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Abstract— This article demonstrates a 39-GHz CMOS phased-
array beamformer aiming for power-efficient and area-efficient
fifth-generation (5G) dual-polarized multiple-in–multiple-out
(DP-MIMO) applications. To address the digital pre-distortion
(DPD) implementation issue in the massive beamformer ele-
ments with Doherty technique integrated, an inter-element
mismatch compensation technique is introduced for improving
the shared-lookup table (LUT) DPD performance over the
process, voltage and temperature (PVT) variations. A bidirec-
tional Doherty power amplifier (PA)-LNA is proposed to enhance
the power back-off (PBO) efficiency regarding the high peak-to-
average power ratio (PAPR) 5G signals, meanwhile cost down
the system by the unbalanced neutralized bidirectional opera-
tion. The proposed phased-array beamformer chip is fabricated
in 65-nm CMOS technology and packaged in a wafer-level
chip-scale package (WLCSP). Each element occupies only a
0.82-mm2 chip area, including the on-chip low-dropout regulator
(LDO). The measured stand-alone Doherty PA-LNA achieves
18.9-dBm saturated output power with 17.8% power-added effi-
ciency (PAE) at 6-dB PBO in PA mode and obtains a 4.8-dB noise
figure (NF) at 40 GHz in LNA mode. By utilizing the proposed
mismatch compensation, the measured 64-quadrature amplitude

Manuscript received 25 August 2022; revised 10 November 2022
and 13 December 2022; accepted 17 December 2022. Date of publication
4 January 2023; date of current version 28 March 2023. This article was
approved by Associate Editor Borivoje Nikolić. This work was supported
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modulation (QAM) orthogonal frequency-division multiple access
(OFDMA)-mode error vector magnitude (EVM) and adjacent
channel leakage ratio (ACLR) with the shared-LUT DPD are
improved from −22.4 to −25.0 dB and from −28.7 to −32.1 dBc,
respectively. The 64-element module achieves a 55.2-dBm satu-
rated effective isotropic radiated power (EIRP) and supports
21-Gb/s single-carrier (SC) mode data streaming. The measured
64-element transmitter (TX) EVM is −25.2 dB at 43.2 dBm with
3.5-GSymbol/s baud rate in 64 QAM, and the corresponding
64-to-4 elements TX-to-receiver (RX) EVM is −22.5 dB. The
consumed power for each element is 402 mW at saturation output
point in TX mode and 87 mW in RX mode.

Index Terms— 39 GHz, bidirectional, CMOS, Doherty,
fifth-generation (5G) new radio (NR), inter-element mismatch
compensation, phased arrays, shared-lookup table (LUT) digital
pre-distortion (DPD), time-division duplex (TDD) system.

I. INTRODUCTION

W ITH the merit of abundant frequency resources in
millimeter-wave (mm-wave) bands, the fifth-generation

(5G) new radio (NR) frequency range 2 (FR2) promises high
data rate and low communication latency. The 5G enhanced
mobile broadband (eMBB) scenario even supports over
10-Gb/s throughput among massive wireless terminals [1].
Limited by the drastically increased free-space path loss
(FSPL), the beamforming technique based on large-scale
phased arrays is mandatory to reach a better signal-to-noise
ratio (SNR) over long-distance communication. Widespread
studies have been focused on the 5G mm-wave phased arrays
in the past few years [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23]. The high-performance phased-array system
should feature high effective isotropic radiated power (EIRP)
for maintaining the link budget and compact system design to
adapt to the narrowed antenna pitch.

Moreover, due to the high peak-to-average power ratio
(PAPR) of 5G-standard orthogonal frequency-division mul-
tiple access (OFDMA)-mode modulated signals, the power
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Fig. 1. DPD strategies for phased arrays. (a) Conventional single-LUT DPD. (b) Conventional combined-LUT DPD with digital response combining.
(c) Proposed shared-LUT DPD with inter-element mismatch compensation.

efficiency of phased-array beamformers is easily degraded
in the deep power back-off (PBO) region. The extra energy
dissipation will bring in a severe thermal issue, especially in
large-scale phased arrays. Thus, power-added efficiency (PAE)
improvement techniques are strongly demanded. Doherty
power amplifier (PA) architecture can be a promising solution,
and many high-performance stand-alone Doherty PAs have
been demonstrated for 5G applications so far [24], [25], [26],
[27], [28], [29], [30]. However, the integration of the Doherty
technique in phased arrays is still not well studied yet. The
reported Doherty PAs are usually bulky and cannot fit the
antenna pitch for mm-wave beamformer design.

As another cost-effective linearization solution, the digi-
tal pre-distortion (DPD) technique can also be applied to
correct the distortion introduced by the PA nonlinearity in
the baseband [31], [32]. Recently, there have been more
and more demonstrations of the phased-array DPD strate-
gies [33], [34], [35], [36], [37], [38], [39], [40]. Also, the
most mentioned strategies, optimizing the DPD lookup table
(LUT) errors during coefficient extraction, still suffer from
inter-element mismatches. The cooperation with the Doherty
technique will further enlarge these mismatches, thus limiting
the phased-array linearity improvement.

Aiming for the power-efficient and area-efficient design,
this work presents a 39-GHz bidirectional Doherty phased-
array beamformer for 5G NR n259 (39.5–43.5 GHz) and
n260 (37.0–40.0 GHz) bands. An inter-element mismatch
compensation technique is demonstrated with shared-LUT
DPD for improving the DPD performance over process,
voltage and temperature (PVT) variations. A bidirectional
Doherty PA-LNA is proposed to enhance the single-element
beamformer efficiency and narrow the chip area occupation.
The measured stand-alone Doherty PA-LNA achieves
18.9-dBm saturated output power with 17.8% PAE at 6-dB
PBO in PA mode and obtains a 4.8-dB noise figure (NF) at
40 GHz in LNA mode. After utilizing the proposed mismatch
compensation, both the measured 400-MHz OFDMA-mode
error vector magnitude (EVM) and adjacent channel leakage
ratio (ACLR) with the shared-LUT DPD achieve around 3-dB
improvement in 64 quadrature amplitude modulation (QAM).
The 16-IC phased-array module with 55.2-dBm saturated
EIRP is also designed to support 21-Gb/s single-carrier (SC)
mode data streaming. To the best of our knowledge, this is
the first demonstration of combining the DPD and Doherty
techniques in 5G phased-array applications.

This article is an extension of [41] and is structured as
follows. The DPD strategy considerations for the 5G phased-
array system are introduced in Section II. The detailed circuit
implementations are demonstrated in Section III, followed by
the measurement results presented in Section IV. Section V
summarizes the performance and concludes at the end.

II. DPD ARCHITECTURE IN PHASED-ARRAY SYSTEM

As mentioned previously, DPD is essential to suppress
the nonlinearity and enlarge the output power for 5G mm-
wave phased-array beamformers. In this section, as shown
in Fig. 1, the concept of the shared-LUT DPD with inter-
element mismatch compensation is discussed and contrasted
with the conventional phased-array DPD strategies. The prefix
“single,” “combined,” and “shared” are defined by the different
approaches of the LUT generation and are not related to the
LUT structure itself. Only one LUT is commonly applied for
the phased-array system to simplify the baseband. In general,
DPD captures the beamformer element output and applies
inverse nonlinear operation upon the input. Based on a widely
used memory polynomial model [31], the pre-distorted input
signal of a uniform linear array (ULA) can be expressed as
follows:

zm(n) =
K−1∑

k=0

Q−1∑

q=0

am
kq xm(n − q)|x(n − q)|k (1)

where xm(n) is the mth baseband input signal, and zm(n) is
the mth pre-distorted signal. The maximum nonlinear order K ,
maximum memory depth Q, and DPD coefficients am

kq define
the memory polynomial model together. Thus, the correspond-
ing mth element output ym(n) can be denoted as follows:

ym(n) = zm(n)e jϕm Am (2)

where e jϕm is the mth phase shift, and Am is the mth PA
gain. This DPD strategy requires individual basebands for
each phased-array element, which is impractical. In hybrid
beamforming systems, the DPD LUT has to be shared among
all the elements and ICs. Therefore, the linearity improvement
achieved by DPD is sensitive to the path-to-path AM–AM
and AM–phase modulation (PM) mismatches caused by the
PVT variations. To demonstrate this issue, as a simplified
strategy, the single-LUT DPD is shown in Fig. 1(a) [33]. The
single-LUT DPD captures the response from a single path;
assuming the DPD extracted from an arbitrary element m0, the
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output mismatch between this element and the mth element is
given by

Esingle(n) = zm0(n)
(
e jϕm Am − e jϕm0 Am0

)
(3)

where zm0(n) is the pre-distorted signal generated by the
arbitrary element m0, which is a constant matrix. The linearity
improvement is degraded by the existence of Esingle(n). Also,
the error is also subject to change with the different paths,
which brings in more uncertainty. While, the conventional
combined-LUT DPD in Fig. 1(b) captures the responses from
all paths and minimizes the errors by digital-domain response
combining [34] and [35]. The digital-domain computational
complexity can be relieved by the approach of far-field
combining, while additional timing alignment is required to
synchronize with the source signal [36], [37], [38], [39], [40].
The combined-LUT DPD output yopt(n) and the optimized
coefficient zopt(n) can be represented as follows:

yopt(n) = 1

M

M∑

m=1

zm(n)e jϕm Am (4)

zopt(n) = yopt(n)

e jϕopt Aopt
(5)

where e jϕopt is the optimized phase shift, and Aopt is the
optimized PA gain. The output mismatch can be expressed
as follows:

Ecombine(n) = zopt(n)
(
e jϕm Am − e jϕopt Aopt

)
. (6)

Thus, the achievable linearity improvement could be better
than the single-LUT DPD but is still limited by the AM–AM
and AM–PM mismatches among different elements.

As illustrated in Fig. 1(c), this work introduces a shared-
LUT DPD with the inter-element mismatch compensation
technique to further improve the DPD performance in
5G hybrid beamforming systems. Before DPD LUT extrac-
tion, the path-to-path AM–AM and AM–PM mismatches are
corrected through the inter-element mismatch compensation
system. In this way, the errors could be minimized after
compensation, which provides a prerequisite for sharing the
same DPD LUT among the entire phased array without
compromising the DPD performance.

To demonstrate the performance with the conventional and
proposed DPD strategies, an ACLR versus EIRP simulation of
a 16-element ULA is conducted using Keysight SystemVue
software in Fig. 2. The simulation condition is also shown
in Fig. 2(a). An 2-dB gain offset rms error and a 10◦ phase
offset rms error are assigned by the Monte Carlo setup. The
AM–AM and AM–PM characteristics of a Doherty PA are
extracted and applied to the ACLR simulation. Each PBO
point is adjusted, so that the +3σ worst case ACLR becomes
less than the required −26-dBc level. By means of the
proposed shared-LUT DPD with the inter-element mismatch
compensation technique, the average value and the standard
deviation of the simulated ACLR can be improved, as shown
in Fig. 2(b). The proposed technique can realize the smallest
PBO and the highest EIRP characteristics.

To evaluate the required calibration resolution, the
16-element ULA ACLR versus gain and phase rms errors
are performed, as shown in Fig. 2(c) and (d), respec-
tively. In order to minimize the calibrated ACLR degradation

Fig. 2. Monte Carlo simulation of a 16-element ULA with different
DPD strategies. (a) Offset-mismatch settings with given gain and phase rms
errors. (b) Simulated ACLR versus EIRP performance. The 16-element ULA
simulated (c) ACLR versus gain rms error and (d) ACLR versus phase rms
error.

below 0.5 dB, the 0.4-dB gain rms error is required for the
variable gain amplifier (VGA) resolution, which means a finer
resolution is required for amplitude detection. The ACLR
degradation will in return cost more PBO for EIRP. While
the phase rms error mainly degrades the side lobes of the
beampattern, the non-linearity contribution is not obvious.

The gain and phase offset calibration are applied for
accurate beamforming in a phased-array system, which can
mitigate AM–AM and AM–PM offset mismatches over the
phased-array elements. However, the strong nonlinearity of
Doherty PA cannot be compensated by the simple gain and
phase offset compensation, since the class-C-biased amplifier
is very sensitive to the transistor threshold voltage (Vth) varia-
tion. Thus, as shown in Fig. 3(b), Vth mismatch compensation
is mandatorily required for a phased-array beamformer using
Doherty PA for optimizing array EVM and ACLR charac-
teristics. To verify the difference toward the conventional
gain/phase compensation in Fig. 3(a), a Monte Carlo simu-
lation about AM–AM and AM–PM of the single transmitter
(TX) element with Doherty PA is conducted, where the same
simulation samples are used for two compensation methods.
The gain/phase compensation and the proposed gain/phase/Vth

compensation results are shown in Fig. 3(c) and (d), respec-
tively. Obviously, with the gain/phase offset compensation,
the large mismatch remains in both AM–AM and AM–PM
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Fig. 3. (a) Concept of gain and phase compensation and (b) proposed Vth,
gain and phase compensation. Monte Carlo simulation over process varia-
tions of (c) AM–AM and AM–PM with gain/phase compensation only and
(d) AM–AM and AM–PM with gain/phase/Vth compensation method.

Fig. 4. Block diagram of the 39-GHz CMOS bidirectional phased-array TRX
system.

characteristics. While, the AM–AM and AM–PM can be
compensated from the back-off power level along to the peak
power level by using the gain/phase/Vth method.

III. PHASED-ARRAY BEAMFORMER ARCHITECTURE

Fig. 4 illustrates the block diagram of the 39-GHz
phased-array beamformer. The proposed chip consists of

Fig. 5. System block diagram of the proposed inter-element mismatch
compensation.

four horizontal-polarized and four vertical-polarized beam-
former elements. Each element is composed of a bidirectional
Doherty PA-LNA, a three-stage bidirectional radio frequency
(RF) VGA, and an RF phase shifter (PS). The neutralized
bidirectional technique is used to minimize the required chip
area [2]. The cross-pol. leakage canceller is also utilized to
reduce the cross-pol. leakage to support the dual-polarized
multiple-in–multiple-out (DP-MIMO) better [3]. To realize
an efficient shared-LUT DPD phased-array system, this work
introduces a built-in inter-element mismatch compensation
technique by cooperating with the Vth detection block and
calibration block. The power supplies of beamformer elements
will suffer from different onboard distribution losses without
the on-chip low-dropout regulators (LDOs), which introduces
additional phase and gain errors for the phased-array system.
In this work, the on-chip LDOs are utilized to provide a precise
1-V power supply with high stability. The following part of
this section will introduce the detailed circuit implementation
of the proposed phased-array beamformer.

A. Inter-Element Mismatch Compensation
Fig. 5 shows the detailed implementation of the proposed

on-chip inter-element compensation system, and the AM–AM
and AM–PM mismatches are detected by embedded self-test
circuitry and compensated over inter-element and inter-chip.
Therefore, the nonlinearity characteristics at the TX oper-
ating points between different elements are minimized, and
a shared-LUT DPD could be applied to the entire phased
array. Fig. 6(a) and (b) demonstrates the Vth detection mode
and normal TX mode, respectively. The Vth mismatch of
the Doherty PA is detected by an on-chip threshold voltage
detector and 10-bit ADC and is compensated by tuning the
gate bias through the digital interface. The Vth detection
is conducted by turning on SWDET. the PA transistors are
configured in diode-connection mode and operated in the
subthreshold region. The drain current is controlled by the
current mirror. The 10-bit ADC reads out the gate voltage of
the diode-connected transistor as Vth [42]. The simulated Vth

detection varies with temperature at different process corner
conditions can be referred to in Fig. 6(c). When it operates
in normal TX mode, SWDET is turned off. Thus, the power
PMOS array is turned on, and the PA transistors are placed
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Fig. 6. Schematic of the proposed Vth detection circuit in (a) Vth detection
mode and (b) normal TX operation mode. (c) Simulated Vth detection varies
with the temperature variations at different process corner conditions.

Fig. 7. Measurement flow diagram of the proposed Vth detection and
compensation.

in the saturation region. Considering the Vth detection and
compensation in a phased-array system, a measurement flow
diagram is shown in Fig. 7. When detecting Vth of a specific
beamformer element, only SWDET of this element is turned on,
while all other element switches are closed. Then, Vth detection
is conducted element by element, and all the ADC readouts
are sent to a control program with GUI. One reference element
is necessary with a reference Vth value, e.g., Vth1 in Fig. 7.
The Vth mismatch �Vth between the other detected Vth value
and the reference Vth1 can be calculated by Vth − Vth1; then,
a compensated bias of Vgs + �Vth is written into the DAC to
perform the compensation.

The gain and phase offset mismatches are detected by an
on-chip calibration block and compensated by tuning the VGA

Fig. 8. (a) Block diagram of the calibration block and (b) operation of phase
detection. The measured detected (c) gain rms error and (d) phase rms error.

and PS in each beamformer element. Fig. 8(a) shows the block
diagram of the calibration block. To perform this calibration,
e.g., at 39 GHz, the 39-GHz + ≈150-kHz output signal from
each TX output is re-directed and downconverted to a ≈150-
kHz calibration signal. The 39-GHz calibration local oscillator
(LO) is reused and divided for digital clock generation. Then,
a 10-bit ADC and a 12-bit counter-based phase-to-digital
converter (PDC) are utilized for accurate magnitude and phase
detection. The readouts of ADC and PDC are sent to the
control program. Then, the compensated bias codes are written
into the DACs of VGA and PS. Fig. 8(b) shows the operation
of phase detection. The calibration signal is transformed into
a square wave by the limiting amplifier as the input of PDC.
The original RF signal’s phase information is maintained
in the transformed square wave signal. The PDC is mainly
composed of a 12-bit counter, a falling edge detecter, and
a 12-bit D flip-flop. The phase detection resolution is deter-
mined by the frequency ratio between the clock signal and the
calibration signal, i.e., 212:1. The detected phase is evaluated
by the 12-bit countered output value at each falling edge of
the input signal. The measured magnitude and phase detection
results are also shown in Fig. 8(c) and (d). The measured rms
error for magnitude detection is 0.043 dB, while the measured
rms error for phase detection is 0.06◦ [43].

The inter-element mismatch compensation is conducted
at the beginning of the measurement. Also, repeated
compensation at a certain time interval is required consider-
ing the environmental variations. The inter-element mismatch
compensation time is related to the read-and-write operations
through the digital interface. In this work, a 25-MHz serial
peripheral interface (SPI) clock is utilized. The compensa-
tion for one chip costs around 0.2 ms. The registers for
LUT storage are integrated inside the on-chip digital block.
To perform the on-chip calculation for compensation, the
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Fig. 9. Measured AM–AM and AM–PM compensation over (a) temperature
variations and (b) supply voltage variations.

additional digital comparator and the supporting logic circuits
are necessary.

Fig. 9 shows the measured AM–AMs and AM–PMs of
the element TX before and after the proposed inter-element
mismatch compensation over temperature and supply voltage
variations. The mismatches caused by the temperature and
supply voltage drifts can also be significantly corrected.

B. Bidirectional Doherty PA-LNA With WLCSP

In RF front-end design, the PA, LNA and antenna inter-
face almost dominate the system performance. The low-loss
antenna interface is attractive for maintaining TX output power
level and reducing receiver (RX) NF. Also, the λ/2 antenna
pitch is scaling down along with the increasing operation
frequency, and around 4-mm antenna pitch is available at the
39-GHz band. Thus, compact packaging method is desired.
In this work, a bidirectional Doherty PA-LNA is proposed and
co-designed with wafer-level chip-scale package (WLCSP).
The TX back-off power efficiency can be enhanced by utilizing
the Doherty technique. Meanwhile, a larger TX output power
is realized through the combined output, which is good for
reducing the array size.

Figs. 10(a) and 11(a) show the bidirectional Doherty
PA-LNA in PA mode and LNA mode, respectively. It consists
of a 90◦ hybrid coupler, a main PA path with LNA, and an
auxiliary PA path for Doherty operation. The main PA path
with LNA is designed based on an unbalanced neutralized
bidirectional technique [2], [3]. A minimized on-chip area
could be realized by the shared inter-stage passives between
PA and LNA. When the Doherty PA-LNA operates in PA
mode, the main PA path is biased at class AB, while the
auxiliary PA path is biased at class C to perform the Doherty
load modulation. The same driver stages are applied for
both the main and auxiliary PA paths to minimize the output
combining mismatch. Fig. 10(b) and (c) demonstrates the
simulated Doherty load modulation characteristics of the main

Fig. 10. (a) Proposed bidirectional Doherty PA-LNA in PA mode. Simulated
PA-mode Doherty load modulation characteristics of (b) main PA path and
(c) auxiliary PA path. Measured results of the stand-alone bidirectional
Doherty PA-LNA test elementary group (TEG) (d) PA-mode power gain and
pout and (e) PA-mode PAE versus PBO.

PA path and the auxiliary PA path, respectively. The auxiliary
PA path is gradually turned on from the 6-dB PBO point,
and the load impedance seen into the main PA path is slowly
descending at the same time. Until the saturation region,
the same load impedance is reached for both the main PA
path and the auxiliary PA path. Fig. 10(d) and (e) shows
the measured PA-mode results compared with its simulated
results. To minimize the degradation between the measured
results and the simulated results, the transistor cores are
modeled with Cadence EMX Planar 3D Solver (EMX),
and the passives are modeled by Ansys High-frequency
Structure Simulator (HFSS) during the post-simulation.
In measurement, a standalone bidirectional Doherty PA-LNA
achieves an 18.9-dBm Psat and a 30.4% peak PAE in PA
mode with a 1-V supply voltage. The measured PAEs at 6-
and 8-dB PBO are 17.8% and 12.0%, respectively.

In LNA mode, the 1:2 balun at the auxiliary PA stage is
capable of providing an impedance upscaling to isolate the
auxiliary path and suppress the loading effect. The simulated
impedance seen from LNA input to the off-state PA auxiliary
path is shown in Fig. 11(b). The extra capacitor CEX is
designed to be neutralized by Cgd of the PA-mode transistors
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Fig. 11. (a) Proposed bidirectional Doherty PA-LNA in LNA mode.
(b) Simulated LNA-mode auxiliary path isolation. (c) Measured result of the
stand-alone bidirectional Doherty PA-LNA TEG LNA-mode NF.

along with Cgd of the LNA-mode transistors. Therefore, the
Miller effect is minimized, and the LNA-mode stability is
also enhanced. The NF is measured by the Keysight PNA-X
N5274B network analyzer. The NF Cold Source option is
selected with the Scalar Noise calibration. Fig. 11(c) presents
the measured LNA-mode NF, and a 4.8-dB NF at 40 GHz and
a less than 5.8-dB in-band NF are obtained in LNA mode.

Fig. 12(a) shows the WLCSP 3-D electromagnetic (EM)
model for antenna and IC interconnection. In order to mini-
mize the package capacitive loss and improve the bandwidth,
the RF pad size is minimized, and the ground shield under
the signal bump is removed. The additional metal-to-substrate
loss of the signal bump from the P-doped substrate is smaller
than the capacitive loss introduced by the ground shield [44].
A transmission lines (TLs) re-matching network is inserted
between the PA-LNA and the WLCSP model, as shown in
Fig. 12(b). The TL stub is shared with the calibration path to
save the chip area and further reduce insertion loss. Fig. 12(c)
shows the WLCSP EM simulated results with TL re-matching
network, and a less than 1.2-dB insertion loss is realized
from 30 to 50 GHz.

C. Bidirectional VGA and Mixed-Type Phase Shifter

A three-stage single-ended bidirectional VGA with attenu-
ators is presented in Fig. 13(a). Two single-direction VGAs
are connected end-to-end and controlled by mode-switching
bias. The bidirectional operation is supported with limited
power consumption. The single-ended topology is also con-
venient to fit the irregular layout shape. Fig. 13(b) shows
the mixed-type RF PS, composed of a reflection-type PS
(RTPS), a 45◦ switch-type PS (STPS), and a 90◦ STPS. A 90◦
directional coupler with around 25-� characteristic impedance
is implemented in RTPS to enlarge the phase shift coverage.

Fig. 12. (a) Optimized 3-D WLCSP EM model at the antenna port. (b) Pro-
posed bidirectional Doherty PA-LNA with WLCSP co-design. (c) Simulated
packaging insertion loss with the transmission-line rematching network.

The tunable capacitive reflection load is designed with two
switching capacitors and a varactor, realizing the fine phase-
tuning function. The 180◦ phase shift is fulfilled by swapping
the outputs of the following differential stages. The measured
insertion loss of the mixed-type PS is shown in Fig. 13(d).
The measurement results shown in Fig. 13(c), (e), and (f) are
based on the single TX-mode beamformer element. The addi-
tive phase variation introduced by the bidirectional VGA is
demonstrated in Fig. 13(c) with the calculated phase rms error.
Fig. 13(e) and (f) performs the measured beamformer phase
coverage with the corresponding phase and gain rms error. The
360◦ phase coverage is achieved from 37- to 43.5-GHz band;
less than 2.00◦ phase rms error and less than 1.03-dB gain
rms error are obtained within the targeted 39-GHz band.

IV. MEASUREMENTS

The proposed 39-GHz phased-array beamformer chip is
fabricated in standard 65-nm CMOS technology. Its die micro-
graph is shown in Fig. 14 with a chip size of 4.5 × 5 mm.
The area breakdown and power consumption breakdown of
building blocks are available in Table I. The consumed power
for each element is 402 mW at saturation point in TX mode
and 87 mW in RX mode.

Fig. 15 summarizes the on-wafer measured single-element
beamformer characteristics. Fig. 15(a) demonstrates the
TX/RX-mode frequency responses. The single-element beam-
former achieves around 28.5-dB gain in TX mode and
27.5-dB gain in RX mode, respectively. With 400-MHz chan-
nel bandwidth, the calculated SNDR of the RX-mode beam-
former is shown in Fig. 15(b). A higher than 35-dB RX-mode
SNDR is realized.

The 5G standard-compliant OFDMA-mode modulated sig-
nals are utilized for evaluating the TX-mode beamformer.
As shown in 15(c) and (d), the proposed TX-mode beamformer
achieves 10.2-dBm output power in 64 QAM with −25.1-dB
EVM without DPD. The corresponding 64-QAM ACLR
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Fig. 13. (a) Circuit schematics of single-ended three-stage bidirectional
RF VGA. (b) Mixed-type RF PS topology with (d) measured insertion
loss. Measured results of the single TX-mode beamformer element—(c)
VGA additive phase variations, and (e) phase-shifting coverage with the
corresponding (f) phase and gain rms errors.

Fig. 14. Die micrograph of 39-GHz CMOS bidirectional phased-array TRX.

is −30.7 dBc. A 256-QAM EVM of −31.6 dB is also
maintained with 3.9-dBm output power and −36.3-dBc ACLR.

TABLE I

CORE AREA AND POWER CONSUMPTION BREAKDOWNS

Fig. 15. Measured single-element beamformer characteristics—(a) TX/RX
gain and (b) RX-mode SNDR; TX OFDMA-Mode (c) EVMs and (d) ACLRs
with 400-MHz bandwidth without DPD.

To perform the over-the-air (OTA) communication with
a large array size, the 16-IC phased-array dual-polarized
PCB module is implemented, including 64 horizontal-pol.
and 64 vertical-pol. beamformer elements. Fig. 16(a) shows
the front-side photograph of the 16-IC module. The 16-IC
module is controlled by Xilinx Zynq UltraScale + FPGA Kit.
Fig. 16(b) shows the antenna array photograph at the back side.
Each of the IC in the module is connected to a 2×2 dual-pol.
antenna sub-array through the wide-band slot feedings. The
PCB cross-sectional view is also demonstrated in Fig. 16(c).

The dual-pol. aperture-coupled structure is selected and
optimized for the wide-band gain feature [45], [46], [47].
Its 3-D EM model is given by Fig. 17(a) in �-type slot
configuration. As shown in Fig. 17(b), a higher than 5-dB
single-element wide-band antenna gain with larger than 25-dB
isolation at 40 GHz is realized according to the antenna
simulated results.
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Fig. 16. (a) Front-side photograph of proposed 16-IC phased-array module.
(b) 64-element dual-polarized aperture-coupled antenna array at the back side.
(c) Seven-layer PCB cross-sectional view.

Fig. 17. (a) 3-D EM model of the dual-polarized aperture-coupled
antenna with offset slots in �-type configuration and (b) simulated antenna
performance.

Fig. 18(a) shows the measured saturated EIRPs at the
broadside against the number of activated beamformers. The
proposed mismatch compensation technique is conducted to
realize a better EIRP result. The measured single-element
saturated EIRP is 20.1 dBm, calculated by the saturated TX
output power of 18.9 dBm and GANT_SE − ILWLCSP. The
single-element antenna gain GANT_SE with the WLCSP inser-
tion loss ILWLCSP equals 1.2 dB. The measured saturated EIRP
at room temperature reaches 55.2 dBm for the 64-element
phased-array module. The 64-element saturated EIRP can be
estimated by 18.9 dBm +20log1064 + GANT_ARR − ILWLCSP,
resulting in a 0.2-dB GANT_ARR − ILWLCSP. In this case, the
antenna pattern gain GANT_ARR is around 1-dB smaller than
the single-element antenna gain GANT_SE due to the addi-
tional coupling among the antenna array. Additional thermal
solutions, such as heatsinks with high thermal conductivity
and thermal area, are mandatory to maintain the high EIRP
performance. Fig. 18(b) shows the measured 16 × 2 elements
beam patterns in the azimuth plane. The phased-array module
is able to cover ±45◦ scanning angle with less than −10-dB
sidelobe level. No tapering window is appended during the
measurement.

Fig. 18. Measured TX-mode phased-array module continuous-wave features.
(a) Saturated EIRPs at broadside against the number of beamformers and
(b) measured 16 × 2 elements beam pattern in azimuth plane.

To validate the proposed shared-LUT DPD with the
inter-element mismatch compensation, an OTA measure-
ment with the proposed phased-array module is performed.
Fig. 19(a) shows the equipment setup for this measurement.
The Keysight signal generator VXG M9384B is used to gen-
erate the 5G-standard OFDMA-mode modulated signals. The
Keysight real-time oscilloscope UXR1102A is used to analyze
the far-field signal caught by the horn antenna. To better extract
the nonlinear behavior with the memory effect, the close-loop
memory polynomial model is utilized. The DPD loop
is controlled by Keysight signal studio N7614C for DPD
Test, and the functions of crest factor reduction (CFR) and
envelope tracking (ET) are disabled during the measurement.
Several types of PVT variation are considered in phased array.
Because the measured beamformer chips are manufactured
in the same lot, the process influence is not obvious during
the measurement. The simulated performance with process
variations is given in Fig. 3. Considering the feasibility of
the experiment, the temperature variation is performed to
demonstrate the inter-element mismatch compensation. Two of
the ICs, eight beamformer elements, located at relative distal
positions are activated for EVM and ACLR measurements.
The proposed compensation technique can be extended to
full phased-array systems. Additional temperature difference
is introduced between IC1 and IC2 by adding heat sink
only to IC1. As demonstrated in Fig. 19(c), the measured
temperatures with a thermal camera are 47.0◦C and 77.8◦C
for IC1 and IC2, respectively. The DPD LUT is then extracted
from IC1 and applied to both IC1 and IC2. The measurements
are conducted in the condition with the proposed compensation
technique or by turning off both the Vth compensation and
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Fig. 19. (a) Equipment setup for 2-IC 5G OFDMA-mode OTA measurement with shared-LUT DPD. (b) Thermal imaging photograph of the PCB module
with temperature difference between IC1 and IC2. (c) Measured constellations, EVMs and ALCRs in both 16-QAM and 64-QAM OFDMA mode with
and without proposed inter-element mismatch compensation, (d) measured 400-MHz 16-QAM OFDMA-mode ACLRs, and (e) measured 400-MHz 64-QAM
OFDMA-mode ACLRs.

TABLE II

COMPARISON WITH STATE-OF-THE-ART 39-GHz BEAMFORMERS

gain/phase calibration. To minimize the input difference intro-
duced by different DPD LUTs, the measurements are based
on the same shared LUT and referred to a fixed Pout per

path. The 2-IC subarray achieves 30.3-dBm EIRP and 6% TX
efficiency with an 11.3-dBm Pout per path. The measured 5G
standard-compliant OFDMA-mode EVMs with shared-LUT
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Fig. 20. (a) Equipment setup for TX-to-RX OTA SC-mode measurement in
SISO scenario and (b) measured SC-mode constellations and EVMs.

DPD are improved from −22.5 to −25.0 dB in 16 QAM and
−22.4 to −25.0 dB in 64 QAM. The corresponding ACLRs
are suppressed from −28.7 to −32.4 dBc in 16 QAM and
−28.7 to −32.1 dBc in 64 QAM. Fig. 19(d) and (e) shows
the spectra measured in 400-MHz 16 QAM and 400-MHz
64 QAM, respectively. More than 6.5-dB ACLR enhancement
is achieved by the proposed inter-element mismatch com-
pensation with shared-LUT DPD. Significant improvement in
linearity and power efficiency can be realized by utilizing the
inter-element mismatch compensation in 5G NR applications.

The SC-mode OTA measurement is also performed,
as shown in Fig. 20(a). The SC-mode root-raised-cosine
filtered signals are generated by Keysight arbitrary wave-
form generator M8195A. The corresponding roll-off factor
is 0.35. The 64-element TX-mode beamformers and four-
element RX-mode beamformers are placed 2.5 m apart in the
measurement. The measurements are conducted after calibra-
tion without DPD, and the broadside beam direction is selected
during the measurement. Due to the different EVM require-
ments for different modulation schemes, this measurement is
aiming for the highest EIRP on the base station side with
the EVM requirement fulfilled. As summarized in Fig. 20(b),
under 400-MSymbol/s baud rate, the 64-element module can
realize −20.8-dB EVM with 49.6-dBm EIRP in 16 QAM,
−25.0-dB EVM with 47.8-dBm EIRP in 64 QAM, and
−31.6-dB EVM with 45.1-dBm EIRP in 256 QAM. The
corresponding 64-to-4 elements TX-to-RX EVMs are −18.6,
−22.4, and −29.4 dB, respectively. The 64-element mod-
ule can also support 21-Gb/s SC-mode data streaming. The
measured 64-element TX EVM is −25.2 dB with 43.2-dBm
EIRP in 3.5-GSymbol/s 64-QAM modulation. The corre-
sponding 64-to-4 elements TX-to-RX EVM is −22.5 dB. The
64-element TX module cannot support 256 QAM with
3.5-GSymbol/s baud rate due to the high EVM requirement
of 256-QAM modulation.

V. CONCLUSION

Table II compares this work with the state-of-the-art
39-GHz phased-array beamformers. The proposed bidi-
rectional Doherty beamformer achieves excellent transcei-
ver continuous-wave characteristics. A bidirectional Doherty
PA-LNA is proposed and co-designed with WLCSP.

The PA mode realizes 18.9-dBm saturated output power and
17.8% PAE at 6-dB PBO due to the Doherty technique.
Because of the proposed inter-element mismatch compensation
technique, the AM–AM and AM–PM characteristics are mini-
mized between different elements over PVT variations, which
enhances EVM and ACLR characteristics. The measured EVM
and ACLR in 64 QAM are improved from −22.4 to −25.0 dB
and from −28.7 to −32.1 dBc, respectively, with a shared-
LUT DPD. In 64-to-4-element TX-to-RX communication, the
64-element module achieves a 55.2-dBm saturated EIRP and
also supports 21-Gb/s SC-mode data streaming at 43.2 dBm.
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