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Abstract— In this article, we present a low phase noise
(PN) mm-wave quadrature digitally controlled oscillator (DCO)
exploiting transformers for class-F operation and harmonic
extraction. A third transformer coil is added for the inter-core
coupling with the source terminals of the switching transistors.
We identify that the inter-core coupling in quadrature oscillators
causes an asymmetric flicker noise current, thus degrading flicker
PN. As a remedy, we propose a deliberate drain-to-gate phase
shift of the switching transistors by means of capacitive loading to
fix this asymmetry. The ±90◦ I/Q mode ambiguity is also resolved
by introducing another phase shift in the source-coupling; it
is explained by a simplified analysis with phasor diagrams.
Fabricated in the TSMC 28-nm LP CMOS, the prototype
achieves PN of −112 dBc/Hz and figure-of-merit (FoM) of −185
dB at 1-MHz offset of 25.7 GHz. The measured flicker PN corner
is 140–250 kHz and image rejection ratio (IRR) >47 dB over
the whole 18% tuning range (TR). To the best of the authors’
knowledge, it is the best reported PN and IRR for a mm-wave
quadrature oscillator.

Index Terms— CMOS, error vector magnitude (EVM), flicker
noise upconversion, I/Q imbalance, image rejection ratio (IRR),
injection locking, mode ambiguity, quadrature oscillator (QOSC).

I. INTRODUCTION

THE dramatic increase in data rates in advanced wire-
less communications, such as 5G NR mm-wave, poses

stringent specifications on the spectral purity of the carrier
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TABLE I

SPECIFICATIONS OF IRR AND ITS CORRESPONDING EVM

Fig. 1. Survey of key performance metrics of mm-wave QOSCs: PN at
1-MHz offset (normalized to 28 GHz) and IRR.

signal in supporting the complex modulation schemes (e.g.,
256- or 1024-QAM) [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12]. At the same time, with the signal bandwidths
reaching 800 MHz in the 5G mm-wave bands, direct conver-
sion transmitters and receivers are preferred. This requires the
local oscillator (LO) to generate the quadrature frequency of
ultralow phase noise (PN) and excellent in-phase/quadrature
(I/Q) precision. The quality of quadrature LO is customarily
quantified by an error vector magnitude (EVM) as follows:

EVM2
LO,IQ = (Jrms · 2π f0)

2 + 10−IRR/10 (1)

where f0 is the carrier frequency, Jrms is the total rms jitter, and
IRR stands for an image rejection ratio (IRR) describing the
I/Q imbalance, whose contribution to EVM can be estimated
as shown in Table I. As an example, to support 256-QAM
in the 28-/39-GHz bands, we target EVMLO,IQ = 1% (<3.5%
EVM for the total transmitter’s budget [1], [12]). This requires
IRR = 45 dB and Jrms = 50 fs with the corresponding
DCO/VCO’s PN of < −110 dBc/Hz at 1 MHz from 28 GHz,
per analysis in [13]. Also, the 1/ f 3 PN corner should be
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smaller than 300 kHz; otherwise, it can ruin the PN at mid
offsets, such as 1 MHz.

To construct an I/Q carrier signal, the designers can choose
from a multi-phase oscillator (e.g., ring oscillator), a quadra-
ture generation block (e.g., poly-phase filters (PPFs), ÷2
dividers), or an LC quadrature oscillator (QOSC). Poor PN
and low resonating frequencies make ring oscillators unsuit-
able for mm-wave applications. Operating oscillators at 2×
frequency followed by a ÷2 divider is a suitable solution but
only in the sub-6-GHz bands since doubling the operating
frequency in mm-wave oscillators worsens the PN signifi-
cantly [14], [15], [16]. Recently, a PPF seems to be a promis-
ing scheme for mm-wave I/Q generation [17], [18], [19], [20]
since it would barely degrade the LO’s PN. Nevertheless,
a real-time I/Q calibration circuit [17] is required to maintain
its I/Q accuracy against process, voltage, and temperature
(PVT) variations. Furthermore, that approach tends to occupy
a considerably large die area and requires power-hungry mm-
wave LO isolation buffers.

As for QOSC, whether quadrature VCOs (QVCO) or DCOs
(QDCO) [6], [7], [21], [22], [23], [24], [25], [26], [27], [28],
[29], their I/Q accuracy [22], [30], [31], [32], [33], [34], [35],
[36] is robust to the changes in PVT, requiring only one-time
calibration against the local mismatches in the two cores [37].
However, their well-known ±90◦ I/Q mode ambiguity (i.e.,
low ωL or high ωH oscillating frequency mode), especially
in “anti-phase coupling” QOSCs [22], [30], [38], [39], must
be resolved before their practical integration into transceivers.
This is due to the following issues: 1) the unpredictable I/Q
phase ordering can confound the modulation (demodulation)
in a transmitter (receiver); 2) the PN (especially, flicker PN)
in one mode is typically much worse than in the other; and
3) the oscillation frequencies in the two modes may be far
apart. Rofougaran et al. [21] gave an intuitive understanding
that the QOSC may prefer (but not guarantee, [38]) the ωH

mode due to its higher tank impedance. On the other hand,
Tonietto et al. [40] adopted an RC phase shifter in the coupling
path to avoid the phase ambiguity. Later, a more rigorous
analysis [39] based on complex differential equations pointed
out that the ωL mode could be completely squelched with
an additional coupling delay. Interestingly, the QOSCs based
on a “diode-connected MOS transistor ring” coupling [41],
[42] show only one mode of oscillation due to the diode’s
unidirectional conduction.

On the other hand, the PN of QOSCs [31], especially the
flicker PN, may suffer from a >10-dB degradation when
compared with that of a single core [43]. Generally, active
injection devices are commonly regarded as the main con-
tributor to the flicker PN [30], [41]; however, QOSCs with
passive coupling (e.g., transformer coupling with fundamen-
tal [44], [45], [46], [47], [48] or super-harmonics [32], [49],
[50], or capacitive coupling [51], [52]) still exhibit poor
1/ f 3 PN. Recently, an introduction of additional capacitive
coupling paths [53] in a series-coupled QVCO [22] demon-
strated a low flicker PN in the single-gigahertz RF range
with a balanced flicker noise injection from the switching
devices. However, such progress has yet to be achieved for
mm-wave QOSCs (see Fig. 1). As for the flicker PN theory of

QOSCs, Andreani and Mazzanti provided pioneering analyses
based on a time-invariant method [33] and a time-variant
impulse sensitivity function (ISF) [34]. More details of the
ISF-based analysis for QOSC are found in [53]. However,
such analysis mainly focuses on the current-biased QOSCs
in the RF range (e.g., <5 GHz) and/or a simplified flicker
noise model in long-channel devices (e.g., 0.35 μm) with a
sinusoidal ISF model, which may not be suitable to explain
the flicker noise upconversion in the voltage-biased mm-wave
QOSCs, especially in advanced CMOS. For example, the
common-mode (CM) return path has been demonstrated as
having a large influence on mm-wave oscillator’s flicker PN
[54], [55], while its relevant discussion in QOSCs is still
conspicuously absent. With the supply voltage decreasing
in advanced CMOS, it is inevitable that the transistors that
generate the negative resistance in QOSCs will enter the
triode regions for some time [56], thereby generating higher
harmonic voltage content with more complex ISFs [also must
consider both differential-mode (DM) and CM tank voltages].
Therefore, a mm-wave QOSC achieving low flicker PN at
same level as its non-quadrature counterpart [10], [54], [57],
[58] is highly desired. To ease the learning curve for the
designers, we further attempt to make the new theory analysis
compatible with the recent progress in the flicker PN theory
of non-quadrature (i.e., single-core) oscillators [55].

In this article, we propose a mm-wave class-F quadrature
DCO using phase shifts between the drain–gate–source nodes
to simultaneously achieve the I/Q exactness and suppress the
flicker PN. Compared with [12], [59], this article focuses on
the theoretical analysis of phase shifts to resolve the mode
ambiguity while reducing the flicker PN, and with further
detailed discussions on the CM return path. The rest of
the article is organized as follows: Section II clarifies the
mode ambiguity in the conventional QOSCs and introduces
a gate-source phase shift technique for the proposed class-F
QDCO with a simplified phasor-based explanation. Section III
discusses the flicker noise upconversion mechanism resulting
from the quadrature coupling in the proposed QDCO, which is
suppressed by an induced drain-to-gate phase shift. Section IV
discloses the design details. The experimental setup and results
are shown in Section V.

II. RESOLVING MODE AMBIGUITY IN QUADRATURE

OSCILLATORS USING GATE-TO-SOURCE PHASE SHIFT

A. Mode Ambiguity in Conventional QOSCs

Fig. 2(a) depicts a classic LC-tank QOSC [21]. It consists
of two nominally identical oscillators coupled to each other
in an “anti-phase coupling” manner [60], [61], ensuring that
their phase separation will be 90◦. Such “anti-phase coupling”
may require four parallel injecting transistors (i.e., M5–M8)
inter-connecting the two oscillator cores. However, it is well-
known that any “anti-phase coupling” manner in QOSCs [22],
[30], [44] could result in a two-mode ambiguity, e.g., VQN can
either lead or lag VIP by 90◦ (see the blue and red waveforms
in Fig. 2(a), respectively).

To clearly analyze the two-mode ambiguity in the conven-
tional LC-QOSC in Fig. 2(a), we assume VIP = V0·sin ω0t as a
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Fig. 2. (a) Schematic of a conventional LC-tank QOSC. Current phasor diagrams with ideal coupling (i.e., φ = 0) in (b) ωH mode where V QN leads V IP
by 90◦, and (c) ωL mode where V QN lags V IP by 90◦. Current phasor diagrams with φ < 0 (e.g., circuit parasitic delays) in (d) ωH mode, (e) ωL mode
(specifically, ωL = ωmin with α = αmin), and (f) with φ > 0 (not practical in the conventional QOSCs) in (d) ωH mode (specifically, ωH = ωmax with
α = αmax). Note � Iosc = � V IP and � I inj = � V inj = � V QN + φ (taking |Iosc| sin ω0t as the reference phasor).

voltage reference and no frequency mismatch between the two
LC-tanks, and thus VQN = V0 ·cos ω0t (blue: VQN leads VIP by
90◦) or VQN = V0 · cos (ω0t + π) (red: VQN lags VIP by 90◦).
Then, considering initially no excess phase shift associated
with the coupling (i.e., φ = 0), we portray the current phasor
diagrams with IT = Iosc+ I inj

1 in these two modes in Fig. 2(b)
and (c) (similarly as in the art of injection locking [62], [63]),
where IT, Iosc (chosen as a phasor reference), and I inj are the
phasors of tank current, intrinsic current, and injecting current,
respectively. Since Iosc and I inj are generated by V IP and V inj

through M1 and M5 (i.e., Iosc = gm1 · V IP and I inj = gm5 · V inj

without considerations of other higher harmonics), we obtain
� Iosc = � V IP and � I inj = � V inj = � V QN + φ. It can be
further derived that Iosc must enter the pure resistive path of
the LC-tank, since it is in-phase with V IP.

In Fig. 2(b), I inj leads Iosc by 90◦, suggesting I inj must
enter the purely capacitive path of the LC-tank to generate
the same tank voltage V T (=V IP − V IN) as Iosc entering the
resistive path. Accordingly, the phase shift between the tank
current and voltage, α (=� IT−� V T = � IT−� Iosc), is greater
than 0, and so IT partly enters the capacitive path, implying
the oscillation frequency ω0 = ωH > 1/

√
LC . We define this

mode as “ωH mode,” while the other mode in Fig. 2(c) is a
ωL (< 1/

√
LC) mode with α < 0 and IT partly entering the

inductive path.
In a practical design, φ < 0 due to the RC delay of coupling

wires and parasitics, which results in I inj rotating clockwise
with φ in Fig. 2(d) and (e). This causes the total tank current
|IT| to increase in the ωH mode and to decrease in the ωL

1 I (or V ) is a phasor representation of the fundamental component of I (t)
[or V (t)].

mode.2 In the ωL mode, the decreasing negative φ could make
I inj perpendicular to IT, reaching the most negative α (i.e.,
αmin = φ0 < 0) [see Fig. 2(e)]. Since α depends on the
frequency deviation between ω0 and 1/

√
LC , αmin represents

the lowest stable ωL (i.e., ωmin). Any further decrease in φ
will kill the ωL mode, quenching the oscillation, while the ωH

mode with a negative φ in Fig. 2(d) operates even stronger
with larger IT. In other words, once

|φ| > |φ0| = |αmin| = sin−1 |I inj|
|Iosc| (2)

the QOSC will only work in the ωH mode. This conclusion was
first derived in [39] based on complex differential equations,
but we demonstrate it here in a simplified phasor circle
diagram.3

On the other hand, we could push the QOSC to operate at
the highest stable frequency ωH, as illustrated in Fig. 2(f),
where φ > 0 and I inj is perpendicular to IT with the most
positive α (i.e., αmax). In theory, the QOSC could also operate
in the region between the two blue dashed lines in the ωH

mode, but it is unachievable in the conventional QOSCs due
to the φ < 0 condition.

B. Resolving Mode Ambiguity in the Proposed QDCO

In a conventional mm-wave class-F oscillator [65], its drain
tank (comprising LD, CD) and gate tank (comprising LG, CG)

2More precisely, we could consider the change in effective Iosc (i.e., Iosc
plus the projection of I inj onto the direction of Iosc), which is exactly out-of
phase of V IN, generating negative resistance for maintaining the oscillation.

3From the viewpoint of phasors, formula (2) could be used in both active-
coupling [39] or passive-coupling [44] QVCOs to estimate whether ωL is
squelched. However, this must be further verified by simulations since the
effects of other higher order harmonic currents on phase shift [64] are
neglected in (2).
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Fig. 3. Proposed quadrature class-F oscillator exploiting transformer-to-source-terminal coupling between the cores: (a) schematic and (b) its simplified
model focusing on the generation of Iosc and Iinj of M1 in ωL or ωH modes, where � Iosc = � V G,IP and � I inj = � V S,QN + 180◦ . (c) Current phasor cycle of
M1 showing the transformation from ωL mode (V D,QN leads V D,IP by 90◦) to ωH mode (V D,QN lags V D,IP by 90◦) by increasing CS (taking |Iosc| sin ω0t
as a phasor reference).

are mutually coupled (by kGD coefficient) to boost the
third-harmonic voltage (e.g., at 3ω0 = 3 × 2π × 10 GHz) for
an efficient mm-wave frequency generation [12], [15], [54].
This benefits from the core oscillator operating at a lower
frequency (e.g., ω0 = 2π×10 GHz) to exploit the good quality
(Q)-factor of switched capacitors (sw-caps).4 In the proposed
QDCO shown in Fig. 3(a), an additional source tank (LS, CS)
is added [68] (thus making it a three-coil transformer [68],
[69], [70]) to each of the two class-F DCOs [59] to form “anti-
phase coupling” from one transistor’s drain node to another
transistor’s (i.e., its antipodal) source node (by kSD), thereby
generating quadrature phases (like source-coupling in [44]).
Specifically, the transconductor (−Gm) switching devices are
reused as injecting devices, eliminating the significant contri-
bution of flicker PN from the conventional injecting transistors
(i.e., M5–M8 in Fig. 2).

The LD coil (e.g., in the I-core) is regarded as the primary
coil, generating a magnetic field that is then independently
sensed by two secondary coils: LG (in the same I-core)
and LS (in the opposite Q-core). Thus, there is no need
to consider coupling from LG to LS by kSG in the phase
shift analysis. It is further supported by the fact that the
VG,{IP/IN/QP/QN} waveforms show almost perfect quadrature

4Another benefit is the much reduced injection pulling from the following
PA that now operates at 3ω0 [66]. The reduction in pulling due to the super-
harmonic 3ω0 → ω0 coupling appears an interesting research problem [67].

relationship between each other,5 which are not affected by the
LS coupling through kSG. Thus, we could only consider two
transformer-based tank models associated with M1 (neglecting
kSG) for easier understanding of the two possible modes
(ωL, ωH) in the proposed oscillator, as shown in Fig. 3(b).
As indicated within “XFRM-GD,” the intrinsic current in
M1 is assumed as Iosc = gmV G,IP. Note that there exists
a small phase shift φGD = � V G,IP − � V D,IP between the
coupled gate and drain tanks. In “XFRM-SD,” on the other
hand, the quadrature voltage (e.g., VD,QN) is coupled by kSD

to the source node of M1 (i.e., VS,QN) with a small phase
shift of φSD = � V S,QN − � V D,QN, generating the injecting
current I inj = −gmV S,QN. Accordingly, the total tank current
is IT = Iosc + I inj.

To be able to remove the ±90◦ mode ambiguity in Fig. 3(b),
we analyze the relationship between Iosc, I inj, and φSG around
M1, with the latter serving the same purpose as φ in Fig. 2.
We can control φSG through its individual components: pas-
sive phase shifts of drain-to-gate (φGD) and drain-to-source
(φSD) windings of XFMR-GD and XFMR-SD transformers,
respectively, as follows:

φSG = φSD − φGD. (3)

5In simulation, we observe that only VS,{IP/IN/QP/QN} waveforms include the
coupling components from the other core, thus supporting our analysis. For
more details on a three-winding resonator, we refer to [68].
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Fig. 4. Mode transformation from ωL to ωH by increasing CS: (a) simulated oscillation frequency and φD,IP −φD,QN, (b) calculated and simulated φGD, φSG,
and (c) PN at 10 kHz/10 MHz. Results of sweeping X (= CG/CD): (d) simulated VH3/VH1 ratio at the drain node, thus indicating the relative third-harmonic
strength, (e) calculated and simulated AGD with PN at 10 MHz, and (f) φGD with PN at 10 kHz.

As we demonstrate in [64], φGD can be controlled by the
gate–drain capacitance ratio X as follows:

X = CG

CD
(4)

and the corresponding normalized oscillation frequency �1

(with respect to the resonant frequency ωG of the gate tank)
as follows:

�1(X) = ω0

ωG
= ω0 · �

LGCG

=

����1 + n2 X −
�

(1 + n2 X)2 − 4n2 X
�
1 − k2

GD

�
2
�
1 − k2

GD

�
=

	
0, if X → 0

1, if X → ∞ (5)

where kGD is the coupling factor between LG and LD coils,
n = √

LG/LD is the effective turns ratio of the transformer in
XFMR-GD, and ω0 is the oscillation frequency that depends
on CG and CD for a given transformer. Accordingly, φGD(X)
could be derived as follows:

φGD(X) = tan−1
1

QD
− QD+QG

QD QG
�2

1

1

QD QG
+ k2

GD − 1
�
�2

1 + 1

≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

tan−1 1

QD
> 0, if X → 0

0, if X ≈ 1

n2

1 + k2
GD

2
− tan−1 1

k2
GD QG

< 0, if X → ∞
(6)

indicating that it is a monotonically decreasing function of X .
Intuitively, a large capacitance presented on the gate side of
XFRM-GD would tend to delay the coupled waveform across
the windings.

On the other hand, to introduce the required φSD, the source
capacitance CS is added. It barely affects the oscillation
frequency ω0 (unlike with CG and CD). Similarly, we define

�2(CS) = ω0

ωS
= ω0 · �LSCS ≈

⎧⎨
⎩

0, if CS → 0

1, if CS → 1

ω2
0 LS

(7)

which mainly depends on the absolute capacitance rather than
a capacitance ratio. In an analogy to (6), φSD is

φSD(CS) = tan−1
1

QD
− QD+QS

QD QS
�2

2

1

QD QS
+ k2

SD − 1
�
�2

2 + 1

≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

tan−1 1

QD
> 0, if CS → 0

0, if CS = QS

QS + QD

1

ω2
0 LS

− tan−1 1

k2
SD QS

< 0, if CS → 1

ω2
0 LS

(8)

which is also a monotonically decreasing function of CS

(intuitively, the heavier the loading by CS, the greater the
tendency to the phase delay). Thus, considering (3), (6), and
(8) for a given X (i.e., fixed φGD), φSG is also a monotonically
decreasing function of CS. In other words, I inj will rotate
clockwise with an increase in CS to quench the ωL mode,
as shown in Fig. 3(c).

To verify this proposed technique, we sweep CS from 150 to
750 fF in our class-F DCO with X = 3 (e.g., CG = 337.5 fF,
CD = 112.5 fF, ensuring strong VH3/VH1 of ∼40%). It can
be observed in Fig. 4(a) that the QDCO first operates at ωL

(≈2π × 9.9 GHz, V D,QN leads V D,IP by 90◦) but then it
switches the mode to ωH (≈2π ×10.4 GHz, V D,QN lags V D,IP

by 90◦). This validates our analysis in Fig. 3(c), which is
further supported by the numerical verification of φGD and
φSG in Fig. 4(b).
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Fig. 5. (a) Oscillating frequency and (b) PN at 10 kHz under full sweep of
the coarse bank with no CS and with its optimal value from Fig. 4(a).

Interestingly, the PN of the proposed class-F QDCO, espe-
cially its flicker PN (i.e., PN at 10 kHz), improves drastically
upon the switchover from ωL to ωH,6 as illustrated in Fig. 4(c).
At the same time, it warns against the excessively large CS as
it can ruin the close-in PN at 10 kHz. Therefore, we select
CS = 350 fF [with φSG around 2.5◦ at ∼10 GHz; see
Fig. 3(c)]7 for our design. Fig. 5 shows plots of the simulated
frequency and PN at 10 kHz over the entire tuning range (TR)
for two values of CS. Fixing CS at 350 fF completely solves
the mode ambiguity problem.

III. FLICKER PN IN CLASS-F QUADRATURE OSCILLATORS

In this section, we study the flicker noise upconversion
mechanisms in both the modes (i.e., ωL and ωH) of the
class-F QOSCs and propose a negative drain-to-gate phase
shift technique to suppress the flicker PN.

A. Flicker Noise Upconversion in ωL and ωH Modes

First, let us start with analyzing the PN of the proposed
class-F QDCO in the ωH mode with CS = 350 fF. By sweeping
X ,8 we obtain VH3/VH1 ratio (observed at the drain nodes),
passive gain AGD (=|V G,IP|/|V D,IP|), PN at 10 MHz (rep-
resenting the thermal PN), φGD (=� V G,IP − � V D,IP), and
PN at 10 kHz (representing the flicker PN), as illustrated
in Fig. 4(d)–(f). Interestingly, the class-F operation by itself
does not necessarily ensure a significant improvement in PN
(although independently useful for the third-harmonic extrac-
tion in mm-wave frequency generation [15], [54]), since its
thermal PN (i.e., PN at 10 MHz) stays almost constant from
X = 1 (with VH3/VH1 ≈ 6%) to X = 4 (with VH3/VH1 =
30%). This is because the thermal PN caused by the 4kT γ gm

noise is roughly reduced AGD times [64], [71] (rather than by
the class-F itself), while

AGD(X) ≈ n · kGD

1 − �
1 − k2

GD

�
�2

1

=

⎧⎪⎨
⎪⎩

n · kGD, if X → 0

n, if X = 1/n2

n/kGD, if X → ∞
(9)

gets saturated when X is large enough [see Fig. 4(e)].

6The power consumption is almost constant at around 7.8 mW during the
sweep of CS, which allows a fair PN comparison between the two modes.

7In fact, it operates at the “stable but unachievable region” of the conven-
tional QOSC’s phasor circle diagram in Fig. 2(d).

8For a fair PN comparison, we ensure the constant ω0 by tuning different
sets of CG and CD, and the same power consumption by adjusting VDD if
necessary. It can also be done by sweeping CG with a fixed CD, where the
PN should be normalized to a fixed frequency.

Furthermore, we observe a correlation between the reduc-
tion in flicker PN (i.e., PN at 10 kHz) and negative φGD.
This differs from the situation in [72] and [64] where X is
set to <0.4 so as to introduce positive φGD for the flicker
PN suppression. To further quantitatively study the flicker PN
in QOSCs, we use a periodic transfer function (PXF)-based
flicker PN theory framework introduced in [54], [55], [73],
and [74]. The flicker PN (caused by a single MOS transistor,
e.g., M1 in Fig. 3) is calculated as follows:

L1/ f 3(�ω) =
�

1

2

√
2

�ωT0

� T0

0
hDS(t) · I1/ f, rms(t)dt

�2

(10)

where I1/ f, rms(t)9 (unit: A/
√

Hz) is the periodically modulated
rms value of the flicker noise current at a low offset frequency
�ω (e.g., 2π × 10 kHz), T0 (=2π/ω0) is the oscillation
period, and hDS(t) (unit: rad/C) is the non-normalized ISF [75]
associated with VDS, describing the phase response of VDS

against current impulse perturbations.10 The intuitive under-
standing and simulation methods of I1/ f,rms(t) and hDS(t)
[based on the periodic transfer function (PXF)] were provided
in [55] and [73] for numerical verification according to (10).
Obviously, decreasing the net integral area under hDS · I1/ f,rms

is the key factor in suppressing the flicker PN [55], rather than
the long-standing myth [75] of only relying on the oscillation
waveform symmetry.

B. Flicker PN Reduction by Negative Phase Shift

Three representative cases are simulated and numerically
verified in Fig. 6. In the ωL mode in Fig. 6(a), I1/ f,rms shows
less exposure to the falling edge of VDS than to its rising edge,
leading to the positive net area of hDS · I1/ f,rms [see Fig. 6(b)]
and, ultimately, to the flicker upconversion. In contrast, in the
ωH mode, I1/ f,rms is exposed less at the VDS’s rising edge
[see Fig. 6(c) and (e)]. However, the negative phase shift of
VGS against VDS in Fig. 6(c) increases the I1/ f,rms exposure
to VDS’s rising edge at around 70 ps [compared with that in
Fig. 6(e)], ultimately equalizing the positive and negative areas
of hDS · I1/ f,rms in Fig. 6(d), thereby quenching the flicker noise
upconversion. There is no such benefit in Fig. 6(e), which
maintains the negative net area of hDS · I1/ f,rms in Fig. 6(f),
thus still suffering from the flicker noise upconversion.

To gain better insight into the above phenomenon,
we should first study the terminations of second- and third-
harmonic currents, which are the key factors causing the
oscillator waveform asymmetries that lead to the non-zero
net integral area of hDS · I1/ f,rms in non-quadrature oscilla-
tors [55], [64]. As shown in Fig. 7(c), the CM current enters
the inductive path in all the cases (in both the ωL and ωH

modes), while the third-harmonic DM current entering the

9This can be roughly modeled by periodically modulated transconductance
Gm and drain current ID; hence, it mainly depends on VGS around the
saturation region of MOS transistor (e.g., large VGS with large I1/ f, rms) [54].

10Sharper rising or falling edges in VDS are more robust to noise (i.e.,
presenting the narrow (in time) and small (in magnitude) hDS in these edges),
while its less steep edges (also implying longer noise exposure time) are more
vulnerable to noise (i.e., showing wide and large hDS). On the other hand,
VDS’s peak and bottom are immune to the noise (i.e., hDS = 0 in these time
instances).
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Fig. 6. Simulated waveforms of VGS(t) and VDS(t) in one period, the corresponding rms value of flicker current noise I1/ f,rms(t) at 10 kHz, non-normalized
ISF function hDS(t), and hDS(t) × I1/ f,rms(t) in (a), (b) ωL mode with CS = 150 fF, φGD = −6.2◦ with X = 3; and in ωH mode with CS = 350 fF:
(c), (d) X = 3 with φGD = −7.5◦ , and (e), (f) X = 0.07 with φGD = 0.3◦ .

Fig. 7. Simulated I1/ f,rms with and without the effect of the quadrature coupling voltage (i.e., VS,QN) in (a) ωL mode (X = 3, CS = 150 fF) and (b) ωH
mode (X = 3, CS = 350 fF). (c) DM and CM tank impedance in different cases.

resistive path with X = 3 or VH3 is fully suppressed by
X = 0.07. Obviously, proper terminations of the second- and
third-harmonic currents cannot explain the persistent presence
of flicker noise upconversion in QOSCs.

C. Numerical Verification and Discussion

We identify that it is the quadrature coupling voltage
that causes different exposure strengths of I1/ f,rms to VDS’s
rising and falling edges, changing the picture of flicker PN
upconversion. To verify our claim, we first simulate I1/ f,rms

(based on the simulation method in [55]) without taking into
consideration the coupling source waveform VS,QN (i.e., setting
VS,QN = 0), which shows similar I1/ f,rms in the two modes [see
Fig. 7(a) and (b)]. Then, with VS,QN engaged, in the ωL mode,
the peak of I1/ f,rms at t ≈ 30 ps (i.e., exposure to the VDS’s
falling edge) gets significantly reduced, while in the ωH mode,
it decreases the peak of I1/ f,rms at t ≈ 70 ps (i.e., exposure
to the VDS’s rising edge). For easier understanding of this
phenomenon, we draw the time-domain shapes of V G,IP and
−V S,QN inside the boxes in Fig. 7(a) and (b) to illustrate how
M1’s VGS (= VG,IP + (−VS,QN)) combination affects I1/ f,rms.
Obviously, in the ωL mode, it is the bottom of the quadrature

coupling waveform −VS,QN that reduces the rising edge of VGS

of M1 and lowers the corresponding I1/ f,rms , when compared
with the case without VS,QN coupling. On the other hand, in the
ωH mode, the bottom of −VS,QN lowers the falling edge of VGS,
resulting in the decreasing I1/ f,rms.11

Thanks to the controllable φGD in the transformer-based
oscillator, we could fine-tune the I1/ f,rms exposure in either
the VDS’s falling or rising edge by moving the peak of VGS

toward VDS’s falling or rising edge to obtain the null net area of
hDS · I1/ f,rms . All the simulated PN results are also verified with
calculations based on (10), thus demonstrating the efficacy of
the above analysis.

The simulated PN of the proposed class-F QDCO and the
single-core class-F DCO [15] is plotted in Fig. 8, indicating
that the flicker PN in the single-core case suffers from the
ill-behaved second-harmonic voltage with an undefined CM

11This can also help explain the flicker noise upconversion in the con-
ventional QOSCs in Fig. 2, where a lower I/Q imbalance can paradoxically
lead to worse flicker PN. This is because even for symmetric VGS and VDS
(such as with the second-harmonic resonance), I1/ f,rms in the injecting devices
[e.g., M5 in Fig. 2(a)] mainly depends on the quadrature Vinj, which is
always asymmetric for the VDS’s rising and falling edges, thus contributing
significantly to the flicker PN.
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Fig. 8. Simulated PN plots of the proposed QDCO and single-core class-F
DCO (without the second-harmonic resonance).

return path [54]. The proposed quadrature class-F oscillator
achieves ∼3 dB better thermal PN (i.e., at 10-MHz offset) due
to the two cores’ coupling (the thermal noise of the equivalent
parallel resistance gets reduced by half [37]) and a ∼8-dB PN
improvement at 10-kHz offset, thanks to the proposed phase
shifting technique.

IV. CIRCUIT IMPLEMENTATION

The schematic of the implemented oscillator was shown
earlier in Fig. 3(a). The QDCO core resonates at ∼10 GHz
but the differential signal at the drain nodes in each of the I/Q
cores is rich in the third-harmonic component and so it is fed
to a harmonic extractor (HE), which is a differential amplifier
operating at ∼30 GHz and is re-used from [54]. The HE is
then followed by another amplifier stage to drive the 50-�
external load of the test equipment.

A. Transformer Design Details

Fig. 9 illustrates the layout of the proposed QDCO together
with the detailed transformer parameters. The coils carrying
the DM currents are constructed with thick metals of AP, M9,
and M8 to maintain their high-Q factors. M7–M2 are stacked
for bridging the source nodes of M1–4 to VS,IP/IN/QP/QN. The
dc current from the tap of the source coil to the outside of
the transformer is carried by the stacked M7–M3, while only
M2 provides VB at the tap of LG coil without any dc current.
The two cores are connected using the “anti-phase coupling”
routing, and the source coil of the I-core is placed inside the
Q-core for coupling, and vice versa. LS degrades QD and QG

by 0.7 (5.5%) and 1.6 (10%), respectively, which has little
influence on the oscillator’s thermal PN.

As a convenient rule of thumb, the width of the coil
could be set to ∼10× skin depth at the operating fre-
quency (e.g., 10 μm at 10 GHz) as a starting point for the
Q-factor optimization. The spacing between the coils is about
6 and 10 μm for, respectively, kGD = 0.63 (boosting third-
harmonic voltage for further extraction [15]) and kSD = 0.25
(weak quadrature injection). The size of the transformer is
optimized for the intended operating frequency to achieve
high Q-factor but without excessive coupling to the substrate,
whose self-resonant frequency (where kGD vanishes) is around

5× the operating frequency. The dummy filling with the
native layer (“NT_N” layer for high substrate resistivity [76]
and extended in all the directions by 30 μm away from the
coils) is reused from the inductor’s process design kit (PDK)
for easily passing the design rule check and minimizing the
Q-factor loss.

B. QDCO’s CM Return Path and Decoupling Scheme

A well-defined CM return path is necessary for achieving
low flicker PN, especially in mm-wave oscillators [54]. Sur-
prisingly, the CM return path in a QOSC is altogether different
from that in the conventional single-core [55] or dual-core
oscillators (see [77, Fig. 13]). As shown in Fig. 9, the second-
harmonic currents (representing CM) generated by M1,2 are
anti-phase with those by M3,4 (absorbing each other) since
their fundamental voltage waveforms are in quadrature. This
eventually results in the supply (VDD) and ground (VSS) nodes
being in-phase for the CM currents on each side. For the
purpose of completing the CM return paths and saving the
I/O pads, we connect the two sets of VDD/VSS/VB routings of
the I/Q cores by the on-chip decoupling capacitance. It should
be noted that no CM currents enter these on-chip decoupling
capacitors12 (as well as the sw-cap banks), so they are merely
used to stabilize the dc voltages. These shared I/Q supply lines
were extracted by the EMX simulator together with the main
transformers for accurate CM analysis. A “T-type” RC filter
is used for VB lines to enhance the CM stability at either high
frequencies (considering the parasitic CM inductance of the
transformer) or low frequencies (considering Lbond).

C. Switched-Capacitor Banks and I/Q Imbalance Sources

To cover the >15% TR target with sufficient resolution,
the sw-cap banks are organized as shown in Fig. 10(a). The
two 7-bit coarse-tuning sw-cap banks are put at both the
gate and drain nodes and tuned together, ensuring X ≈
3 for the strong VH3/VH1 [see Fig. 4(d)] across the TR (i.e.,
CG,max/CD,max ≈ CG,min/CD,min ≈ �CG/�CD, see [54]). The
8-bit IQ calibration bank and 9-bit fine-tuning bank are put
only at the drain nodes for precise control of IQ mismatch and
frequency, respectively, while their small capacitance ranges
have little influence on X .

The coarse-tuning unit with a 13-MHz LSB uses a
resistor-biased structure [78], as shown in Fig. 10(b), for
enhancing the Q-factor and lowering parasitics. The resistors’
bottom terminals (i.e., at the drain–source nodes of the switch)
can experience a significant swing when the main switch
is OFF. The disturbance can propagate to the joint upper
terminal due to the layout imbalance; thus, the resistors’ top
terminals are connected to CWcoarse, rather than to CW

	
coarse.

This arrangement could avoid any disturbance coupling back
to the switch transistor’s input, ultimately affecting the flicker
PN due to the sw-cap banks. The 9-bit fine-tuning sw-cap
bank uses a single-ended structure with biasing via transistor
channel leakage for area-saving and routing ease, as depicted

12This includes the on-chip decoupling capacitors (∼100 pF) in series with
their de-Q’ing resistors (∼10 �).
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Fig. 9. Layout of the proposed class-F QDCO by source-coupling and its well-defined CM return path, where the CM currents generated by M1,2 are
anti-phase with those by M3,4 since their fundamental voltage waveforms are in quadrature.

Fig. 10. (a) Configuration of sw-cap banks between the drain and gate nodes;
sw-cap unit of (b) coarse bank and (c) fine bank.

Fig. 11. Monte Carlo simulations with 200 sampling points of sw-cap banks
for (a) global process variation and (b) local mismatch.

in Fig. 10(c). Thanks to the custom MoM capacitor, the unit
provides �C = 50 aF, corresponding to � f = 70 kHz.

For the design of the I/Q calibration banks, we should
consider the sources of I/Q mismatch, which mainly include:
1) local process mismatches between the two resonant tanks
and 2) mismatches due to the asymmetric layout routing.
The I/Q mismatch can be calibrated quite easily, without
any PN degradation, by providing a small offset between the
tuning codes of the two calibration banks. The Monte Carlo
simulations were performed for the coarse bank (dominant
capacitance), with results shown in Fig. 11: the standard
deviation of capacitance σglobal = 23.8 fF when “global”
(i.e., die-to-die) variations are applied, corresponding to a
coefficient of variation (CV = σ/μ) of 4.6%. Considering
only ‘local’ mismatches (i.e., within a die), σlocal = 112.3 aF,
which translates to a CV of 0.02%, thus being much less

than the global mismatch. An alternative PPF-based quadra-
ture generation [17], [18] would have to cover the global
mismatches (and process corners) of both the resistance and
capacitance, while the resistance can vary hugely from die
to die, similar as in Fig. 11(a). However, for our QDCO,
it only needs to consider the local mismatch of capacitance,
while its global mismatch would not cause any I/Q mismatch.
The inductance mismatch could be safely neglected, as the
transformer dimensions are very large compared with the
possible manufacturing error. On the other hand, based on
the comparisons between different levels of EMX extraction,
we identify that the routing mismatches (see Fig. 9) lead to
around 0.6◦ of phase mismatch, while the weak magnetic
coupling between the two transformers in the I- and Q-
core [79] introduces a ∼1◦ quadrature error.

The two I/Q calibration sw-cap banks are located within
the I- and Q-cores. They provide 8-bit resolution, support-
ing the ±12.8 fF de-tuning (
3σlocal). The phase sensitivity of
the QDCO is ∼1◦/fF at the third-harmonic as per simulations.
Thus, the I/Q calibration sw-cap bank can cover around
±12.8◦ phase mismatch. The entire sw-cap arrangement occu-
pies a considerable area, as shown in Fig. 9. To ensure
simulation accuracy, the proposed QDCO is simulated based
on an EMX black-box flow, where all the transformers
(I-core and Q-core) with all the routings are extracted as
an S-parameter model, while the Gm and sw-cap banks are
regarded as black-boxes and post-extracted by Calibre. High
metal layers are only considered once in EMX, and the contact
ports between the two models are carefully considered. Several
iterations of tuning the sw-cap ratio may be needed to further
enhance the third-harmonic voltage in the final post-layout
simulation.

V. EXPERIMENTAL RESULTS

The prototype of the proposed QDCO is implemented in
a TSMC 28-nm LP CMOS process, occupying an area of
0.26 mm2, as shown in Fig. 15.

A. PN Measurements

The PN measurements are performed based on an equip-
ment combo of Keysight E5052B signal source analyzer,
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Fig. 12. Measured PN plots at (a) 25.7 GHz, (b) 30.7 GHz, and (c) PN at 1-MHz offset and flicker PN corner over TR.

Fig. 13. (a) Measurement setup for the IRR of QDCO and (b) on-chip quadrature mixer.

Fig. 14. Measured IRR with I/Q calibration at (a) 25.7 GHz, (b) 30.4 GHz, (c) IRR after calibration over TR and its corresponding phase mismatch (denoted
as φm , assuming no gain mismatch), and (d) IRR after calibration at 30.36 GHz over QDCO VDD variations and its corresponding φm . Note: IRR(dB) =
10 log10((1 − cos φm)/(1 + cos φm)).

E5053A microwave downconverter, 11970A harmonic mixer,
and 11636C power divider. The output of the QDCO is
down-converted by 11970A and then E5053A, and finally fed
into E5052B. The three levels of capacitor banks at the drain
and gate nodes cover the measured TR from 25.7 to 30.7 GHz
(17.7%). When operating at 25.7 GHz [see Fig. 12(a)], the
measured PN is −111.5 dBc/Hz at 1-MHz offset, with an
excellent 1/ f 3 PN corner of 140 kHz. At the highest fre-
quency of 30.7 GHz, as shown in Fig. 12(b), it achieves
−109.2 dBc/Hz at 1-MHz offset, with a 250-kHz flicker PN
corner. Fig. 12(c) illustrates the PN performance of the QDCO
over the whole TR. The PN at 1 MHz steadily increases with
frequency, whereas the flicker PN corner ranges from 140 to
250 kHz. With a power supply of merely 0.6 V, the power
consumption over the TR is around 29 mW, including 10 mW
consumed by two third-harmonic extractors (HE). This results
in the best-in-class FoM of −185 dB and it varies only within

1 dB over the TR. The measured frequency pushing at 0.6 V
is merely 24.7 MHz/V.

B. IRR Measurements

IRR measurements are based on an I/Q frequency upcon-
version scheme [39], [80], as shown in the setup in Fig. 13(a).
A two-wire I/Q baseband signal at ωBB = 2π × 50 MHz is
generated by Keysight 33 600A, which is then converted into a
four-wire differential version by two BALH-0010 baluns. The
RC-bias network on the PCB sets the dc signal level before
feeding it internally on-chip. In the on-chip I/Q mixer, the
baseband signal cos ωBB is mixed with sin ωLO while sin ωBB

is mixed with cos ωLO
13; afterward, these two components are

summed. This arrangement cancels out the ωLO −ωBB compo-
nent while leaving only the ωLO +ωBB component. Assuming

13ωLO here denotes the signal after the HE, i.e., at 30 GHz.
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TABLE II

PERFORMANCE SUMMARY AND COMPARISON WITH STATE-OF-THE-ART

Fig. 15. Chip micrograph.

that the baseband signals are free from any mismatches, the
I/Q imbalance of the LO (i.e., the QDCO under test) will cause
the residue (i.e., image) signal at ωLO − ωBB. The power ratio
of the desired signal to the image signal is defined as IRR. The
single-ended I/Q mixer output is monitored by R&S FSW-85

signal analyzer. A schematic of the on-chip double-balanced
current-mode mixer for the IRR testing is shown in Fig. 13(b),
where the differential component outputs are combined and
converted into single-ended by an on-chip transformer.

The measured IRR spectra at the two ends of TR are shown
in Fig. 14(a) and (b), exhibiting IRR of 47.6 and 50 dB
at fLO,min and fLO,max, respectively. They maintain IRR >
46 dB across the whole TR, as illustrated in Fig. 14(c). While
sweeping the power supply level of the QDCO, the measured
IRR maintains >46 dB, as plotted in Fig. 14(d) without any
real-time calibration, as commonly used in PPF [17], [18].
The large LO leakage was identified to be caused by the LO
signal’s coupling to the power supply of the mixer, which
could be normally avoided by a more careful layout and
isolation.

The performance of the proposed QDCO is summarized
in Table II and compared with the state-of-the-art mm-wave
QVCOs/QDCOs and also mm-wave quadrature signal gen-
eration circuits in which LO is off-chip. To the best of the
authors’ knowledge, the QDCO achieves the lowest PN of
−110 dB/Hz at 1-MHz offset from 30 GHz, the record-low
flicker PN corner with a state-of-the-art FoM. In terms of I/Q
imbalance, our QDCO also features the highest level of IRR.

VI. CONCLUSION

Accurate quadrature frequency generation with low PN in
mm-wave (e.g., 28/39 GHz) bands is necessary for supporting
large-bandwidth (e.g., 800 MHz) and complex modulation
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schemes (e.g., 256-QAM). Compared with the poly-phase
filter (PPF) approach, the conventional QOSCs are more robust
to PVT variations but suffer from significant flicker noise
upconversion. In this article, we propose a low flicker PN mm-
wave class-F quadrature digitally controlled oscillator (DCO)
with a third-harmonic extraction. We demonstrate that the
quadrature coupling voltage itself causes different exposure
strengths of flicker noise current to the rising and falling
edges of the oscillation waveform, leading to the flicker noise
upconversion, which is solved here by a negative drain-to-gate
phase shift (thereby tuning the exposure strength of flicker
noise current). At the same time, a deliberate phase shift is
introduced in the transistor–source I/Q coupling path to avoid
the ±90◦ mode ambiguity. This is supported by a complete
analysis on the basis of a simple phasor diagram.
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