator when responding to
smaller input voltages. Insufficient power or device mismatch
could limit the comparator speed and affect the output polarity.

The traditional N-bit SAR ADC requires (N − 1) rounds of
CAPDAC switching (excluding the most significant bit (MSB),
which is compared directly without switching) to obtain the
N-bit digitized result. The final switching state is determined
by the most significant (N − 1) bits regardless of the least
significant bit (LSB). If based on LSB, one more switching
is applied to the unit capacitor switch, the voltage at the
comparator differential inputs is exactly the residual voltage
VRES, which is the difference between the input voltage and
the quantization level of the N-bit result [17].

The switching procedure of conventional SAR has been
illustrated in [18]. If the unit capacitor switch state is adjusted
according to LSB, then the residual voltage VRES is always
a positive value, providing that the comparator has generated
correct digital bits. With VRES between the comparator inputs,
multiple rounds of amplification and digitization can be done
using the same AFE through a feedback loop. Compared to
the conventional SAR, the cyclic operation effectively saves
the CAPDAC area and energy while boosting the resolution.
The comparator requirement is also relaxed by the larger
LSB (due to fewer bits per cycle) and re-amplification of the
residual voltage. Nevertheless, the final effective number of
bits (ENOB) is still dependent on the VRES stability and gain
accuracy.

B. Unit Capacitor Size Analysis

When choosing the size of CAPDAC, the minimum allowed
unit capacitor is constrained by both matching and kT/C noise.
For an N-bit SAR with a full-scale voltage of VFS, the thermal
noise bounded minimum total capacitance (Ctot,min) can be
calculated as in (1). Hence, within the same total CAPDAC
area constraint, the minimum allowed unit capacitance for the
cases of conventional SAR (Cu,min) and 2C-AFE (Cu_2C,min)
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(with half the conventional CAPDAC size) is obtained as in
(2) and (3), where (3) includes a ceiling function when N is
an odd number. Fig. 5 plots the thermal noise bounded Cu,min

and Cu_2C,min for a resolution of 8–12 bits, assuming the same
overall CAPDAC area. Due to routing and device parasitics,
current technology nodes can hardly guarantee the matching
of sub-fF capacitance [19], [20]. For binary SAR, the unit
capacitance is less than 0.5 fF, and thus, the total CAPDAC
size has to be scaled up to meet the >fF matching requirement
(above the gray area). In contrast, the 2C-AFE of resolution
>9 b can satisfy the unit capacitor matching requirement.

kT

Ctot
≤

(
VFS/2N

)2

12
or Ctot,min = 12kT

(
VFS/2N

)2 (1)

Cu,min = Ctot,min

2N
(2)

Cu_2C,min = Ctot,min

2ceil(N/2)
(3)

C. Gain and Switching Energy Analysis

Suppose that the CAPDAC is composed of N-bit capacitors,
and the ADC operates in M cycles for each sample. The
signal flow of the cyclic AFE in the first two cycles can
be summarized in Fig. 6(a). During Cycle 1 (C1), the input
voltage is amplified to ±VREF range and digitized into the most
significant N-bit. The residual voltage VRES is positive and in
the range of VREF/2N−1, which is fed back to the amplifier
input. When Cycle 2 (C2) initiates, VRES is re-amplified to
0–Vref range so that the ADC could utilize its full resolution to
convert the next (N − 1) bits (C2 sign bit omitted). Similarly,
the next cycle would amplify VRES from C2 and convert
another (N − 1) lower bits, and the cycle continues. Thus,
to maintain the linearity, the amplifier gain for C1 can be
flexible depending on the input signal strength, while for the
remaining (M − 1) cycles, the gain should be exactly 2N−1.

For an N-bit binary SAR ADC, assume that the output
code is equally distributed at all the quantization levels,
and the average switching energy for a conventional SAR
(Eavg,conv) [18] is

Eavg,conv =
N∑

i=1

2N+1−2i
(
2i − 1

)
CV 2

REF. (4)

For an M-cycle ADC conversion with N-bit CAPDAC, the
total average switching energy (Eavg,cyclic) is

Eavg,cyclic = M ×
N∑

i=1

2N+1−2i
(
2i − 1

)
CV 2

REF. (5)

The overall resolution for the M-cycle N-bit DAC is
N + (M − 1) × (N − 1). The additional (M − 1) × (N − 1)
bits entail additional switching energy (Eadd,cyclic) of

Eadd,cyclic = (M − 1) × Eavg,conv. (6)

In contrast, for the case of conventional binary SAR, the
additional switching energy (Eadd,conv) is

Eadd,conv = 2(M−1)×(N−1) × Eavg,conv. (7)

Fig. 6. (a) 2C-AFE signal flow. (b) 2C-AFE energy and area saving.

Fig. 7. Proposed 2C-AFE structure.

Compared to the exponential scaling of switching energy
for conventional SAR, the linear increase for M-cycle SAR
energy shows the greater energy saving. Theoretically, with
more cycles of operation, the resolution and energy efficiency
can be improved significantly. However, since the residual
voltage has no active source, with each feedback round,
there will be certain accuracy loss due to gain and residual
inaccuracy; hence, it is infeasible to repeat too many cycles.
The dynamic range of surface EEG is around 60 dB (signal
ranges from a few μV to below mV level), and thus, 10-b
resolution is sufficient. The cycle number M and CAPDAC
size N chosen in this work are M = 2 and N = 7 (extra 3 b
for gain and residual inaccuracy tolerance), respectively. The
target is to design a 2C-AFE that realizes a 10-b resolution
with 7-b capacitor bank. Assuming the same unit capacitor
size (4 fF in this design), the total CAPDAC area and the
switching energy of the proposed 2C-AFE are saved by 8×
and 4×, respectively, compared to a 10-b binary SAR [see
Fig. 6(b)].

D. 2C-AFE Implementation

The proposed 2C-AFE structure comprises a 30-dB
chopper-stabilized capacitive-coupled instrumentation ampli-
fier (CS-CCIA) followed by a 6–24-dB programmable gain
amplifier (PGA), 7-b CAPDAC, comparator, two-cycle SAR
logic, buffer, and analog mux (see Fig. 7).

The amplifier gain of C2 for VRES should be close to
2N−1 (which is 64× or 36 dB for 7-b DAC) to maintain the
ADC linearity. Hence, special attention has been paid to the
OTA structure, trimming capacitor bank as well as TCA-FE
to form a three-layer safety net to guarantee gain accuracy:
L1) high open-loop gain of 73 dB of the telescopic OTA (see
Fig. 8) ensures a precise closed-loop gain and the current-
reuse inverter-based core amplifier is chosen to optimize the
noise–current tradeoff [21]; L2) the fabricated chip might have
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Fig. 8. Proposed two-stage amplifier and core OTA structure.

a small gain deviation from the simulation due to process
variation and, hence, a small-cap bank has been adopted to
the input capacitor of the CCIA to fine-tune the C2 gain to
be exactly 36 dB (see Fig. 8); and L3) the TCA-FE adopts
averaging algorithm among the active channels to alleviate
the effect of multi-channel gain mismatch on the spatial
information.

Since the largest surface EEG signal amplitude is a few
hundred μV, for a typical structure of amplifier + ADC with
60-dB gain, the output range of amplifier is about 1 Vpp.
However, the amplifier gain and output range for 2C-AFE can
be less with the second cycle amplification. In this design,
the maximum two-stage gain is 54 dB, corresponding to a
500-mVpp differential output range. Hence, the maximum level
at each amplifier output end is only 550 mVdc ± 125 mVac,
sparing sufficient headroom for the stacking transistors and
ensuring the amplifier linearity.

The 7-b CAPDAC is designed with customized MOMCAP
using high-layer metals M6 and M7 to minimize GND cou-
pling. The interdigitated structure achieves high area efficiency
and good matching [20]. With the two-cycle amplification
of 2C-AFE, the comparator noise and speed constraints for
each cycle are much relaxed. To minimize dynamic power
consumption, the comparator is clock gated to operate only in
14 cycles out of the 64 clock cycles for each sample, saving
about 78% power compared to the always-ON case.

Since the residual voltage VRES is held by the charge
stored in the CAPDAC without any active source, a buffer
is necessary on the feedback path to maintain the voltage by
isolating the amplifier input capacitor. The controlling switches
on the residual feedback path use thick-oxide transistors to
minimize the leakage. As the common-mode voltage of the
residual is always near VDD/2, whenever the residual feedback
path is OFF, the buffer input will be connected to a fixed
voltage of VDD/2 through the mux, which prevents the floating-
gate-induced leakage. The power overhead of the buffer is
40 nW (included in the amplifier power), which is less than the
saved CAPDAC switching energy of 112 nW. Also, the saved
CAPDAC area is more than 10× of the added feedback buffer
area of 1496 μm2. Furthermore, the Monte Carlo simulation
(see Fig. 9) has been conducted to verify that the input offsets
from both buffer and comparator are less than ±0.5 LSB of
7-bit SAR, and hence, the residual voltage can be sustained
during the feedback.

E. 2C-AFE Control Logic With Two-Step Calibration

As shown in Fig. 10, the SAR logic is realized by a finite-
state machine (FSM) with nine states to control the 2C-AFE

Fig. 9. Monte Carlo simulation of buffer and comparator offsets.

Fig. 10. 2C-AFE control logic and two-step calibration.

operation. For each sample, 64 fundamental clock periods
(32 kHz) are assigned to finish the two-cycle conversion.
The states in red color are C1, blue are C2, and black
are reused in C1 and C2. To compensate for the possible
comparator error when its differential inputs are very close,
calibration is critical since the wrong residual level could
affect all bits in C2. Hence, a two-step calibration is designed
for the 2C-AFE.

Assuming that the C1 LSB is supposed to be “1,” but
the comparator decision is “0,” then VRES would exceed the
largest possible input for C2 (VREF/2N−1) and cause saturation
in C2. Such errors could occur at the LSB as well as any
higher bit of C1, which would waste the whole C2 operation.
To compensate for this error, at the end of C1, a “1” is
intentionally added to the C1 result whenever the “saturation
pattern” (see Fig. 10) has been detected (Cal #1). Hence, the
final switching state of C1 is modified accordingly and the
resultant residual voltage no longer saturates C2. In case
the “saturation pattern” is the actual input voltage, then Cal #1
is redundant, where Cal #2 would detect and correct the final
output automatically.

Since the theoretical VRES should always be positive, it can
be used as an error flag. The wrong polarity of VRES could
be due to the wrong comparator decision in C1 or redundant
Cal #1 operation. Even though the C2 MSB is wrong (which is
omitted in the final 13-b output), the remaining 6 bits obtained
in C2 are unaffected due to the 2’s complement format of
differential ADC. Thus, whenever the sign bit of C2 is “0”
(error flag), Cal #2 is carried out by simply subtracting “1”
from the first 7 bits obtained in C1, and the over-subtracted
portion can be compensated without changing C2 results. With
the proposed two-step calibration to reduce the comparator
quantization error rate, the overall SNDR can be improved by
6 dB compared to the raw data.



1054 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 57, NO. 4, APRIL 2022

Fig. 11. Circuit implementation of spectral energy calculator.

IV. GTCA NEURAL PROCESSOR

The structure of the proposed GTCA neural processor
with an online tuning function is shown in Fig. 3. After
pre-processing, the TCA-FE extracts the time-averaging (TA)
and channel-averaging (CA) features, which are processed by
the GTCA-SVM classifier to decide whether the signal is
a seizure. In the classifier, a second-order polynomial guid-
ing kernel layer is incorporated to improve the vector-based
detection accuracy and realize online tuning. With the pro-
posed TCA-FE and GTCA-SVM classifier, the false-positive
rate (FPR) and false-negative rate (FNR) are dramatically
reduced by 65% and 26%, respectively. Due to initial one-shot
learning and follow-up online tuning, even with limited train-
ing datasets (as we frequently face patients in the clinic),
the vector-based sensitivity can be further boosted. Also,
the proposed patient-specific programmable current stimulator
module can provide arbitrary waveforms to suppress seizures.

A. EEG Pre-Processing

The EEG pre-processing module first decimates the raw
EEG signal and then extracts spectral energy for 16 channels
of seven different sub-bands from 0 to 28 Hz as in [6]
and [22]–[24]. Two decimation filters are implemented with
the size of 24-tap (128 Hz for seizure tracking) and 18-tap
(256 Hz for seizure onset EEG recording), enabling real-time
concurrent seizure detection and raw EEG recording, which
facilitates long-term ambulatory treatment. The 18-tap decima-
tion filter is clock and data gated such that it is activated only
when a seizure is confirmed by the GTCA-SVM classifier.

The spectral energy calculator converts the bandpass filtered
EEG sample to its absolute value and accumulates samples
to form the non-overlapping 2-s window spectral feature.
However, the latency of the system will be 2 s, which is not
ideal for real-time seizure detection and suppression. Hence,
the ping-pong strategy is applied to buffer 1 s of accumulated
spectral energy and output overlapped 2-s spectral energy,
as shown in Fig. 11. Together with the proposed zig–zag data
buffer, the overall circuit latency is reduced from 2 to 1 s.

B. Time–Channel Averaging Feature Extraction

The surface EEG electrodes suffer from multiple noise
sources—extrinsically (e.g., loose contact of the surface elec-
trode and sudden rapid body movement of patients) and intrin-
sically (e.g., dramatic emotional change of patient) [25]–[29].
Transient and localized noise is introduced in the surface EEG

Fig. 12. Architecture of TCA-FE module.

signal, which could lead to a high FPR and FNR. The proposed
TCA-FE module performs averaging in both time and spatial
domains to reduce noise-induced FPs/FNs and achieves 49%
and 75% reduction, respectively, compared with [6] while
consuming 1.9% of DBE power.

The TA and CA are performed on the pre-TCA feature
that has a size of 3 (# of non-overlapping 2-s window) ×
16 (# of channels) × 7 (# of the sub-band). The architecture
of the TCA-FE module is shown in Fig. 12. The proposed
zig–zag data buffer is designed to reduce the circuit latency
from 2 to 1 s. It has four register banks—two forming zig
pairs and the other two forming zag pairs. Each register bank
has a size of 112 × 18 bit, which stores 2-s spectral energy.
While performing TA and CA, the zig/zag pair is selected
and combined with the next 2 s to form the pre-TCA feature.
After performing TA and CA, the zig-zag data buffer accepts
the next 2-s spectral energy to update one of the four register
banks in a zig-zag fashion (�1–�4) (see Fig. 12).

Time multiplexing and resource sharing are considered in
the TCA-FE module to reduce area overhead. At each step, the
spectral energy of three non-overlapping 2-s windows of one
channel and one sub-band is selected to perform TA resulting
16 × 7 times of calculation, whereas in CA, the spectral
energy of 16 channels of one non-overlapping 2-s window
and one sub-band is selected to perform 3 × 7 times of
calculation. To match the TA and CA process, different clocks
are applied—CLK_TA is 4× faster than CLK_CA. The TA
requires dividing the spectral energy summation result by 3,
which needs a divider. Based on the MATLAB simulation,
removing the divider in TA only has a <0.5% accuracy
degradation. Thus, the divider is removed in TA to achieve
higher area–energy efficiency. The CA involves the dividing
of spectral energy of 16 channels (or 8/4/2 based on the active
channel numbers), which is easy to implement using a right
shifter that has barely any area overhead. Furthermore, both
TA and CA modules are clock gated to obtain better energy
efficiency.

Seven seizure events from the CHB-MIT database that
contain transient and localized noise are used for the noise
analysis. The TA/CA (after averaging) and pre-TCA (before
averaging) features with seizure and non-seizure clusters are
extracted. With the presence of transient and localized noise,
the distance between seizure and non-seizure cluster centroids
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TABLE I

FEATURE ANALYSIS OF TCA-FE

would be reduced, representing worse feature separability. The
normalized cluster centroid distance (by dimension) is used to
make a fair comparison. The resulting TA, CA, and pre-TCA
normalized cluster centroid distances are 2058, 8729, and
396, respectively (see Table I). Hence, the feature separability
improves after averaging, even in the presence of transient and
localized noise.

C. GTCA-SVM Classifier With Online Tuning Function

Wang et al. [10] proposed a coarse-to-fine dual-classifier
structure to cope with the power–performance tradeoff. Even
though the fine classifier is only activated for 15% of the
runtime, it still consumes 14.2 μJ/class with DBE only. In [6],
the D2A-SVM has one classifier trained for high sensitivity
(CSEN) and the other one trained for high specificity (CSPE).
However, the digital hysteresis could perform badly by simply
adopting previous decisions when CSEN and CSPE disagree at
the seizure onset/offset edges, resulting in the high FNR and
FPR of 4.3% and 2.0%, respectively.

The proposed GTCA-SVM classifier structure resolves the
above problems by introducing nonlinear classification ability
to the linear dual-classifier structure to realize high seizure
detection accuracy and low energy consumption. The classi-
fier can be programmed with four operation modes: 1) and
2) TA (CA) mode that only activates TA (CA) feature extractor
and classifier; 3) TCA mode that activates TA and CA feature
extractors and classifiers with digital hysteresis [6] to make the
final decision; and 4) GTCA mode that involves all classifiers,
and the guiding kernel layer will make the final decision when
TA and CA classifiers have different outputs.

To boost the performance of the SVM classifiers, normal-
ization is applied during offline training as in the following
equation:

xn = xi − μ

β · σ · Scale = (xi − μ) · PBSS (8)

where xi denotes the input feature, μ denotes the mean of
support vectors, σ denotes the standard deviation of support
vectors, and β and Scale are the scaling factors introduced
in offline training. The two parameters β and σ are com-
bined with Scale as PBSS to simplify the calculation to one
fixed-point addition and one floating-point multiplication.

Although the guiding kernel layer activation rate is <5%,
it is necessary to be designed in an area–energy efficient
way. Hence, the second-order polynomial kernel is serial-
ized, and computation resources are shared. The square and
summation operation reuses the floating-point multiplier and
adder, resulting in only two floating-point multipliers and two
floating-point adders (see Fig. 13). Based on the MATLAB

Fig. 13. Architecture of guiding kernel layer and flowchart of online tuning.

simulation, the maximum and average numbers of support
vectors used across 24 cases in the CHB-MIT database are
148 and 63 (16-Ch mode), respectively. With the GTCA mode,
70 kB out of the 134-kB EEG recording SRAM can be
programmed to store 256 support vectors under 16-Ch mode
(512/1024/2048 under 8/4/2-Ch mode). The choice of 256
support vectors (>1.7× of the maximum requirement) leaves
enough room for extreme cases and online tuning. The guiding
kernel layer operates at 1 MHz for low-power purposes, which
also guarantees the decision to be made within 31.25 ms under
the maximum number of channels and support vector.

When facing limited training datasets in practical cases, the
TCA-FE can extract distinct features such that the classifier
could achieve a good event-based performance at initial train-
ing. In the later stage, once the FP/FN classification result is
observed, by activating the online tuning function once, one
FP/FN TA feature can be added as a support vector to the
SRAM to tune the decision boundary with immediate effect.
The newly added support vector also needs to be normalized
using the same parameter sets. Therefore, the normalization
module is shared between the guiding kernel layer and the
support vector generation (see Fig. 13).

D. Patient-Specific Programmable Stimulator

State-of-the-art closed-loop epilepsy management sys-
tems [6], [9], [30], [31] often offer a limited choice of
testable waveforms—changing one parameter (e.g., stimula-
tion frequency) automatically changes another (e.g., current
pulsewidth) resulting in less effective stimulation [8], [32].
To address these problems, we demonstrate the LUT-based
patient-specific programmable current stimulator.

The stimulator structure is shown in Fig. 14. The stimulator
consists of a digital control unit operating at 2 MHz and a
current DAC. The digital control unit has an FSM parame-
ter block, a switch LUT that stores the arbitrary waveform
configuration (C0–C8), and an FSM that controls different
stimulation phases. The switch LUT configurations are shared
in the anodic and cathodic phases to save area and guarantee
a balanced charge delivered to the human body.

The digital control unit is designed with individ-
ual programmability of the parameters, which enables
the patient-specific waveform generation. The parameter
M controls how many clock cycles each current value
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Fig. 14. Proposed patient-specific programmable current stimulator.

Fig. 15. Chip microphotograph.

Fig. 16. (a) SoC area breakdown. (b) SoC power breakdown.

lasts, resulting in the programmable stimulation duration
of T1 = 128 × T3 = 128 × M × 50 μs. The pre-uploaded
parameter n controls the number of stimulation pulses to
be generated. Finally, the stimulation frequency can be pro-
grammed via controlling the clock cycles between each stimu-
lation pulse. The proposed current stimulator realizes arbitrary
waveform generation with independent control of different
parameters to improve stimulation efficiency.

V. MEASUREMENT RESULTS

The proposed 16-Ch epilepsy management SoC fabri-
cated in the 40-nm 1P8M CMOS process occupies an area
of 3 mm × 1.5 mm, where the active area per channel is
0.13 mm2 (see Fig. 15). The area and the power breakdown of
the SoC are shown in Fig. 16. Table II shows the comparison
with state-of-the-art works.

Fig. 17(a) shows the gain performance of the proposed
2C-AFE. The two-stage gain can be programmed from 36.1 to

Fig. 17. (a) Two-stage amplifier gain range. (b) Amplifier linearity. (c) Noise
spectrum. (d) Common-mode rejection ratio.

53.8 dB. The high- and low-pass corners are <0.5 and
>128 Hz, respectively, which cover the entire surface EEG
signal bandwidth. Fig. 17(b) shows that the amplifier lin-
earity is maintained within the 500-mVpp output range for
both maximum and minimum gains. The noise spectrum of
the CS-CCIA is plotted in Fig. 17(c). The input-referred
noise (IRN) integrated from 0.5 to 201 Hz ((π/2) times the
signal bandwidth) is 851 nVrms. Hence, the noise efficiency
factor (NEF) is calculated to be 2.94. The common-mode
rejection ratio (CMRR) of the two-stage amplifier is larger
than 100 dB, as shown in Fig. 17(d).

To determine the dynamic performance of 2C-AFE, a
single-tone sine wave of 5.875 Hz is directly fed into the
ADC. Coherent sampling is used for SNDR measurement to
avoid spectral leakage. As shown in Fig. 18(a), the output
power spectrum demonstrates 60.7-dB SNDR with 4096 FFT
points. Hence, the 10-b resolution 2C-AFE achieves 9.8-b
ENOB. To verify the 2C-AFE performance under different
input conditions, the sine-wave frequency is swept across the
target bandwidth. As shown in Fig. 18(b), the SNDR for each
frequency is stable around 61 dB. To obtain the dynamic range,
the sine-wave amplitude is swept from VFS down to 0.22 mVpp.
The measured SNDR corresponding to each input magnitude
is plotted with a dynamic range of 67 dB [see Fig. 18(c)].
Fig. 18(d) summarizes the performance comparison with state-
of-the-art 10-b ADC works [18], [36]–[41]. The proposed
2C-AFE achieves a Walden FoM of 81.5 fJ/conversion with
the total CAPDAC size of only 1.024 pF, demonstrating a high
area–energy efficiency.

The CHB-MIT database [11] is used to verify the perfor-
mance of the proposed GTCA neural processor. The database
contains 24 cases of >990 h of surface EEG recordings, during
which there are 180 seizure events with various seizure types.
The seizure file used for the classifier training of each patient
is shown in Fig. 19. With the proposed TCA-FE, the classifier
can be trained in one shot with 34.5% of the total seizure
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TABLE II

COMPARISON WITH STATE-OF-THE-ART EPILEPSY MANAGEMENT SOCS

Fig. 18. 2C-AFE dynamic performance: (a) output power spectrum with
single-tone input, (b) SNDR of varying frequencies, (c) SNDR of varying
amplitudes, and (d) comparison with 10-b ADCs in literature.

events on average. The block-wise data arrangement [12] is
adopted to prevent the classifier from foreseeing the test data
during the training phase. To cope with the data imbalance
issue due to the rareness of seizure events, the training
data are selected with the seizure event plus a 100–300-s
window applied before and after the seizure event respectively;

Fig. 19. Training seizures of each patient from the CHB-MIT database.

furthermore, ∼10% of non-seizure files are combined with
the training seizure files to form the training files. Those
non-seizure files are used as validation data and the FPs are
used as training data. The remaining seizure and non-seizure
files form the test files.

Fig. 20 shows the GTCA neural processor performance
on the CHB-MIT database. During the training phase, the
best-performing operation mode is specifically selected for
each patient. Except for the test seizure files, at least 2-h
non-seizure recordings are used to verify the performance of
each patient. Across all the 24 patients from the CHB-MIT
database, the proposed GTCA neural processor obtains an
average vector-based sensitivity of 97.8% and a specificity
of 99.5%. As shown in Fig. 21, besides pronounced seizure
patterns as in patient 9, for inconspicuous cases such as patient
6 (problematic low sensitivity and specificity in [6] and [10]),
our SoC outperforms in both sensitivity and specificity. Based
on the measurement results, there are only three patients with
a seizure detection latency of >2 s (worst case is 3 s), and
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Fig. 20. Performance of GTCA neural processor on the CHB-MIT database.

Fig. 21. Classification results: (a) inconspicuous seizure case (patient 6) and
(b) pronounced seizure case (patient 9).

Fig. 22. Online tuning performance of the local hospital patient with an
inconspicuous seizure pattern.

17 out of 24 patients have a latency of <1 s. In summary, the
average seizure detection latency of 0.74 s is achieved across
all 24 patients.

The online tuning function is verified on a recruited patient
from a local hospital. There are seven seizure events captured
during the 4 h of EEG recording, which lasts from several
to tens of seconds. To demonstrate one-shot learning with a
follow-up online tuning performance, the first seizure event
is used to train the classifier, resulting in an event-based
sensitivity of 83.3%, a vector-based sensitivity of 39.5%, and
a specificity of 98.9%. Then, online tuning is applied and new
support vectors are added using the FNs/FPs of the follow-up
test seizure events (three FNs and one FPs) to tune the
decision boundary. Fig. 22 shows the classifier performance
on two of the test seizure events before and after online
tuning. On the six test seizure events, the classifier achieves
a 1.8× vector-based sensitivity boost to 71.9% (100% event-
based sensitivity) with an acceptable specificity degradation
of 2.5% P. The initial one-shot learning and follow-up online
tuning has also been carried out on the two worst performing
patients (vector-based sensitivity <90%) in the CHB-MIT
database to demonstrate the effectiveness on longer EEG data

Fig. 23. Programmable stimulation measurement.

(>20 h). The initial one-shot learning is applied using the
first 1 (2) out of 5 (8) seizure events of patient 8 (20), with
a vector-based sensitivity of 70.5% (67.8%) and a specificity
of 98.8% (98.8%). After adding 12 (5) support vectors with
online tuning, the vector-based sensitivity achieves 81.7%
(76.6%) with a specificity of 98.3% (98.2%) for patient 8 (20).

Fig. 23 shows the measured sine- and MW-wave stimula-
tion. The sine wave is programmed to stimulate at 50 Hz and
the MW-wave at 100 Hz. The stimulation amplitude of the sine
wave is 2× and the stimulation duration of the sine wave is
1/8 of the MW-wave. Based on the measured results, it shows
that the proposed stimulator can realize independent parameter
programmability to maximize the stimulation efficiency.

VI. CONCLUSION

The proposed closed-loop epilepsy management SoC pro-
vides patient-specific seizure detection and fully program-
mable stimulation treatment with only 0.97-μJ/class energy
consumption. The proposed one-shot learning with online
tuning solves the long-term challenges, including limited train-
ing data and seizure pattern variation with aging and among
patients. The 2C-AFE obtains 9.8-b ENOB with 1/8 CAPDAC
area and 1/4 switching energy compared to conventional
10-b SAR with an identical unit capacitor. With TCA-FE to
average out the localized and transient noise, the GTCA neural
processor achieves the vector-based sensitivity, the specificity,
and the latency of 97.8%, 99.5%, and <1 s, respectively.
Validated with the EEG recording from a local hospital patient,
the online tuning function successfully boosts the vector-based
sensitivity by 1.8× after one-shot learning.
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