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Abstract— Reducing learning energy consumption is critical to
edge-artificial intelligence (AI) processors with on-chip learning
since on-chip learning energy dominates energy consumption,
especially for applications that require long-term learning. To
achieve this goal, we optimize a neuromorphic learning algorithm
and propose random target window (TW) selection, hierarchical
update skip (HUS), and asynchronous time step acceleration
(ATSA) to reduce the on-chip learning power consumption. Our
approach results in a 28-nm 1.25-mm2 asynchronous neuromor-
phic processor (ANP-I) with on-chip learning energy per sample
less than 15% of inference energy per sample. With all weights
randomly initialized, this processor enables on-chip learning for
edge-AI tasks such as gesture recognition, keyword spotting, and
image classification, consuming sub-0.1 µJ of learning energy
per sample at 0.56 V and 40-MHz frequency while maintaining
>92% accuracy for all tasks.

Index Terms— Application-specified integrated circuit (ASIC),
asynchronous circuits, neuromorphic computing, on-chip learn-
ing, spiking neural network (SNN).

I. INTRODUCTION

THE field of artificial intelligence has seen remarkable
advancements in recent years, with deep neural networks

(DNNs) playing a key role in various domains [1], including
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image classification [2], [3], [4], voice recognition [5], [6],
and autonomous driving [7]. Despite their remarkable capa-
bilities, however, the dense computation required by DNNs
results in high power consumption, limiting their deployment
in edge applications. Spiking neural network (SNN) is a
promising alternative, as it leverages spatiotemporal sparse
spikes for information transfer and event-based models for
processing. The event-driven nature of SNNs, coupled with
their sparse data acquisition and processing capabilities, makes
them highly suitable for edge-AI applications.

Numerous studies have focused on developing
energy-efficient neuromorphic processors. For instance,
TrueNorth [8], which integrates 1M neurons and 256M
synapses, consumes 65 mW of power in a typical application.
However, its large die area (4.3 cm2) makes it economically
unfeasible to be deployed at the edge. Similarly, Tianjic [9]
implements a unified architecture that combines neuromorphic
computing and deep learning. It integrates 40k neurons and
10M synapses but consumes nearly 950 mW of power on
random input. On the other hand, DYNAPs [10] implement 1k
analog neurons and 64k analog synapses and consume only
0.85 mW at 1.3 V. However, the low-precision computation
of analog neurons and synapses limits DYNAPs to simple
tasks such as the classification of poker card symbols.

The aforementioned neuromorphic processors are designed
solely for inference, meaning that the SNNs are trained off-
chip. However, on-chip learning has been garnering more
research interest in the field as it enables on-the-fly adaptation
to changing environments. Given the varied environments that
edge-AI devices will face, on-chip learning can help avoid
performance degradation by facilitating fast adaptation. In
addition, on-chip learning eliminates the need to send personal
data to the cloud for edge devices. Despite these desirable
features, implementing on-chip learning in neuromorphic pro-
cessors for edge-AI applications is exceedingly challenging.

Loihi [11] is a neuromorphic processor that supports pro-
grammable on-chip learning and integrates 130k neurons
and 130M synapses. However, its power consumption of
around 300 mW makes it unsuitable for edge-AI applications.
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ROLLS [12], on the other hand, integrates 256 analog neurons
and 128k analog synapses and uses spike-driven synaptic
plasticity (SDSP) learning rules to perform on-chip learning
for simple tasks, such as classifying cars and motorbikes.
Its analog design results in only 4-mW power consumption.
However, its analog design limits it to perform more complex
tasks in real-world environments. ODIN [13] is a digital
neuromorphic processor consisting of 256 neurons and 64k
synapses using SDSP learning rules. With fewer synapses than
ROLLS, ODIN achieves an accuracy of 84.5% on the MNIST
[14] dataset consuming only 0.477 mW power. ReckOn [15]
realizes a spiking recurrent neural network (SRNN) with
272 neurons and 132k synapses with e-prop learning rules.
It achieves an accuracy of 87.3% on the IBM DVS-Gesture
dataset [16].

It is worth noting that the power consumption mentioned
above for on-chip learning neuromorphic processors is only for
inference. In [17], a classifier with on-chip SGD-based training
capability is implemented. The learning energy overhead is
61.9%. Amravati et al. [18] propose a time-domain mixed-
signal neuromorphic accelerator with on-chip reinforcement
learning, and the learning energy overhead is 117.4%. Park
et al. [19] introduce a neuromorphic image classification
processor that realizes on-chip learning through a direct
spike-only feedback algorithm with 7.5% learning energy
overhead.

In order to realize a low-power neuromorphic processor
enabling on-chip learning with low learning energy overhead
for edge-AI applications, we propose a 28-nm 1.25-mm2 asyn-
chronous neuromorphic processor (ANP-I) [20] with 8-b/10-b
weight precision that enables on-chip learning for edge-AI
tasks in this article. ANP-I uses a hierarchical update skip
(HUS) mechanism to reduce learning energy and a randomly
selected target window (TW) to reduce the number of spikes
used in learning. We adopted asynchronous design methodol-
ogy, which enables event-driven computation in ANP-I, and
fabricated a prototype chip to verify our design. We also
provide two demonstrations to showcase the abilities of the
ANP-I processor. The contributions of this article are listed as
follows.

1) A randomly selected TW is proposed in the learning
process, which reduces over 90% of the spike num-
ber in the learning sample without noticeable accuracy
degradation.

2) A set of optimization techniques is put forward to reduce
learning and inferencing power consumption, including
HUS used to reduce the learning energy cost and asyn-
chronous time step acceleration (ATSA) to reduce the
latency and power consumption in both learning and
inferencing processes.

3) A prototype chip is fabricated to verify our design,
which presents advanced performance over a wide
range of applications, such as image classification, ges-
ture and physiological signal recognition, and keyword
spotting.

Besides, two real-life application examples, gesture recogni-
tion with spikes from a dynamic vision sensor (DVS) and
signals from a surface electromyography (sEMG) sensor, are

Fig. 1. Design flow of the self-timed asynchronous circuit.

demonstrated to further verify the performance of ANP-I in
real-life applications.

The rest of this article is organized as follows. Section II
describes the design flow of self-timed asynchronous logic.
Section III introduces the working flow and overall architec-
ture of ANP-I. In Section IV, the learning algorithm and hard-
ware implementation of ANP-I are explained in detail, along
with the proposed key features. Section V shows the measure-
ment results, and Section VI discusses the semi-supervised
learning process and others. Finally, Section VII concludes
this article.

II. DESIGN FLOW OF SELF-TIMED
ASYNCHRONOUS LOGIC

The potential benefits of self-timed asynchronous logic,
such as increased speed, lower power consumption, and higher
modularity, make it an attractive alternative to synchronous
logic. However, the lack of EDA tools limits the usage of
asynchronous logic. In our work, commercial EDA tools are
adopted to design the self-timed asynchronous circuits, and
the design flow is illustrated in Fig. 1. First, we use hardware
description language, such as Verilog or very high-speed
integrated circuit hardware description language (VHDL),
to describe self-timed asynchronous circuits. With the design
of asynchronous controllers (ACs), control paths, and data
paths, relative timing constraints (RTCs) need to be exacted
by designers. Then, synthesis is performed by commercial
EDA tools, such as design compiler (DC). The RTCs help DC
optimize the asynchronous circuits. Similarly, the RTCs are
used for optimization in place and route and timing sign-off
steps. Note that the analysis, verification, and simulation steps
are the same as those for synchronous circuits. The differences
in the design flow mainly lie in ACs and RTCs. The following
subsections will discuss the differences in detail.

A. Asynchronous Controllers (ACs)

Instead of the global clocks in synchronous logic, hand-
shake signals are adopted in asynchronous logic to realize
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Fig. 2. (a) Two-phase bundled data protocol, (b) phase-decoupled Click, and
(c) logic waveform of phase-decoupled Click.

synchronization. As shown in Fig. 2(a), request (Req) and
acknowledge (Ack) handshake signals are used for data trans-
mission between the sender and the receiver following a
two-phase bundled data protocol. The sender inverts the Req
signal when data are available to be sent. When the receiver
detects the inversion of the Req signal, it captures the data and
inverts the Ack signal, informing the sender that the receiver
has captured the data. Then, the sender sends new data, and
Req is inverted only after the data are valid and stable.

Here, we choose Click [21], an AC that follows a two-phase
bundled data protocol, to build the control path. Although
Click has higher hardware overhead than other ACs such as
C-element because of the DFFs in Click, as illustrated in
Fig. 2(b), the DFFs separate combinational loops. The phase-
decoupled Click has one input channel and one output channel.
We denote the request and acknowledge signals in input and
output channels as InReq, InAck, OutReq, and OutAck. An
input channel is full when its InReq and InAck signals have
different logic values. An output channel is empty when its
OutReq and OutAck signals have the same logic values. As
shown in Fig. 2(c), when the InReq inverts, indicating a valid
input event, the input channel becomes full and the fire signal
is pulled up. The posedge of the fire signal inverts the OutReq
and InAck signals by the DFFs, which resets phase-decoupled
Click to an initial state.

B. Control and Data Paths Design

Control and data paths are designed using hardware descrip-
tion language (Verilog/VHDL). Compared with synchronous
circuits, the only difference in self-timed asynchronous logic
is that the control path is built by ACs without any global
clock. Fig. 3(a) shows a two-stage asynchronous pipeline. The
output channel of AC0 is connected with the input channel of
AC1. When InData is valid and stable, the InReq of AC0 is
inverted. AC0 generates a pulse of the fire0 signal, which is
used to control DFF0 to capture InData. In the meantime, the
InAck of AC0 is inverted to the signal that InData is captured
by DFF0 safely. Preceding AC will invert the InReq of AC0
only after it has received InAck from AC0.

C. Relative Timing Constraints (RTCs)

RTCs are important for correct operation in asynchronous
logic. A comprehensive RTC’s taxonomic tree is presented

Fig. 3. (a) Asynchronous pipeline and (b) timing path of the asynchronous
pipeline.

Fig. 4. RTCs of phase-decoupled Click-based self-timed asynchronous
circuit.

in [22]. In our design, the RTCs are simplified as our ACs
are based on phase-decoupled Clicks. The RTCs in our design
flow are illustrated in Fig. 4, where only three types of RTCs
need to be satisfied.

The first timing constraint is that the internal pulsewidth
satisfies min(Delay(PIL), Delay(PIR)) > TPW. PIL and PIR
stand for the path inside phase-decoupled Click shown in
Fig. 2(b). PIL starts from the left DFF, through the XOR
and AND gates, and ends at the output of delay gate. PIR
starts from the right DFF, through the XNOR and AND gates,
and ends at the output of delay gate. Delay(PIL) stands for
the delay in path PIL, and TPW is the minimum pulsewidth
required by D-flip-flop (DFF). If the constraint is not satisfied,
delays should be added at the output of the AND gate. Fig. 3(b)
illustrates the timing path of an asynchronous pipeline. Path
PER starts from fire0, through the delay gate in the request
line, and ends at fire1. Path PED starts from fire0, through
combinational logic in the data path, and ends at the D-
port of DFFs controlled by fire1. Path PEH starts from fire2,
through the acknowledge line between AC1 and AC0 and
combinational logic in the data path, and finally ends at
the D-port of DFFs controlled by fire1. To ensure correct
computation, the OutReq from AC0 is delayed and sent to AC1
as its InReq to satisfy the external timing constraints, which
include setup and hold timing constraints. The setup timing
constraint requires Delay(PER) − Delay(PED) > TSU, and
the hold timing constraint requires Delay(PEH) > THO. TSU
and THO stand for setup and hold time required by DFFs,
respectively.

III. HARDWARE IMPLEMENTATION

ANP-I is a fully asynchronous design following the
two-phase handshake protocol without a global clock. Fig. 5(a)
shows the dataflow of ANP-I. ANP-I receives spike events
from various sensors, such as the DVS, the dynamic audio
sensor (DAS), and other sensors. The hidden layer receives
input spike events and generates hidden spike events, which
are then processed in the output layer. Errors are generated
using output spike events and sent directly to both hidden
layer and output layer. Only spike events within TW are used
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Fig. 5. Dataflow (a) and overall architecture (b) of ANP-I.

for training. Therefore, spike events within the TW are the
only ones stored in the spike buffer for learning.

Fig. 5(b) illustrates the overall architecture of ANP-I.
The hidden layer consists of 64 parallel cores. Each core
contains eight leaky integrate-and-fire (LIF) neurons with
configurable sparse connectivity between the input and hidden
layers through 8-bit weights stored in a 4-kB SRAM (8 neu-
rons × 512 synapses × 8 bits = 4 kB). For each spike event,
the corresponding synaptic weights are read and sent to one or
more (up to four) LIF neurons, depending on the configured
sparse connectivity. The LIF neurons work in parallel with
shared leakage and threshold parameters. Spike events from
the hidden layer are converted to spike addresses by an address
event representation (AER) circuit and sent to an asynchronous
FIFO. The spike events in an output layer are processed as long
as the asynchronous FIFO is not empty.

The output layer consists of ten integrate-and-fire (IF)
neurons, which are identical to the LIF neurons, except for
the absence of the leaky mechanism. The spike buffers in
the hidden and output layers are used to store spike events
inside the TW and remain shut down during inference to
reduce neuron, as shown in the lower half of Fig. 5(b). The
detailed implementation of the spike buffer and LIF ANP-I
is controlled by the ACs. As a result, each module only
works when and where it is needed, thus improving the energy
efficiency of ANP-I.

ANP-I supports an SNN with a maximum size of 1024
(input)-512-10. This scale of SNN is capable of adapting to
the demands of many relatively complex tasks and can achieve
over 90% accuracy on multiple tasks. When more complex
tasks need to be performed, larger SNNs can be achieved by
connecting multiple ANP-I chips, thereby achieving higher
accuracy on complex tasks. To strike a balance between
on-chip learning accuracy and memory usage, we set the
bit width of the hidden layer weights to 8 bit. This choice
allows us to achieve high accuracy while minimizing the
memory required for weight storage. In addition, the output

layer has a greater influence on the overall on-chip learning
accuracy but requires fewer weights compared to the hidden
layer. Therefore, we set the bit width of output layer weights
to 10 bit, enhancing accuracy without significant memory
overhead.

In the hidden layer, we divide 512 neurons into 64 hidden
layer cores, that is, each core has eight neurons. This will
increase the update skip rate and reduce training energy
consumption. The entire learning process of a hidden core
can be skipped when no neuron is spiked in the hidden layer
core. The fewer neurons in a single hidden core, the higher the
probability that the training process within that core will be
skipped, resulting in a more efficient on-chip learning process.
Moreover, 64 parallel hidden cores will increase computation
parallelism and reduce inferencing and learning latency.

The blue blocks in Fig. 5 represent the learning modules,
which receive requests and work only during the learning
process and remain idle during the inference process. As
illustrated in Fig. 6, when spike events from the TW are
received by the input layer, they are forwarded to the hidden
neurons and stored in the spike buffer in the hidden layer.
The spike events generated by neurons in the hidden layer are
passed to the output layer, and when they are forwarded to the
output neurons, they are stored in the spike buffer in the output
layer. After all the spike events are processed, the spike events
from the spike buffer are read simultaneously by the hidden
and output layers, and the training process begins. Each hidden
core, as well as the output layer, has an 1W calculation circuit.
As a result, the 1W calculations are running in parallel, and
the training time is reduced.

IV. ENERGY-EFFICIENT ON-CHIP LEARNING PROCESSOR

A. Sparse Target Propagation Algorithm

Here, we propose a sparse target propagation (S-TP)
algorithm, which is a classification algorithm that uses a fully
connected feedforward multilayer structure and supervised
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Fig. 6. Control flow for on-chip learning in ANP-I.

learning. Similar to the feedback alignment algorithm [23],
[24], the fixed and random asymmetric feedback weights are
used to solve the weight transport problem. The GLSNN
algorithm [25], such as the S-TP algorithm, also uses global
feedback alignment and local plasticity. The difference lies in
the forward pass. In the S-TP algorithm, only spike events
inside TW are forward before the backward pass. In the
GLSNN algorithm, learning happens only after the entire
forward pass. Compared with S-TP, the GLSNN algorithm
requires more memory to store spike events and has a higher
latency because more spike events are used in the forward
pass. Compared with difference target propagation (DTP) [26],
the S-TP algorithm omits the reconstruction loss for updating
feedback weights in DTP. All feedback weights are first
randomly initialized and then fixed during training. Moreover,
the S-TP algorithm is an event-driven algorithm, which means
that no weight updates will happen on the synapse of a silent
neuron. In the S-TP algorithm, TW is used to capture the
necessary information used for training. TW is a period of time
during which spike events are captured and saved in buffers,
then used for training. TW offers three advantages.

1) Only the spikes in TWs are used for training, and
memory overhead for training is significantly reduced
(0.3% in ANP-I) as a result.

2) The number and length of TW are configurable, which
offers flexibility in the tradeoff between accuracy and
training energy consumption.

3) TW allows fewer spike events for training and fewer
updates during training, which further saves training
energy overhead.

However, only the spike events in a few time steps are involved
in the forward pass with the TW method. Therefore, the TW
method is not suitable for applications with rate coding spike
events, which require many time steps to represent the data
accurately. However, the TW method is suitable for other
coding schemes, such as time-to-first spike coding and rank-
order coding. Previous works [27], [28] have also proposed
the selective use of time steps for training to conserve energy.
However, there are notable differences between the previous
works and our approach. For instance, Meng et al. [27] employ
backpropagation on every randomly selected time step, while
our method employs backpropagation only once at the end

of selected to our approach, which are less than 1/10 of the
total length. Wang et al. [28] proposed an adaptive training
window selection method to determine the input segment size
and influences feature extraction of the interest area. The slight
change in training window size in [28] has a great impact
on the performance of the network model, while the TW
selection approach is more robust to the change of TW length.
Our benchmarks demonstrate that the TW method works well
for applications with spike events from neuromorphic sensors
(such as DVS and DAS) and bioelectrical signals such as
EMG, ECG, and EEG.

B. Target Generation and 1W Calculation

In our S-TP algorithm, the output neuron corresponding
to the label is regarded as a target neuron. As shown in
Fig. 7(a), when the target neuron spikes in TW, the target
is 0, otherwise 1. When a non-target output neuron spikes
in TW, its target is −1, otherwise 0. The target is encoded in
20 bits. Targets[9:0] stores the sign of target and targets[19:10]
stores the value of target. The calculations of 1W in the
output layer and hidden layer are different, as described in (1)
and (2), respectively. In (1), 1W (n,m)

o is the 1W of synapse
that connects the hidden neuron m and the output neuron n, lr
stands for the learning rate, Sm

o−1(t0,1) represents the number of
spikes emitted by presynaptic neuron m in layer o−1 (previous
layer of layer o), and Tn is the target of neuron n. In (2),
1W (n,m)

h is the 1W of the synapse that connects hidden
neuron m in layer h − 1 (the previous layer of layer h) and
hidden neuron n in layer h, Sign(Sn

h (t0,1)) is the sign function
of Sn

h (t0,1), Sm
h−1(t0,1) is the number of spikes emitted by

presynaptic neuron m in layer h−1, W (o,h)
f represents the fixed

random weight between hidden neuron h and output neuron
o, and To stands for the target assigned to output neuron o

1W (n,m)
o = lr · Sm

o−1

(
t0,1

)
· T n (1)

1W (n,m)
h = Sign

(
Sn

h

(
t0,1

))
Sm

h−1

(
t0,1

) ∑
o

(
W (o,h)

f To

)
. (2)

The weight update circuit implementing the functions in (1)
and (2) is shown in Fig. 7(b). The fixed random weight
is saved in a 240-bit LUT, which remains unchanged after
configuration. Each hidden layer core has 10 × 8 (output
neuron number × neuron number in the hidden layer core)
feedback weights with 3-bit precision. Therefore, a 240-bit
LUT is sufficient to store the feedback weights. Ten Sel
circuits are designed to choose the 3-bit feedback weights
from the LUT according to the generated targets, and all their
outputs are summed up in the adder tree to get 1W .

C. Target Window Selection

The location of the TW is chosen according to the number
of spikes in a time step. This process can be performed both
on-chip and off-chip. For off-chip selection, time steps in
which the spike numbers are over a preset threshold (threshold
is selected based on the prior knowledge of the target task)
are selected as the TW candidates [as shown in Fig. 8(a)].
Then, a TW is randomly selected from the TW candidates.
The reason for random selection is to improve the accuracy
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Fig. 7. (a) Example of target generation and (b) 1W calculation circuit.

Fig. 8. (a) Off-chip and (b) on-chip target window selection.

of our approach by introducing variability during the training
process. When ANP-I is deployed on edge devices, on-chip
TW selection [see Fig. 8(b)] is adopted to determine the
location of TW in real time. If the spike count in a time step
is bigger than a pre-defined threshold, the next time step is the
beginning of the TW. In ANP-I, the threshold value is set to
10 and the TW length is set to four time steps to achieve the
highest on-chip learning accuracy on the N-MNIST dataset.
The TW length and threshold are selected based on initial
simulations on GPU. As shown in Fig. 9, ANP-I achieves
the highest on-chip learning accuracy when the TW length is
set to four on the N-MNIST dataset. With other TW lengths,
the on-chip learning accuracy realized by ANP-I ranges from
94.5% to 95.7%.

The length of the TW is different for different tasks. For
instance, in the training of the N-MNIST dataset, the highest
accuracy is achieved when the TW length is set to four time
steps. In the training of the DVS-Gesture dataset, the highest
accuracy is obtained when the TW length is set to 12 time
steps. Fig. 9 shows the TW length versus on-chip learning

Fig. 9. Measured target window length versus on-chip learning accuracy and
energy when on-chip learning on the N-MNIST dataset.

accuracy and energy when learning on the N-MNIST dataset.
Note that the learning energy increases nearly linearly with
the TW length, and the accuracy peaks at four time steps. In
ANP-I, 1W is calculated based on (1) and (2). Sign(Sn

h (t0,1))

in (2) means that ANP-I only records whether a neuron spikes
or not in TW, no matter how many spikes the neuron generates
in the TW. Therefore, during on-chip learning, Sign(Sn

h (t0,1))

in (2) is the same no matter how many spike inputs. The longer
the length of TW, more neurons will generate more than one
spike in the TW. However, 1W is the same no matter whether
there are multiple generated spikes or only one spike in the
TW as input, which introduces bias during on-chip learning,
resulting in lower accuracy.

As only the spikes in the TW are used for training in our
algorithm, 96.3% of the spikes on N-MNIST, 98.1% of the
spikes on DVS-Gesture, 94.5% of the spikes on N-TIDIGIT,
and 92% of the spikes on SeNic are discarded. The software
simulation results show that SNN trained without TW has
a 0.83% accuracy improvement compared with SNN trained
with TW when learning on the N-MNIST dataset.

D. Hierarchical Update Skip Mechanism

As mentioned above, we put forward an HUS mechanism,
which skips updates hierarchically to speed up the training pro-
cess and reduce training energy. The HUS mechanism includes
three steps: ChipSkip, CoreSkip, and H/OSkip. SkipChip is
the top step, in which all updates are skipped. As shown in
Fig. 10(a), when only the target neuron in the output layer
spikes in TW, all the values of the zero flags in targets are
zeros. This means that no spike in the spike buffer will be
sent out for training. Meanwhile, the spike buffer enters shut-
down mode, resulting in all updates being skipped in all layers.
CoreSkip is the middle step, in which updates in a single core
will be skipped. When no neuron in a core spikes in TW, all
the spike history of the core will be zeros, which will result in
spike events stopped at the CoreGate module, as depicted in
Fig. 10(b). Thus, all updates in this hidden core are skipped.
H/OSkip is the bottom step, in which all the weight updates for
the synapses corresponding to this spike event will be skipped.
H/OSkip includes HidSkip and OutSkip. In the HidSkip step
[see Fig. 10(c)], a synapse address is generated by the sparse
address generation circuit. In the hidden cores, if the spike
history corresponding to the synapse is zero, the weight update
for this synapse will be skipped. HidSkip works the same as
OutSkip, with the difference that HidSkip targets the hidden
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Fig. 10. Detail implementation of hierarchical update skip mechanism.
(a) ChipSkip: skipping all updates. (b) CoreSkip: skipping updates in hidden
core. (c) HidSkip: skipping updates for one spike on hidden layer. (d) OutSkip:
skipping updates for one spike event on output layer.

Fig. 11. (a) Update rate under different skip modes. (b) Update rate as a
function of training sample.

cores and OutSkip targets the output core. The update rate in
different skip modes and the update rate as a function of the
training sample when learning on the N-MNIST dataset are
shown in Fig. 11(a) and (b), respectively. From this, we find
that 14.8% of updates in the ChipSkip step, 57.1% of updates
in the CoreSkip step, and 15.3% of updates in the HidSkip
and OutSkip steps are reduced; 87.3% of update operations are
reduced in total, resulting in a significant reduction of on-chip
learning energy overhead.

From the measurements on ANP-I, we find that the update
rate in the CoreSkip step reduces rapidly at the first 5000 train-
ing examples. It is worth mentioning that the original weight is
not used until all the skip steps are finished. Thus, the SRAM
access is reduced significantly, and the training energy is saved
greatly as a result.

E. Asynchronous Time Step Acceleration

We propose an ATSA to decrease latency between the
hidden and output layers at the end of each time step to remove

Fig. 12. (a) Asynchronous time step acceleration, (b) event flow for spike
events and handshake event, (c) inserting handshake event when spike events
are sparse, and (d) inserting handshake event when spike events are dense.

idle time. As shown in Fig. 12(a), at the end of each time
step, a handshake event h is sent to each hidden core. Then,
the hidden core moves to the next time step without waiting
for other cores to synchronize. In order to advance the output
layer to the next time step, not all the cores in the hidden
layer send a handshake event to the output layer. Instead, only
the hidden core 63 is allowed to forward a handshake event
h directly to the output layer, as shown in Fig. 12(b). This
approach reduces the required handshake latency to advance to
the next time step, but it may lead to time step misalignment.
In Fig. 12(c), when spike events generated from the hidden
layer are sparse, this method can ensure that all the spike
events are in the correct time step. However, when spike events
generated from the hidden layer are dense, the spike events
may fall in an incorrect time step. The measurement results
demonstrate that the impact of these incorrect time steps on
the inference accuracy can be ignored. This is because the
spike events in ANP-I are sparse during almost all the training
time. With ATSA, 30%, 58%, and 40% of the processing
time is saved on the N-MNIST, DVS-Gesture, and N-TIDIGIT
datasets, respectively.

V. MEASUREMENT RESULTS

Fig. 13 shows ANP-I’s metrics and chip photo, which was
fabricated with a 28-nm process. The measurement setup
is shown in Fig. 14(a), and the demonstration setup for
sEMG- and DVS-based gesture recognition is illustrated in
Fig. 14(b) and (c), respectively. The post-P&R simulated
power breakdown of the ANP-I processor for both inference
and training modes is shown in Fig. 15.
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Fig. 13. Chip microphotograph and summary table.

Fig. 14. (a) Measurement setup, (b) sEMG-based gesture recognition demo
setup, and (c) DVS-based hand gesture recognition demo setup.

Fig. 15. Simulated power breakdown of ANP-I on inferencing and learning
modes.

A. Image Classification

We demonstrate the image classification ability of ANP-I on
the N-MNIST dataset, which is the MNIST dataset captured
using a DVS, with each sample spanning 300 ms and con-
sisting of 34 × 34 pixels. Each pixel has two types of spikes,
representing the increasing and decreasing light intensity. This
dataset poses a greater challenge than MNIST due to the added
complexity of saccadic motion. All 60 000 training samples

and 10 000 testing samples are used for on-chip learning.
The samples are downsized to 17 × 17 pixels, and only
the first 100 ms out of 300 ms are used for both learning
and inferencing. The length of time step is set to 1 ms.
Only four time steps are sent to ANP-I for on-chip learning.
Therefore, 96.3% of the spikes on N-MNIST are discarded
during on-chip learning. Combined with the HUS mechanism
(87.3% unnecessary updates are skipped), ANP-I achieves
40.8-nJ on-chip learning energy per sample with 95.3% accu-
racy after 100 training epochs and 96% accuracy within
200 training epochs. The ANP-I is trained from randomly
initialized weights, and the error rate as functions of the
training epoch is illustrated in Fig. 16(a).

B. DVS-Based Gesture Recognition

In our work, the IBM DVS Gesture dataset is used for
gesture recognition, which comprises ten different gestures
executed by 29 subjects under three distinct lighting con-
ditions. These gestures include arm roll, hand clap, and so
on. All the data was collected using DVS128 cameras. Each
captured gesture lasts approximately 6 s. We adopted the
original split of the dataset, where 23 subjects were used
for training and six subjects were used for inferencing. We
use 1079 samples for on-chip learning and 264 samples for
inferencing. The samples were downsized to 14 × 14 pixels
and subjected to five temporal filters to transform temporal
information into spatial information. The length of one time
step is set to 25 ms. Spikes are accumulated inside one time
step, and spikes are sent to ANP-I for training and inferencing
only when the spike count of each pixel is greater than four.
Only ten time steps are sent to ANP-I for on-chip learning.
Therefore, 98.1% of the spikes on DVS-Gesture are discarded
during on-chip learning. Combined with the HUS mechanism
(89.8% of unnecessary updates are skipped), ANP-I achieves
52.1-nJ on-chip learning energy per sample with 90.43% accu-
racy after 100 training epochs and 92% within 200 training
epochs. The ANP-I is trained from scratch with randomly
initialized weights, and the error rate as functions of the
training epoch is illustrated in Fig. 16(b).

C. Keyword Spotting

N-TIDIGIT [32] is spike-based dataset recorded by playing
the audio files of the TIDIGIT dataset to a DAS. The dataset
includes single digits and digit sequences of male or female
speakers. Digits “0” to “9” in N-TIDIGIT are used in this
work, with a total of 2464 training samples and 2486 testing
samples. Each sample has 64 channels, and samples with
the same label and different IDs have similar firing patterns.
We use the first 1024 ms of the training set and test set in
the N-TIDIGIT dataset. Eight temporal filters are applied to
convert temporal information to spatial information. For the
keyword spotting task, the target versus filter word ratio is 1:1.
The ANP-I is trained from scratch with randomly initialized
weights, and Fig. 16(c) demonstrates that ANP-I achieves
92.6% average accuracy on ten digits with on-chip learning.
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Fig. 16. On-chip learning result on different datasets. Error rate as functions of the training epoch for on-chip learning on (a) N-MNIST dataset and
(b) DVS-Gesture dataset. (c) Accuracy of different target words on the N-TIDIGIT dataset. Confusion matrix of five hand gestures after on-chip learning
on APS image (d), DVS image (e), and APS-DVS fusion image (f) in the Fusion-Gesture dataset. (g) Accuracy across different electrode rotation angles.
(h) Different subjects.

D. Fusion-Gesture Recognition

Fusion-Gesture dataset [34] is a collection of five hand ges-
tures: “pinky,” “elle,” “yo,” “index,” and “thumb.” The dataset
contains recordings from 21 subjects: the subject performs
five hand gestures five times in each session and repeats for
three sessions. The original dataset is simultaneously recorded
with three types of sensors: active pixel sensor (APS), DVS,
and EMG. In this task, we use the frame- and event-based
data recorded from APS and DVS sensors, respectively. In
the experiments, the hand gestures of the first 17 subjects are
used for training, and the hand gestures of the remaining four
subjects are used for testing. The spikes in the event-based
data are accumulated every 100 ms to match the frame-based
data. Similar to that in [34], the frame- and event-based data
are cropped to the size of 40 × 40. The confusion matrixes
of five hand gestures after on-chip learning on APS image,
DVS image, and APS-DVS fusion image are depicted in

Fig. 16(d)–(f), respectively. ANP-I is able to learn the APS-
DVS fusion image and achieves 11.9% or 1.3% accuracy
improvement compared to learning only the APS or DVS
image.

E. sEMG-Based Gesture Recognition

The sEMG-based gesture recognition system helps the dis-
abled enjoy a better life. However, in real-life circumstances,
the performance of an sEMG-based gesture recognition system
is affected by electrode shift and subject differences, resulting
in a 20%–70% accuracy drop. ANP-I addresses these issues
by one-shot on-chip learning with sub-second adaptation time.
The SeNic [33] dataset is selected to demonstrate the ability
of ANP-I. SeNic is an open-source dataset for sEMG-based
gesture recognition in non-ideal conditions. It contains sEMG
signals of seven hand gestures gathered from 36 intact-abled
subjects (24.6 ± 2.2 years old, 62.8 ± 12.0 kg, 170 ± 8.1 cm,
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TABLE I
COMPARISON TABLE OF STATE-OF-THE-ART ON-CHIP LEARNING PROCESSOR

11 females) using Myo armband. Each gesture is held for
4–7 s with a 2-s rest state before the next gesture. The SeNic
dataset contains data from five unideal conditions: 1) electrode
shift; 2) individual difference; 3) muscle fatigue; 4) inter-day
difference; and 5) arm postures. ANP-I is used to solve the
two most important variations: electrode shifts and individual
difference.

For the electrode shift problem, data gathered from 24 sub-
jects are used for on-chip learning and inferencing. For each
subject, ANP-I is trained on all the data at 0◦ angle. Once
the electrodes are shifted, one of the gestures from the shifted
angle will be used during on-chip learning. This allows ANP-I
to learn the new features and improve inferencing accuracy.
Fig. 16(g) shows the accuracy across different electrode rota-
tion angles for 24 subjects. The accuracy is improved by
45.6% using on-chip learning. For the individual difference
problem, data from 12 subjects in the 0◦ are used. ANP-I is
trained on subject0 and tested on other subjects. The inferenc-
ing accuracy decreases because of the individual difference.
However, ANP-I performs on-chip learning from one sample
on a new subject. The inferencing accuracy for the new subject
is recovered by 35.6%, as shown in Fig. 16(h).

We have developed a demo platform, as shown in Fig. 14(b),
in which ANP-I can learn and recognize hand gestures through
one-shot on-chip learning on sEMG signals gathered by the

Fig. 17. Pre-process of sEMG signals.

sEMG armband. As shown in Fig. 17, a modified delta-
modulator algorithm is proposed to convert raw sEMG signals
into spikes, which are sent to the ANP-I for training and
inference. The recognition results are used to control the robot
arm.

VI. DISCUSSION

In this section, we discuss how on-chip learning is con-
ducted on ANP-I in the case that the labeled data are not
available. For most edge applications, it is challenging to
obtain labeled data for supervised learning. As shown in
Fig. 18, ANP-I uses pseudo-labeling techniques to generate
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Fig. 18. Semi-supervised learning for on-chip training with unlabeled data.

Fig. 19. (a) Schematic and (b) PCB board of two-chip system.

pseudo-labels for on-chip semi-supervised learning. An exam-
ple application is sEMG-based gesture recognition. sEMG
signals suffer from the inter-day difference, which is the
variability in sEMG signals from the same subject under
the same data acquisition conditions on different days. It
often encompasses disturbances from two sources. One is the
user’s adaptation or motor learning as they become accus-
tomed to the sEMG-based control system, particularly for
individuals undergoing rehabilitation training [35]. The other
source includes factors such as electrode displacement or shift
caused by donning and doffing between different days. With
semi-supervised learning, the accuracy of sEMG-based gesture
recognition can be improved.

In addition, we further discuss in this section the greatest
challenge in enhancing on-chip learning accuracy in ANP-I,
which is the limited weight precision. While low precision
(4 bits or lower) weights are often sufficient for inference-only
neural networks, higher weight precision is required during
on-chip learning to achieve acceptable accuracy. However,
overfitting and convergence problems are still a major issue in
improving on-chip learning accuracy, even with 8-bit weights.
Existing solutions include the weight update accumulation
mechanism, which computes and accumulates weight update
values before applying them to the real weights [19]. This
method allows for the accumulation of small weight updates
into larger values, which can then be added to the real
weights with limited precision. However, additional memory
(3.2 kb in [19]) is required, resulting in more area and energy
consumption during both inferencing and training. Another
solution is the stochastic weight update mechanism, where
weights are randomly selected and updated, as opposed to
the classical ordered update, where all weights are updated.
Previous works [36], [37], [38] demonstrate the effectiveness
of stochastic weight updates in enhancing on-chip learning
accuracy for neural networks with limited weight precision.

Furthermore, ANP-I allows the direct export of spike events
from the hidden layer, enabling the connection of multiple
ANP-I chips to create larger neural networks, as depicted in
Fig. 19(a). Fig. 19(b) showcases a test board featuring two
ANP-I chips, ANP-I (A) and ANP-I (B), which collectively
implement a four-layer SNN (including the input layer) with
1024 (input layer)-512-512-10 neurons.

VII. CONCLUSION

The proposed ANP-I processor integrates 522 asynchronous
neurons and 517k synapses for neuromorphic computation.
ANP-I supports a wide range of applications, including image
classification, DVS and sEMG-based gesture recognition, and
keyword spotting. ANP-I achieves above 92% accuracy for all
the benchmarks with sub-0.1-µJ learning energy per sample.
Table I compares the ANP-I with the state-of-the-art on-chip
training processors for edge-AI applications. Our chip achieves
the lowest on-chip training energy consumption on all tasks
without pre-training. The ANP-I achieves 2150× and 56×

on-chip training energy savings on hand gesture recognition
and KWS tasks with 4.7% and 1.9% accuracy improvements
over [15], respectively. Compared with [19], the ANP-I saves
83.3% on-chip training energy at a cost of 1.8% accuracy on
the handwritten digit classification task. Among the on-chip
training processors in the comparison table, ANP-I achieves
the lowest on-chip learning energy consumption and the high-
est inference accuracy on different tasks.
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