
EDITORS: Mary Whitton, mcwhitton@gmail.com
Chris Johnson, crj@sci.utah.edu
Dave Kasik, david.kasik@gmail.com

DEPARTMENT: VISUAL COMPUTING: ORIGINS

The Design of RenderMan
Pat Hanrahan , Stanford University, Stanford, CA, 94305, USA

Edwin Catmull, Former President Pixar and Disney Animation (Retired), Emeryville, CA, 94608, USA

FROM THE EDITORS

Bill Lorensen, our late coeditor of the CG&A Department Visual Computing: Origins, first suggested in 2018

that Pat write a piece about the development of RenderMan. RenderMan was prominent among the

accomplishments called out when Pat and Ed were jointly honored with the 2019 ACM A.M. Turing Award.

In recognition and celebration of that award we asked them to coauthor this story of RenderMan.

The design of RenderMan was driven by the requirements of rendering for the

movies. The rendered images could have no digital artifacts and they had to be able

to be composited seamlessly with live-action footage. This article recounts the

development of RenderMan. It tells the story of the invention of the fundamental

architecture and algorithms, the application of good engineering and design

principles, RenderMan’s use in feature films, the long-term influence of the

RenderMan Shading Language on real-time graphics and high-performance

computing, and, where the name came from.

Pixar’s RenderMan, although designed in 1988,
continues to be used today. It is still, in fact,
the rendering system most widely used in

movie production. Why has the system survived for so
long since it was designed? This article is about how
RenderMan came to be; it tells not only the story of
the people, but also the story of the algorithmic inno-
vations, the disciplined application of good engineer-
ing and design principles, RenderMan’s successful use
in feature films, and its longer term influence on high
performance computing.

In 1981, while working as part of the Computer Divi-
sion of Lucasfilm, Ed Catmull, Loren Carpenter, and

Rob Cook were eager to show that computer graphics
rendering systems could produce images that look
good on the big screen. Much of the work on image
synthesis in the late 1980s was targeted at real-time
training and simulation, and interactive 3-D graphics
workstations, such as those produced by Silicon
Graphics Inc., were starting to be available commer-
cially. The focus at that time was on how to create an
image in real time given little computing power, even
with specialized graphics chips such as Silicon
Graphics’ Geometry Engine. This meant images had
simple shading and low polygon complexity (typically
fewer than 40,000 polygons per image).

RENDERING FOR THEMOVIES
Ed, Loren, and Rob started by asking the question: what
would it take to make an image that would be realistic
enough to merge seamlessly into a live action movie?
They articulated three goals for the rendering system.

0272-1716� 2021 IEEE
Digital Object Identifier 10.1109/MCG.2021.3085374
Date of current version 12 July 2021.

July/August 2021 Published by the IEEE Computer Society IEEE Computer Graphics and Applications 7

mailto:The Design of RenderMan
mailto:The Design of RenderMan
mailto:The Design of RenderMan
https://orcid.org/0000-0002-3474-9752
https://orcid.org/0000-0002-3474-9752
https://orcid.org/0000-0002-3474-9752
https://orcid.org/0000-0002-3474-9752
https://orcid.org/0000-0002-3474-9752

First, the images had to be high quality and indistin-
guishable from images captured by cinematic cameras,
and, particularly, they could have no digital artifacts
such as polygonization, jaggies, or other forms of alias-
ing. The bar had already been set high: while making
Star Wars, George Lucas assembled the best special
effects team ever. One of their breakthroughs was to
photograph physical models while the models or cam-
era were moving under computer control, thus, allow-
ing them to capture the blur of moving objects. This
was essential for creating imagery that could be
composited with live-action photography. Computer
generated imagery would not be acceptable unless the
blur could be simulated in the renderer.

Second, the images must reflect the visual com-
plexity of the world around us: The environment would
need to contain complex curved and rough surfaces,
not just large flat polygons. The objects should also
appear to be made of real materials and the lighting
should be natural. These two goals were codified in the
slogan Render Everything You Ever See, and REYES, the
initial name for the new rendering system, was born.
These rendering goals were symbolized by the picture,
The Road to Point Reyes, a national seashore in Marin
County where Lucasfilm was located (see Figure 1).

The third goal was that the new rendering system
should be fast and efficient enough so that making a
movie would be economical. Though Lucasfilm was
not yet developing hardware, Ed, Loren, and Rob
approached inventing algorithms with the thought

that they were likely to eventually run on parallel vec-
tor supercomputers: adequate performance would
only be achieved by carefully thinking out the interac-
tion between software and hardware. At that time, it
was known that curved surfaces or fractal surfaces
could be rendered by converting them into fine
meshes of very small polygons called micropolygons.
However, the state of the art in rendering polygons
was around 40K total. The Lucasfilm developers
understood that the rendering system would need to
handle several orders of magnitude more micropoly-
gons. In order to estimate the computing resources
required for movie quality rendering, the team pro-
duced the analysis in Table 1. They came to the
80,000,000 number by making assumptions about the
complexity of scenes, the average number of objects
in front of the background, the fineness of the mesh of
micropolgyons, the sampling requirements, and the
calculations for lighting and other effects.

The research group was well acquainted with ideas
from signal processing and sampling theory. Applying
the Sampling Theorem, which says that a signal should
not have frequencies greater than one half the sam-
pling rate, they knew that they would need to sample
surfaces at least twice per pixel in each direction. This
led to the conclusion that four micropolygons were
required per pixel, and, at that time, the team assumed
they would be creating 5 megapixel images, approxi-
mately equal to the resolution of a frame of film. The
final assumption was that the depth complexity was
four; that is, the center of each pixel would contain on
average four micropolygons at different depths, only
one of which was visible. This was a very low depth
complexity, but it was considered reasonable because
it would be too expensive for an artist to create
scenes with geometry that could not be seen. The
result was the goal of handling 80,000,000 micropoly-
gons per image, an insanely ambitious number at the
time. The team welcomed the insane number because
it would force them to rethink everything about ren-
dering since none of the known techniques were going

TABLE 1. REYES Machine goals.

Micropolygons 80,000,000

Micropolygons per pixel 4

Pixels 5,000,000 (3000 � 1667)

Depth complexity 4

Samples per pixel 16

Geometric primitives 150,000

FLOPS per micropolygon 300

FIGURE 1. The Road to Point Reyes. This image is composed of

fractal mountains (Loren Carpenter), plants (Alvy Ray Smith),

grass (William Reeves), puddles (David Salesin), road, fence,

and rainbow (Rob Cook). The picture was rendered in 1983 on

a Digital Equipment Corporation VAX and displayed on an Iko-

nas Graphics Systems full-color (24 bpp) framebuffer. (Source:

Pixar Animation Studios; used with permission.)

8 IEEE Computer Graphics and Applications July/August 2021

VISUAL COMPUTING: ORIGINS

to get to those performance numbers through incre-
mental advances. They then allocated a bare-bones
computer budget of 300 floating point operations per
micropolygon, very little by today’s standards. Given
these requirements, and the state of the art in digital
flight simulators, they estimated that they could com-
pute a frame in 2 min. However, there was a big if.
They would need to develop a new rendering architec-
ture—both software and hardware.

ARCHITECTURAL INSPIRATION
AND INNOVATION

The realization that complex surfaces could be diced
into micropolygons led to a Eureka moment for Loren.
The pipeline came together in his mind while standing
waist deep in the surf in the afternoon sun at Point
Reyes National Seashore. Loren had previously devel-
oped methods to render curved surfaces1 and fractal
terrains2 using a two-stage process of recursively
splitting and then finally dicing. Applied in the new
REYES system, a front-end process split the geometric
primitives into new, smaller geometric primitives. The
primitives could then be split further. For example, a
sphere could be split into bicubic patches, and the
bicubic patches could be split into smaller patches.
The primitives were sorted into rectangular “buckets,”
which were processed top to bottom, left to right.
When the primitives became small enough, they were
tessellated into grids of micropolygons. Next, the grids
were shaded, and the resulting shaded micropolygons
were then passed to a hider, which was responsible
for finding the visible surfaces and performing
antialiasing calculations. Loren had developed an anti-
aliased hidden-surface removal algorithm called the
A-buffer.3 A major advantage of this architecture was
that shading a grid of micropolygons could be vector-
ized on a virtual array processor. This approach effi-
ciently used memory and exploited image coherence.
The pipeline of bucket, split, dice, shade, hide (sample
and visibility), filter, and display was extremely friendly
to hardware implementation, and became known as
the Reyes Architecture.4

There were two other major innovations in REYES:
stochastic sampling and the shading language.

STOCHASTIC SAMPLING
The REYES team had to match or exceed the image
quality produced by Lucasfilm’s visual effects house,
Industrial Light and Magic; thus, the question of the
day in the rendering group at Lucasfilm was how to do
both spatial and temporal antialiasing on sequences of
images. Rodney Stock suggested to Rob Cook that he

explore the use of stochastic dithering patterns like
those used in printing. Rob implemented this method
and found it was promising. The objectionable regular
patterns such as jaggies due to aliasing were replaced
with unsightly noise. Eventually, Rob came up with the
idea of converting the unsightly noise to blue noise
(shifting the frequencies in the noise from low to high)
using a jittered sampling pattern.11 Alvy Ray Smith
showed Rob a Science article by Jack Yellott that
showed that the nonfoveal photoreceptors in the mon-
key eye were formed using a Poisson Disk Sampling
pattern: each photoreceptor was a minimal distance
from another.5 Poisson Disk sampling has a blue noise
spectrum and the fact that our eyes sample with a blue
noise distribution of sensors convinced the team that
stochastic sampling was the best approach.

As noted above, optical motion blur was one of the
major innovations made at Lucasfilm. Physical models
of spacecraft and scenery would be photographed with
a camera; either the model or the camera could move
via robotic arms. Rather than stop the camera and take
each picture, the camera or model would continuously
move while the shutter was open. The motion blurred
frames were carefully processed and overlaid on top of
each other using optical compositing to create the final
shot. Motion blur is an example of temporal antialiasing,
i.e., antialiasing in the time domain, and so it was natural
to ask the question whether stochastic sampling could
be extended to motion blur. Tom Porter suggested that
Rob’s stochastic sampling strategy in x and y be
extended to time, t, with each sample point represent-
ing a different moment in the interval of time that the
shutter was open. In order to demonstrate his idea, Tom
modified an in-house ray tracer written by Tom Duff
and, using this technique produced the famous image
1984 shown in Figure 2. Temporal sampling solved the
motion blur problem.

Then Rob realized that the technique could be
extended to integrate over the lens to simulate depth
of field and so it was now possible to perform spatial
antialiasing, motion blur, and depth of field using sto-
chastic sampling. Now the images were starting to
look very good! In their paper on distributed ray trac-
ing, which was originally called probabilistic ray trac-
ing, Rob, Loren, and Tom showed that random
sampling could also be used to simulate penumbras
from area light sources, blurry reflections, and many
other effects.6 Later James Kajiya introduced the gen-
eral light transport equation, or the rendering equation
into computer graphics.7 This laid down the founda-
tion for Monte Carlo Ray Tracing as a solution to the
problem of global illumination, and is the basis of mod-
ern path tracing, bidirectional ray tracing, and

July/August 2021 IEEE Computer Graphics and Applications 9

VISUAL COMPUTING: ORIGINS

metropolis ray tracing. The use of stochastic sampling
for antialiasing and Monte Carlo algorithms for global
illumination was one of the major advances in the
development of computer graphics.8

In 1981, Loren implemented a version of REYES
based on the A-buffer; this version was used to render
the Genesis Sequence in Star Trek II. In 1983, Rob
implemented a software rendering system that incor-
porated all the key algorithmic innovations. Having
worked at DEC before joining Pixar, Rob was a very
experienced software engineer and his well-written
code formed the basis of the software product. Cook’s
1983 version of REYES was used to produce the short
The Adventures of Andr�e & Wally B. (1984) (see
Figure 3), and also to render the famous stained glass
knight in Young Sherlock Holmes (1985).

CONSIDERING HARDWARE
IMPLEMENTATION

The early focus on hardware had a big impact on the
design and scalability of the REYES architecture. First,

all algorithms had to run in linear time or sublinear
time. An Oðn2Þ algorithm could not handle 80 million
micropolygons. Second, the system had to use mem-
ory efficiently: each stage in the rendering process
needed small working sets and needed to exploit and
use caches to exploit locality. The bucketing approach
conserved memory by creating and then immediately
sampling only micropolygons in a small region of
space. Another example of exploiting coherence was
the texture subsystem. Textures were sampled at grid
locations. This made texture sampling more effi-
cient and allowed the use of coherent access tex-
tures (CAT). Textures were large and could not be
preloaded and had to be cached. The size of the
memory footprint used by textures could be red-
uced dramatically by loading texture data at the
required level of detail only when needed; this tech-
nique became known as the principle of texture
thrift.9 This hardware project again taught the les-
son that it is much more challenging to design an
implementation of an algorithm that can be imple-
mented efficiently on hardware than to design a
software proof of concept.

Once the REYES algorithm had been demonstrated
successfully in software, a project began to build hard-
ware to execute it. The REYES machine was originally
conceived of as having multiple boards: The floating
point array processor (FLAP) for geometry processing
and shading, a hider for stochastic sampling, an intelli-
gent sample memory (ISM) to store and process sam-
ples, a filter board, and display subsystem. Building a
complete machine was too ambitious for a small com-
pany like Pixar, so the hardware was simplified to con-
sist of the FLAP and the ISM. Then, the FLAP was
dropped and the entire algorithm ported to the ISM.
The ISM, based on transputer chips, eventually turned
into the RM-1, a Pixar hardware product.

Pat Hanrahan joined the project in 1986. He inherited
the REYES software and became responsible for the
architecture of Pixar’s rendering products. As the Reyes
Machine began to take shape, Pat and Bill Reeves
began to work on a new Rendering Interface. This inter-
face would be used in Pixar’s hardware and software
products as well as the in-house developed modeling
and animation tools. A critical aspect of the environ-
ment at Pixar was that the modeling and animation
group (Bill Reeves, Eben Ostby, and John Lasseter) were
eager, sophisticated, and demanding users—an invalu-
able combination for identifying requirements and
stress-testing code. The rendering interface evolved
into the RenderMan Interface Specification. As the
interface developed, the goal expanded to support any
photorealistic rendering system, not just REYES.

FIGURE 2. 1984. The first demonstration of motion blur using

stochastic sampling. The pool balls were modeled by Tom Por-

ter and numbered to mark the year of creation. The felt texture

map was created by Loren Carpenter. John Lasseter suggested

the reflection map which was acquired in a pool hall in Novato,

CA, and painted some additional graphics to create the ambi-

ance of the pool hall. This image was created using a ray tracing

algorithm by Tom Porter based on code by TomDuff. The image

took 3 weeks to render on two VAX 11/750s, more than 290

hours of CPU time. It first appeared on the cover of Science

magazine in 1984 with the title “Is this Picture Fake?” (� 1984

Thomas Porter, Pixar Animation Studios.)

10 IEEE Computer Graphics and Applications July/August 2021

VISUAL COMPUTING: ORIGINS

The name RenderMan came up during a conversa-
tion between Jaron Lanier and Pat Hanrahan. Jaron
Lainer had founded VPL Research, a company that
had developed a VR headset and a position sensing
glove. Jaron demonstrated the system to Pat. This
was in the era of the SONY Walkman and Diskman, so
Pat and Jaron mused, wouldn’t it be nice to have a
portable RenderMan to make sound and imagery in
real time for a head-mounted display system. Once
Pixar had developed the first rendering hardware pro-
totype, the Pixar team quickly started calling it a Ren-
derMan. The name of the software system was also
changed from REYES to RenderMan.

GEOMETRIC PRIMITIVES
One of the big issues in the design of the new inter-
face was deciding what set of geometric primitives to
support. The split-and-dice interface that Loren had
developed was written in an object-oriented style (still
new at the time), and it was easy to add a new primi-
tive if the required methods were implemented. How-
ever, as a result, there were dozens of clever
implementations of different geometric primitives,
even though they were rarely used. Most famous at
Pixar was the deformable teardrop primitive originally
developed by Ed and extended by Eben Ostby for the
short The Adventures of Andr�e & Wally B. (See Andre’s
body and Wally B. legs in Figure 3.)

REYES was designed to render parametric surfa-
ces, so polygons were not widely used as a modeling
primitive at Pixar (quadrilaterals were considered bilin-
ear patches). Consequently, the RenderMan interface
had to be updated to support polygons and triangle
meshes, primitives that were standard in the anima-
tion industry. Similarly, although Cubic B-spline
patches had been implemented, the trimmed NURBS
required by advanced CAD tools also had to be added.
One of the most novel parts of the new interface was
a user-extensible procedural primitive, where call-
backs could be used to lazily convert higher level prim-
itives to lower level primitives and eventually to
micropolygons.

At the time the RenderMan Interface was
designed, the theory of subdivision surfaces was still
being developed. Ed and James Clark invented a gen-
eralization of B-spline surface patches and developed
a recursive algorithm.10 When Tony DeRose, an expert
on geometric modeling and subdivision surfaces
joined Pixar, subdivision surfaces were added to Ren-
derMan and used in the short film Geri’s Game.11 Sub-
division surfaces were so versatile that they were
immediately drafted for use in Pixar’s second film, A

Bug’s Life. They have since become the main primitive
for curved surfaces in the film industry.

THE RENDERMAN SHADING
LANGUAGE

Arguably the most novel aspect of RenderMan was the
shading language. The idea of programmable shading
had already been added to REYES by Rob Cook. His
shade tree systemmade it possible to write shaders for
light sources and surfaces.12 Pixar used UNIX internally
and the idea of domain-specific little languages was a
big part of the UNIX culture.13 Most of the feature
requests from the animation group had to do with
shading and texturing and could have been imple-
mented by many one-off additions to the interface.
This approach would have been both a significant

FIGURE 3. The Adventures of Andr�e & Wally B. was conceived

by Alvy Ray Smith as a short film to challenge and demon-

strate the breakthroughs of REYES, including new

approaches for particle systems, modeling, and motion blur.

John Lasseter designed and animated the characters, adding

his remarkable story-telling skills. The top image is a frame

from the short film. The drawing on the lower left is John’s

illustration of what he thought Wally B. should look like.

(Source: Pixar Animation Studies; used with permission.)

July/August 2021 IEEE Computer Graphics and Applications 11

VISUAL COMPUTING: ORIGINS

implementation effort and would have made the sys-
tem much more complicated and difficult to maintain.

Instead, Hanrahan proposed to enhance Rob’s
shade tree system. Gradually, what began as the
shade tree system developed into a complete lan-
guage, with built-in types designed for shading calcu-
lations, a more complete set of functions and libraries,
new control structures (illuminate and illuminance), and
different kinds of shaders (deformations, light sources,
surfaces, volumes, etc.).14 The original shade tree sys-
tem had many built-in functions for lighting calcula-
tions such as diffuse and specular. New constructs were
added to cast light from within a light shader (illumi-
nate) and perform reflection calculations from within a
surface (illuminance). As a placeholder for global illumi-
nation calculations, the system included a trace func-
tion which is, to this day, the key method for
implementing path tracing. The trace function is an
example of how the system was designed for photore-
alistic rendering systems in general.

One big feature/limitation of the shading language
was that the shaders were not guaranteed to obey the
laws of physics (conserve energy, obey the reciprocity
principle, etc.). The technical directors loved the fact
that shaders were not physically correct since this
gave them complete freedom when coding a desired
look. However, the lack of physical correctness
became a big drawback when using RenderMan to
build physically correct ray tracers. Experience making
movies led to the need for cinematic lighting, which
could be hacked with thousands of fake light sources,
but was eventually replaced with physically correct
illumination.

STANDARDIZATION
As the RenderMan Interface began to take shape, we
started exploring how to productize the system. Ed
and James Clark, founder of Silicon Graphics, met to
discuss proposing a new standard for 3-D graphics. Sil-
icon Graphics was redesigning and modernizing their
graphics API in what was to become OpenGL.15 Ed
and Jim wrote a whitepaper which was released in
1987 announcing this new joint effort between Pixar
and SGI.16 We were all inspired by the role Postscript
played in the desktop publishing industry: Postscript,
the standard interface between desktop publishing
programs and the laser printer, revolutionized printing
and publishing. We hoped that a standard interface
for photorealistic graphics might encourage the adop-
tion of these rendering technologies and have a simi-
lar effect on the CAD and movie industries.

Pixar and SGI put a lot of effort into working
together to specify such a 3-D graphics interface
although eventually the two companies went their
separate ways due to fundamental differences in their
primary use cases. In the same way that Postscript
was designed to specify what was on a printed page
and not how to draw the page, the RenderMan Inter-
face was designed to describe a scene, not specify
how the scene is rendered. Rendering high quality pic-
tures often took hours and so the system was very
batch oriented.

Interactive graphics systems such as those from
SGI had very different requirements. They needed to
run in real time and to support the graphical user
interface and 2-D applications. A lower level proce-
dural interface that implemented drawing commands
and exposed other mechanisms (like z-buffers and
accumulation buffers) was more appropriate in that
setting. The SGI/Pixar collaboration was spearheaded
by Kurt Akeley and Pat Hanrahan. Although eventually
deciding not to continue working on the joint inter-
face, Kurt and Pat became close colleagues and even-
tually Kurt completed his Ph.D. under Pat’s
supervision.17

DESIGN PROCESS AND
PRINCIPLES

One reason that the RenderMan Interface has stood
the test of time is that the interface was very care-
fully designed. Before joining Pixar Hanrahan had a
brief stint at Digital Equipment Corporation’s Sys-
tems Research Center and worked on the specifica-
tion of their workstation graphics system. SRC
employed a rigorous approach to building systems.
This is reflected in Butler Lampson’s famous paper
“Hints on System Design.”18 Fred Brooks, in his book
The Mythical Man-Month19 and article “No Silver Bul-
let,”20 also advocated for high quality systems design
and the importance of architecture. The RenderMan
Interface Specification went out to 17 computer
graphics companies including Sun, Stardent, Wave-
front, Alias, and others for review and comment.
Although many groups participated, the process was
intentionally not design-by-committee, but was
driven by a single Chief Architect, in this case, Han-
rahan. New feature requests were critically exam-
ined and functions were added only if they did not
compromise the conceptual integrity of the system.
A guiding principle was that broadly applicable
mechanisms that added composable features were
strongly preferred to adding isolated features that
did not fit naturally into the system. Features that

12 IEEE Computer Graphics and Applications July/August 2021

VISUAL COMPUTING: ORIGINS

removed complexity were strongly preferred over
features that added complexity (less is more). It was
an iterative process: consensus was reached on
the goals (what the system should do), different
approaches for adding those capabilities would be
proposed, issues in the different approaches were
identified both pro and con, and then a decision was
made and a particular design was adopted. This
resulted in a lot of functionality from a relatively sim-
ple interface (about 100 API calls).

RENDERMAN IN THEMOVIES
The RenderMan Interface was released in 1988. Subse-
quently, Pixar adapted REYES to conform to the stan-
dard and released that implementation as the
RenderMan product. An important early adopter was
Lucasfilm Ltd., which produced a series of movies
that used RenderMan. The famous pseudopod from
The Abyss (1989) was rendered using RenderMan and
demonstrated the achievement of the goal of seam-
lessly integrating a computer-generated character into
a live-action movie. The success of the technologies,
including RenderMan, that were used in The Abyss
gave Jim Cameron the confidence to allow ILM to use
CGI to create the T-1000 in Terminator 2: Judgment
Day (1991). In the same year Disney released Beauty
and the Beast (1991). The Ballroom waltz scene was a
combination of 2-D animation created using Disney’s
CAPS system (Pixar had written the graphics for CAPS)
for Belle and the Beast, and a 3-D environment ren-
dered using RenderMan. This was also the same year
that Disney and Pixar signed an agreement to produce
Toy Story. Meanwhile, ILM used RenderMan for the
dinosaurs in Steven Spielberg’s 1993 movie Jurassic
Park. That film was a milestone: It convinced the movie
industry that it was technically possible to create real-
istic characters using CGI. The success of the film also
made the business case for CGI compelling. Then, in
1995, Pixar produced Toy Story which was the first full
length computer generated animated film. A 20-year
journey finally had its “overnight success”—photoreal-
istic rendering software had changed forever the way
movies aremade.

RENDERMAN AND GPUs
One unexpected side effect of the RenderMan Shading
Languagewas its effect on high performance computing.
Rendering at the time was constrained by the available
computing resources, in particular memory bandwidth
and number of FLOPs. As real-time graphics became
affordable on personal and mobile computing devices, a
large demand for high quality games drove AMD, Intel,

and NVIDIA to develop very powerful programmable
graphics processing units (GPUs). Hanrahan, now at
Stanford University, led a project that developed an early
real-time shading language (RTSL).21 RTSL strongly influ-
enced the design of NVIDIA’s Cg, Microsoft’s high-level
shading language (HLSL), and the OpenGL Shading Lan-

guage (GLSL). Today themain processor in your laptop or

phone contains both a CPU and a GPU, with themajority

of the die area devoted to the GPU. Hanrahan and his

students (and others) started to investigate using GPUs

for simulation and other compute tasks.22 Ian Buck, a

graduate student in Hanrahan’s group, developed Brook

which evolved into CUDA. As more and more features

were added to GPUs they started to become the most

powerful computers in theworld. They did this by building

highly parallel machines with tens of thousands of float-

ing point cores. Now, the fastest supercomputers in the

world contain GPU accelerators. The latest NVIDIA

GA100GPU contains 54 billion transistors, 8192 float-

ing point, and 512 tensor cores with a peak perfor-

mance of 600 Teraflops.23 The GPU architecture is

well suited to execute modern machine learning

algorithms, and convolutional neural networks and

tensor computations. GPUs have become central to

the artificial intelligence revolution going on in com-

puting today.
Returning to our opening question, why is Render-

Man still used in movie production after so many
years? Articulating the lofty goals of high quality imag-
ery and rich visual complexity provided a vision for
CGI that was both challenging and still guides
researchers today. The key algorithms and technolo-
gies were also good choices. Using stochastic sam-
pling and Monte Carlo algorithms were the right
fundamental choices for antialiasing and integration,
and were the key to incorporating advanced lighting
simulation. The fact that RenderMan was developed
in a time of scarce computational resources led to a
design that was scalable. Figure 4 shows two repre-
sentative frames, one from Toy Story (1995) and
another from Toy Story 4 (2019). The increase in visual
complexity is remarkable. The statistics from Mon-
sters University (2013) illustrate this increase in com-
plexity. The scene has now grown to billions of
micropolygons per frame and a frame takes 29 hours
to compute (approximately 1 petaflop per frame or 1
gigaflop per pixel). The fact that the system has been
able to scale to modern scene sizes is a testament to
the wisdom of the early design decisions and the com-
mitment to maintain the integrity of the system
design.

July/August 2021 IEEE Computer Graphics and Applications 13

VISUAL COMPUTING: ORIGINS

ACKNOWLEDGMENTS
We would like to thank the many people involved in
REYES and RenderManover the years. First, to LorenCar-
penter and Rob Cook for the fundamental contributions
to the REYES architecture and algorithms, and for all the
delightful time working together. Alvy Ray Smith inspired
many of the directions taken at Pixar, and helped put
together the image The Road to Point Reyes and the
short film The Adventures of Andr�e &Wally B. The original
REYES Machine team included Jeff Mock (intelligent
sample memory (ISM)), Mark Leather (hider), and Adam
Levinthal (CHAP/FLAP). Jim Lawson contributed to the
design and implementation of the RenderMan Shading
Language. Tony Apodaca was a great sounding board
during the design of the RenderMan Interface, and spear-
headed the productization and continued development
of RenderMan for many years. Sam Leffler built the origi-
nal texturing subsystem, which was improved further by
Darwyn Peachey. Tom Porter led RenderMan product
marketing and produced the famous image Textbook
Strike. Mickey Mantle helped immensely by coordinating
the productization of RenderMan. Charlie Gunn imple-
mented a version of REYES on the Pixar ImageComputer.
Dana Batali led for many years the team that maintained
and enhanced RenderMan. Finally, we are both extremely
grateful to George Lucas and Steven Jobs for supporting
this work in the early days and having the patience to let
us bring it to completion.

And finally—the RenderMan product group. Render-
Man is alive and vital because many sophisticated tech-
nical people kept adding capabilities as the state of the
art advanced. After its commercial release, the commu-
nity grew as RenderMan was adopted at more studios,

on projects with a varied palette of looks and pipeline
requirements. The RenderMan project became, and con-
tinues to be about creating a rendering technology plat-
form that evolves to meet new production concepts,
while respecting the requirements of professional pro-
duction pipeline ecosystems and staying current enough
to allow fresh technical concepts to be injected into the
art process from the research community.

REFERENCES
1. J.M. Lane, L. C. T. Carpenter, T.Whitted, and J. F. Blinn,

“Scan linemethods for displaying parametrically defined

surfaces,”Commun. ACM, vol. 23, no. 1, pp. 23–34, 1980.

2. A. Fournier, D. Fussell, and L. Carpenter, “Computer

rendering of stochastic models,” Commun. ACM,

vol. 25, no. 6, pp. 371–384, 1982.

3. L. Carpenter, “The a-buffer, an antialiased hidden

surface method,” in Proc. 11th Annu. Conf. Comput.

Graph. Interactive Techn., 1984, pp. 103–108.

4. R. L. Cook, L. Carpenter, and E. Catmull, “The Reyes

image rendering architecture,” in Proc. 14th Annu. Conf.

Comput. Graph. Interactive Techn., 1987,

pp. 95–102.

5. J. I. Yellott, “Spectral consequences of photoreceptor

sampling in the rhesus retina,” Science, vol. 221, no.

4608, pp. 382–385, 1983.

6. R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray

tracing,” in Proc. 11th Annu. Conf. Comput. Graph.

Interactive Techn., 1984, pp. 137–145.

7. J. T. Kajiya, “The rendering equation,” inProc. 13thAnnu.

Conf. Comput. Graph. Interactive Techn., 1986, pp. 143–150.

8. R. L. Cook, “Stochastic sampling in computer graphics,”

ACM Trans. Graph., vol. 5, no. 1, pp. 51–72, 1986.

FIGURE 4. Toy Story (1995) and Toy Story 4 (2019) were released 24 years apart. The characters needed to look approximately the

same, but everything was rebuilt because of advances in every part of the pipeline. While story remains the most important foun-

dation for any film, the richness of the imagery supports the story. The image complexity and lighting show the advances over

the years. The cleanliness of the RenderMan Interface enabled remarkable changes under the hood. (Source: Pixar Animation

Studios; used with permission � Disney/Pixar.)

14 IEEE Computer Graphics and Applications July/August 2021

VISUAL COMPUTING: ORIGINS

9. D. Peachey, “Texture on demand,” Techn. Rep., PIXAR,

Richmond, CA, USA, 1990.

10. E. Catmull and J. Clark, “Recursively generated b-spline

surfaces on arbitrary topological meshes,” Comput.-

Aided Des., vol. 10, no. 6, pp. 350–355, 1978.

11. T. DeRose, M. Kass, and T. Truong, “Subdivision surfaces

in character animation,” in Proc. 25th Annu. Conf.

Comput. Graph. Interactive Techn., 1998, pp. 85–94.

12. R. L. Cook, “Shade trees,” in Proc. 11th Annu. Conf.

Comput. Graph. Interactive Techn., 1984, pp. 223–231.

13. J. Bentley, “Programming pearls: Little languages,”

Commun. ACM, vol. 29, no. 8, pp. 711–721, Aug. 1986.

14. P. Hanrahan and J. Lawson, “A language for shading

and lighting calculations,” in Proc. 17th Annu. Conf.

Comput. Graph. Interactive Techn., 1990, pp. 289–298.

15. M. Segal andK.Akeley, “Thedesignof theOpenGLgraphics

interface,”Techn. Rep.,SiliconGraph. Comput. Syst., 1994.

16. E. Catmull and J. Clark, “Proposal for a procedural 3D

graphics standard,” Tech. Rep., PIXAR and SGI, 1987.

17. K. Akeley, “Achieving near-correct focus cues using

multiple image planes,” Ph.D. dissertation, Stanford

Univ., Stanford, CA, USA, 2003.

18. W. B. Lampson, “Hints for computer systemdesign,” inProc.

9thACMSymp.Oper. Syst. Principles, 1983, pp. 33–48.

19. F. P. Brooks, Jr., The Mythical Man-Month: Essays on

Software Engineering. London, U.K.: Pearson Education,

2nd ed., 1995.

20. F. P. Brooks, Jr., “No silver bullet essence and accidents

of software engineering,” Computer, vol. 20, no. 4,

pp. 10–19, Apr. 1987.

21. K. Proudfoot, W. R. Mark, and P. Hanrahan, “A real-time

procedural shading system for programmable graphics

hardware,” in Proc. 28th Annu. Conf. Comput. Graph.

Interactive Techn., 2001, pp. 159–170.

22. I. Buck et al., “Brook for GPUS: Stream computing on

graphics hardware,” ACM Trans. Graph., vol. 23, no. 3,

pp. 777–786, 2004.

23. “NVIDIA ampere GA102 GPU architecture,” Techn. Rep.,

NVIDIA, Santa Clara, CA, USA, 2021.

PAT HANRAHAN is the Canon Professor of Computer Science

and Electrical Engineering, Computer Graphics Laboratory, Stan-

ford University. His research focuses on rendering algorithms,

graphics processing units, as well as scientific illustration and

visualization. He received the Ph.D. degree in biophysics from

the University of Wisconsin-Madison in 1985. In 1989, he joined

the faculty of PrincetonUniversity. In 1995, hemoved to Stanford

University. As a founding employee at Pixar Animation Studios in

the 1980s, he was part of the design of the RenderMan Interface

Specification and the RenderMan Shading Language. More

recently, he has served as a co-founder andCTOof Tableau Soft-

ware. In 2019, he received the prestigious ACM Turing-Award.

Contact him at hanrahan@cs.stanford.edu.

ED CATMULL is a co-founder of Pixar Animation Studios, and

served as President of Pixar and Disney Animation Studios. Prior

to this, he was Vice President of the Computer Division of Lucas-

film Ltd., where he managed development in the areas of com-

puter graphics, video editing, video games, and digital audio. He

has written a book, CREATIVITY, INC.: Overcoming the Unseen

Forces That Stand in theWayof True Inspiration, which describes

the creative management principles developed at Pixar and Dis-

ney. He is an ACMTuring Award Laureate; he has also been hon-

ored with two Oscars for his achievements. He is active in

several professional organizations, including ACM SIGGRAPH,

The Academy of Motion Picture Arts and Sciences, the National

Academy of Engineering, and the Visual Effects Society. Since

his retirement, he continues to consult and lecture.

July/August 2021 IEEE Computer Graphics and Applications 15

VISUAL COMPUTING: ORIGINS

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

