
Interactive Graphics in
Industry: The Early Days

David J. Kasik
The Boeing Company-Emeritus,

Battelle-Columbus Laboratories (1972-1977)

John C. Dill
Simon Fraser University-Emeritus,

GM Research Laboratories (1969-1980)

Abstract—Computer graphics has a long history. Industrial organizations and laboratories

drove significant improvements as they adapted and assembled basic capabilities into

complex interactive applications. Of particular concern in the early days was providing

interactive 3-D applications for computer-aided design and engineering. This article

describes the experience of two early industry practitioners who built successful 1970s

interactive 3-D systems.

& COMPUTER GRAPHICS WAS christened in 1960.

Most early graphics devices produced paper,

microfilm, andmicrofiche output. Early interactive

graphics (1960–late 1980s) focused on computer-

aided drafting (CAD). Even though both industry

and academia contributed, CAD was driven signifi-

cantly byproductmanufacturing companies, espe-

cially automotive and aerospace.

Product manufacturing companies like

Lockheed and Renault created thousands of 2-D

engineering drawings. Creating and correcting

ink-on-mylar drawings was labor-intensive and

drawing configuration management error prone.

A few far-sighted companies saw the value

interactive computing and computer graphics

could bring and began working on 2-D CAD

applications.

Others [e.g., General Motors Research (GMR)

Laboratories] saw the value of interactive 3-D

CAD: GMR started work on its design augmenta-

tion by computer (DAC-1) system1 even before

Ivan Sutherland developed the seminal Sketch-

pad system as his MIT Ph.D. thesis.2

Companies would have far preferred buying

turnkey applications. Unfortunately, commercially

viable solutions just did not exist. Computer ven-

dors (e.g., Control Data, IBM, and DEC) supplied

Digital Object Identifier 10.1109/MCG.2020.3012228

Date of current version 24 August 2020.

Department: Visual Computing: OriginsDepartment: Visual Computing: Origins
Editors: Chris Johnson, crj@sci.utah.edu

Dave Kasik, dave.kasik@gmail.com

Mary C. Whitton, mcwhitton@gmail.com

September/October 2020 Published by the IEEE Computer Society 0272-1716 � 2020 IEEE 89

only hardware and some basic operational soft-

ware. Buyers had to develop their own sophisti-

cated interactive applications. In addition, many of

the fundamental components needed for highly

interactive applications didn’t exist. Minicom-

puters did not have sufficient computing power or

storage capacity. Mainframe operating systems

(OSs) were aimed at batch jobs and could not han-

dle the interactivity demands needed to support

hundreds of users. Remote users were connected

with slow telecommunications lines.

Drafting, fundamentally a 2-D task, drove

much early CAD development. However, organi-

zations like GM Research Labs and laboratories

like Battelle realized that the real value lay in

working in 3-D. GM and other automotive compa-

nies wanted to do 3-D CAD as computer-aided

design (not drafting) to augment the full-sized

clay models they constructed to capture surface

shape. Automobile bodies contain smooth, com-

plex geometric surfaces that define the products’

aesthetics and aerodynamics. Other organiza-

tions needed 3-D computer-aided engineering

applications. Battelle and others were starting to

use 3-D finite element methods to supplement

and even replace classic stress analysis methods.

GM and Battelle wanted to move to interac-

tive 3-D systems. By the early ‘60s, GM had dem-

onstrated that interactive computer graphics

could make designers more effective.3 Battelle

staff was using punch cards to define 3-D models.

Therefore, almost any interactive system would

increase model understanding. Both organiza-

tions faced similar problems implementing inter-

active 3-D systems.

Our job seemed like a Mission: Impossible

task: Conceive a system architecture based on

commercially available gear, integrate the latest

research from industry and academia, and do

original research to fill in gaping holes.

We had to work across all aspects of a rapidly

evolving hardware landscape: mainframes, com-

munications networks, smart peripherals (includ-

ing the then new minicomputers), graphics

hardware, and interaction devices. Interestingly,

each of our quite dissimilar organizations chose

to move toward a distributed model based on an

intelligent, terminal-based graphics system (DEC

GT40/GT48 at GMR, CDC 777 at Battelle). Each

intelligent terminal relied on a general-purpose

minicomputer (DECPDP11/05, CDC SC17).

Each of us also worked across the complete

software stack: geometry algorithms, the user inter-

face, data bases and data management, graphics

packages, and operating systems. At a high level,

we both succeeded in building useful and usable

interactive 3-D systems although the computing

environments we worked with and detailed archi-

tectural decisionswemadewere quite different.

In this article, we share a number of issues and

problems we faced in those early days. We

observe that today’s systems have similar

architectural challenges. The details may dif-

fer, yet the decisions are just as critical and

just as difficult.

BACKGROUND
We briefly examine 1970s hardware, what

was available, and enough of how it works to

explain the problems we faced building interac-

tive 3-D systems.

System Components

In the 1970s, many graphics systems con-

tained the components shown in Figure 1. Cur-

rent systems are similar, though sometimes with

different component names (e.g., PCs rather

than minicomputers).

Comparing graphics device characteristics,

network, memory, graphics acceleration, and

CPU performance between the 1970s and current

systems shows the limited compute power avail-

able to us in the early days (see Table 1).

There were numerous options for the generic

system components. Larger organizations like

Battelle and GM needed more computing power

than the 1970s era minicomputers could provide

and relied on mainframes from IBM, Control

Data (CDC), Burroughs, etc. The mainframes of

yesteryear provided centralized timeshare and

Figure 1. Generic Interactive Components

Visual Computing: Origins

90 IEEE Computer Graphics and Applications

batch services. Some companies (CompuServe,

Boeing Computer Services) sold mainframe time

the same way Amazon, Google, and Microsoft

sell cloud computing services today. The main-

frames connected secondary storage for user

data devices (e.g., disks, drums, tapes), batch

input devices (e.g., card readers), and output

devices (e.g., printers).

Smaller organizations and research groups

with limited budgets often did all their applica-

tion processing and data storage on minicom-

puters, devices that generally supported only

one user at a time. The minicomputers had

limited programming tools and often ran only

special-purpose code.

Mainframe manufacturers sold their own

graphics devices. The devices were connected

to the mainframe over short distances (hun-

dreds of feet). Connections were often based on

proprietary communications protocols designed

to maximize data transfer rates (e.g., IBM 22504

and its channel connection�).
Not all graphics devices relied on a minicom-

puter. Many devices acted as conventional ter-

minals that had an added drawing capability.

They were attached to either a mainframe or

minicomputer via conventional telecommunica-

tions lines. The Tektronix direct view storage

tube (DVST) is a good example.

System components came in many different

flavors. As system developers, we had to choose

components that would optimize the whole.

Fundamentally, our graphics applications had to

be interactive for as much 3-D data as the system

could handle. Being interactive and 3-D required

optimization of the system architecture, algo-

rithms, and individual components. This forced

us to make tradeoffs that led to complex

decisions.

Acceptable Interactive Performance

For our interactive applications to feel natu-

ral, we had to process input quickly enough to

prevent discontinuities so that the user/design-

er’s train of thought stayed intact. Instantaneous

feedback, where the computer provides feed-

back for what the user perceives to be a trivial

action (e.g., echoing a keyboard entry) means a

response of 0.1 second or less. The complete

loop (user input -> computer processing -> feed-

back to user) needs to finish in under 1 second

to allow a person to keep his/her train of

thought.5 Users will tolerate longer response

times for complex processing if the computer

provides a “Working” indicator.

It was essential for both of us to understand

how display processors and devices worked so

we could provide sufficient interactive perfor-

mance for applications to feel natural.

Graphics Devices

Random scan (also called calligraphic,

stroke, or vector) devices dominated interactive

graphics in the 1960s and 1970s. The devices cre-

ated images by moving an electron beam across

the inner surface of a cathode ray tube (CRT).

A special processor executes instructions in a

loop. The instructions contain display (x, y coor-

dinates and beam status) or jump commands.

When the beam was on, it excited a rapidly

decaying phosphor coating and the user saw a

line between one screen position and another.

When off, the beam moved to a new screen

Table 1. Components: Then and Now.

Component <1977 2020

Graphics

Subsystem

Random scan,

monochrome
Raster, full color

Lightpen, keyboard,

dials, function key set

Mouse, keyboard with

function buttons

Cost �$120K Cost <$1000

Network 56 kB was fast >500 MB

CPU Memory
Mainframe: 1 MB was

big; Mini <64 kB
128 GB is small for a PC

Graphics

acceleration

Dedicated board(s) for

2-D

Plug-in board for 2-D,

3-D

Minicomputer for local

processing

Multi-processors with

>1.5 GHz clock.

Display memory <65 kB
On-board memory

>8 GB

Main CPU

performance

Mainframe Clock speed

<100 MHz

Clock speed >4 GHz in

the cloud

�
A channel is a high-performance input/output (I/O) architecture imple-

mented on a number of computer architectures, especially on mainframes. It

is a special-purpose peripheral processor dedicated to I/O operations

between mainframe memory and peripheral devices (e.g., disk, graphics

terminal).

September/October 2020 91

position. In this way, the displayed lines were

drawn “randomly” on the screen surface.y

On random scan screens (e.g., IBM22504), the

phosphorus glow from the beam decayed in

milliseconds and the display had to be continu-

ously refreshed. To achieve an acceptable

refresh rate, we had to limit the number of lines

the display processor drew each cycle. If there

were too many, flicker occurred.z

Flicker and Its Causes

Two factors, refresh rate and frame rate, impact

random scan graphics device performance.

First, it’s possible to show a stable image on a

medium that self-erases (e.g., a CRT and a moni-

tor). A person sees a stable image on a screen

coated with a naturally decaying phosphor if all

the screen contents are redrawn at least 60 times

per second, the rate that meets the human

flicker fusion threshold. In practice, if an image

has more lines than can be drawn in 1/60 second,

the image will flicker. This makes the image more

difficult to understand.6

Second, changing images over time lets a

viewer perceive motion. The greater the frame

rate (i.e., the number of new/changed frames per

second), the smoother the motion can appear. In

general, computers attempt to compute images

for new frames as fast as the monitor refresh rate

to create the illusion of smooth motion.7 Interac-

tive software must compute a new frame 60 times

per second to meet or exceed the flicker fusion

threshold.

Input

User input processing was handled more sim-

ply than display. Local, hardwired logic or pro-

cessors echoed keystrokes on the screen. When

the user pushed the Return key, the device sent

the collected characters to the mainframe as a

text field. Since display device screens were flat,

users could enter (x,y) positions using a light-

pen. Positions could be returned to the main-

frame at a program-determined rate. The user

could also place the lightpen tip on a visible line

and depress the tip to generate an interrupt.

THE GM PROJECT: JOHN’S STORY
Fresh out of grad school at Caltech, I started a

job at GMR in Warren MI at the end of 1969. I still

believe I got the job in part based on my interview

seminar on developing interactive graphics on an

IBM 2250 for neurophysiology research.

Computer graphics began at GMR in the late

1950s with a feasibility study to address the ques-

tion: “Could computer techniques significantly

improve the design process?” GM wanted to

understand the potential role of computers in the

graphical phases of product design. The result

was a major effort to build a laboratory to study

graphical man–machine communication. This led

to the DAC-1 project.1 Other early GMR efforts

included the Gordon Surface, a curved surface

generalization of Coons patches.

Because of the nature of automobile design,

DAC-1 was required to work with free-form

curves. To provide compatibility with existing

design procedures, precise input to define the

curves was needed. These requirements argued

against1 a “sketchpad” approach, which dealt

with 2-D prismatic wireframe objects.2

This early history ultimately resulted in an

“existence proof” system capable of supporting

production design, and in 1967, Ed Cole, then

GM President, decreed that “DAC-1 was no lon-

ger a research project and that the responsibility

for further development and application of this

technology should be [moved to a production/

maintenance group]”.1 Accordingly, the DAC-1

development group was divided into three

groups. The first managed the existing DAC-1.

The second looked at CAD across other GM Divi-

sions. Ed Jacks led the third group, the one I was

in. Our job was to identify and address the key

computing tasks needed to develop a produc-

tion quality, interactive 3-D CAD system. Many

areas needed work: OSs needed the most. Time-

shared OSs needed a complete rethink to deal

with interactive graphics and a large number of

simultaneous users. File systems needed soft-

ware enhancements to support CAD data. This

work became the GMRmulticonsole time sharing

system (MCTS) development project. The target

y
Early raster devices also moved an electron beam across a screen coated

with material that decayed rapidly. The beammoved in a fixed pattern of hor-

izontal lines. Each point in the pattern (a pixel) is defined by a set of attrib-

utes (e.g., red, green, and blue). Raster devices increased in popularity in the

early 1980s with offerings from Raster Technologies, Ramtek, and Ikonas.
z
Informal 1970s experiments at GMR showed that experienced designers

would put up with some flicker just to see images of their data.

Visual Computing: Origins

92 IEEE Computer Graphics and Applications

platform was the yet-to-be-built CDC Star-100

with CDC GPGT graphics stations (a special ver-

sion of the CDC 777 Dave discusses later).

When CDC ultimately couldn’t deliver Star-

100 on time, GMR reverted to IBM hardware. Our

group had to find a new way to deliver interac-

tive 3-D graphics in a cost-effective manner over

distances measured in miles, not feet. IBM’s solu-

tion, the 2250, was under-powered, expensive,

and, most importantly, not able to be connected

remotely. GMR selected the DEC GT40 random

scan terminal with DEC’s promise of a more pow-

erful version in the “near future.”

Goals

The MCTS project had to address a number of

specific requirements. (1) Support a large num-

ber of design consoles: �100 or more, an enor-

mous number in the 1970s. (2) Provide a time-

shared mainframe. Minicomputers were just

appearing and had neither adequate compute

power nor data storage for CAD. (3) Interactive

graphics was mandatory. (4) Design consoles

had to be effective for remote design groups and

motor divisions (Design Staff, Fisher Body, Chev-

rolet Engineering at the Tech Center, Oldsmobile

in Lansing, Buick in Flint).

Because the computing industry was still in

its early years, high-speed data communication

was still new and very expensive. Vendor-

supplied, complete CAD “systems” were still in

the future. Intelligent terminals and intelligent

workstations were still research. Even defining

“intelligence” was a hot topic.8

My graphics group’s task was to figure out

which components to buy from which vendors,

how to modify vendor software to meet our much

more stringent needs, and to develop the basic

graphics package support to meet these needs.

The basic 3-D algorithms and high-level design

algorithms had already been developed. Our chal-

lenge was the graphics package. In today’s prac-

tice, the graphics package is the “driver” bundled

with a card and it is a total black box for applica-

tion developers. In those days, it was the devel-

oper’s responsibility to figure out how to adapt

the graphics package to application requirements.

CAD at GM had evolved to the computer

aided design and numerical control environment

(CADANCE) system. CADANCE ran onmainframes

and IBM 2250/IIIs. The 2250s were expensive and

had to be connected by channel to themainframe

over less than a few hundred feet. GMR had to

develop a (relatively) low-cost terminal that could

be connected remotely, achieve interactive 3-D

performance, and be useful for applications in

addition to CADANCE.

Because one of the motivations for the intelli-

gent terminal approach was cost, we could substi-

tute mainframe processing power for costly

graphics hardware and invest in developing

remote communication software. Architecturally,

we could rely on mainframe power to compute

3-D-to-2-D projections and transformations, fit

curves and surfaces, and do database processing.

The configuration we ended with was a DEC GT40x

connected over an asynchronous, half-duplex

voice grade telephone line to an IBM 370/168main-

frame running IBM’s TSSOS. This was the develop-

ment configuration; we would have to move to

higher speed lines for productionwork.

General Approach

The system objectives and constraints we

faced were daunting. We had limited memory (8K

16-bit words) on the PDP-11/05. Network commu-

nications were so nascent that we had to develop

modem interface code and a communication pro-

tocol that handled both graphic data and text to

and from the mainframe. The new system had to

support IBM 2250 specific features that CADANCE

and other legacy GM applications used. One con-

sequence was that a considerable chunk of 11/05

memory had to be reserved for display instruction

storage. This further limited the amount of mem-

ory for our own code. The new display device had

to support multiple 2250-style input devices,

including lightpen, keyboard, and a GM special

function keypad. User feedback features such as

highlighting (intensifying) a display entity “seen”

by the lightpen, lightpen tracking, text input, etc.,

were critical.

Life became somewhat easier in the mid ‘70s

when we moved to the higher performance GT48

(see Figure 2) (a GMR special version of DEC’s

x
The GT40 consisted of a PDP-11/05 minicomputer with 8K core and no disk.

The graphics display processor drew lines on a 14” screen and had a lightpen

for graphic interaction (ref Wikipedia https://en.wikipedia.org/wiki/

DEC_GT40).

September/October 2020 93

GT62) and a DEC PDP -11/34 processor with 16K

memory.

Programming the PDP-11/05 itself was chal-

lenging. There was limited software support (an

assembler, the RT-11 OS, which we ignored—we

needed interactivity, not real-time).Wehad topro-

gram advanced lightpen support, support a func-

tion-key set like that of the 2250, and provide

reasonable communications speeds even though

DEC delivered no communications software. We

also needed to decidewhat additional functions, if

any, could be put in the little PDP-11/05. In the

end, we discovered little else could be added.

The overall configurations are shown in

Figure 3. For details see the article by Dill and

Thomas.9

Challenges

There was no lack! The first was developing

an approach to the division of labor between the

intelligent terminal and mainframe; the mini was

only a PDP-11/05 with limited memory, and lim-

ited speed. Of course, we wanted to move as

much function into the terminal as possible, but

the limits just outlined argued for an intelligent

“terminal” rather than intelligent “satellite.”8

Code reliability was also an issue: software

had to be as close to rock-solid as we could

make it. We had to satisfy our large user group

doing production design. Downtime had to be

no worse than the 2250 even though we were

dealing with a much more complex configuration

and increased functionality.

Shoehorning the code into the 11/05 for dis-

play file management, graphics display, interac-

tion, and mainframe communication was more

challenging than anticipated.

Adventures

Although a 1200 bps communication rate was

acceptable for a limited number of applications,

especially for new users, it was clearly insufficient

for experienced GMCAD users. After the GT40was

sufficiently developed,we experimentedwith vari-

ous communications speeds to see what users

would accept: 9600 bps, 19.2 kbps, and 56 kbps

(synchronous). We determined 19.2 kbps was sat-

isfactory while 9600 would be (barely) tolerated.

We also determined that 1200 bps generated

enough unhappiness that, shouldwe try to deploy

it, we would need to enter a witness-protection

programequivalent.

Another communications adventure arose

from the need to communicate at high speed

with users 50 or 100 miles away. The technology

to do this was still new and expensive. This

necessitated meeting with Bell representatives

ranging from local people to “Ma Bell” senior

managers. After explaining our needs, it was fas-

cinating to listen to Bell marketing people say

“yes, of course, we can do that” while the engi-

neers turned pale and shook their heads.

We needed much higher speed communica-

tions to support users at the Tech Center where

consoles could be two miles from the main-

frame. Fortunately, a local startup had just devel-

oped a “Long Line Adaptor” (LLA) and claimed

they could transmit data at channel speeds at

Figure 3. IBM and GT40/48 configurations. LLA:

Long Line Adaptor – interface to drive long (up to

8000’) coax cables.Figure 2. John at a DEC GT48. Interaction devices

included lightpen, keyboard, and function buttons.

Visual Computing: Origins

94 IEEE Computer Graphics and Applications

distances up to 8000’ via a simple coax cable.

While the LLA worked well, issues arose both

with the connection to the mainframe and with

laying more than a mile of coax across the 2-mile

square Tech Center.

In retrospect, the problem of connecting the

LLA to the mainframe is amusing—at the time it

certainly wasn’t. The issue was who would physi-

cally connect the LLA to the IBM Channel proces-

sor. IBM refused to connect anything “foreign”

(i.e., hardware they hadn’t designed); the startup

didn’t want the responsibility for any problem the

LLAmight create. It was a stand-off until one of the

GMR support people from IBM “just did it.” We

also ran into a coax cable problem: we needed to

lay cable in ditches that sometimes filled with

water. We discovered that our coax connectors

were not waterproof and that water inside coax

does nasty things to data transmission!

Dealing with development time pressures

was the final adventure. For the most part, things

were going well and on schedule. But the user

community wanted to get started earlier and put

pressure on management, who responded by

asking us: “If we give you more budget and two

more people, can you cut the delivery time from

18 months to under 10 months?” Fortunately, I

had a wise mentor who strongly advised me to

“just say no.” And I did.$

Development time pressure increased on the

group because we had to develop all the 11/05

code from scratch with few programming tools.

Nothing vendor-provided would support accept-

able interactivity. This included the graphics

package, the 11/05 OS, the communications soft-

ware, and device handlers. The key was always

achieving interactivity.

GM Assessment

The system did work: the GT48 (the GM spe-

cial version of the DEC GT62) was distributed to

major GM Tech Center users (Design Staff, Fisher

Body, Chevrolet Engineering), to Lansing (Old-

smobile), and to Flint (Buick).

Overall, it was a balancing act between the

division of labor, communications speed, and

time-shared mainframes. In the end, we did well,

but it was only temporary as the field shifted to

raster and full-capability workstations in the

early 1980s. CAD companies gradually developed

the skills to catch up to GMR and GM began

to buy vendor systems. Fortunately for GM and

the group, graphics and geometry research con-

tinued at GMR, and we continued on to make

major contributions in solid modeling, realistic

image synthesis, and geometry analysis.

THE BATTELLE PROJECT: DAVE’S
STORY

I took a job with Battelle Laboratories in

Columbus OH with a freshly earned Master’s

degree in computer science from the University

of Colorado. The year was 1972; the starting sal-

ary was a phenomenal $1000/month. I think I got

the job because I had experience with Control

Data (CDC) computers in graduate school, the

same machines Battelle used. And I could spell

“graphics” from experience making computer-

animated films as a Johns Hopkins undergrad.

Goodbye mountains; hello flatland.

In early 1972, Battelle formed a two-person

computer graphics group consisting of Ed

Edwards and me. The Lab was a fascinating place

for a techno-junkie. I still am. As a contract

research organization, Battelle conducted proj-

ects that ranged from nuclear engineering to

early laser development.

Goals

Interactive 3-D graphics was not part of

Battelle’s 1972–1973 portfolio. Its graphics devi-

ces included a Calcomp plotter, a Stromberg-

Carlson 4060 microfilm recorder, and a Compu-

tek DVST terminal (based on Tektronix DVST

technology). The storage tube could be used as

an interactive terminal that was able to draw a

single image. Seeing the next picture required a

bright green flash to erase the screen before the

new image could be drawn.

Battelle’s Computek and plotterwere used suc-

cessfully before I arrived. The Calcomp produced

images on paper from batch programs. The Com-

putek was relatively cheap (�$10 000 for the ter-

minal alone) and could run interactively. One

Ph.D. statistician used a Computek application to

compile the annual national salary survey for

$
This event predated the 1975 publication of Fred Brooks’ The Mythical Man-

Month.

September/October 2020 95

science and engineering. He often didn’t like the

way a curve looked and tweaked the input data

until he was happy. A theoretically rigorous and

objective processwas actually highly subjective.

Battelle got into the refresh, random scan

graphics business in 1974. Control Data’s succes-

sor to its first interactive graphics device (the

274) was the 777-1 Cyber Graphics Terminal. It

featured an upgraded minicomputer controller

and a dedicated display processor. Out of the

box, both the 274 and 777-1 were 2-D only.

Battelle users were pushing to interactively

display and edit 3-D data. The biggest push came

from mechanical engineers. Finite element

modeling software was in its early days and the

engineers were having difficulty visualizing and

tweaking 3-D input FEM meshes.

CDC was also interested in getting into the

3-D graphics business and gave Battelle a con-

tract to develop a 3-D extension for its 2-D

graphics application program interface.

The 777 and its minicomputer controller, a

CDC SC17, and software cost $130 000þ. In 2020

dollars, that’s $640 000þ. Further complicating

the cost model was Battelle’s policy of charging

real dollars for every second of mainframe pro-

cessor time consumed.

CDC focused its mainframe CPUs (see Figure 4)

on high-performance computation. Figure 5 shows

the system architecture. Battelle’s mainframe had

64K 60-bit words. A set of peripheral processors

(PP, similar to IBM channel processors) did input/

output processing. The PPs enabled access to

user data on disk or tape. Network-attached devi-

ces like the SC17minicomputer, attached at 56 kb,

used the PPs to transmit and receive data.

Our SC17 had 32K 16-bit words. That mem-

ory was used to store both assembly language

(there were no compilers) and display instruc-

tions. The SC17 CPU executed the assembly lan-

guage that managed the display list and user

input interrupts. The display processor had

direct memory access for display instructions.

It was responsible for moving the electron

beam and generating interrupts from user input

devices.

Approach

Working in 3-D was new for our two-person

graphics group. The recently published Newman

& Sproull Principles of Interactive Computer

Graphics became indispensable, especially in

showing details about transformation matrices

and perspective computation.

Our job was to design and build a 3-D exten-

sion to the 777-1 2-D graphics package main-

frame API. FORTRAN was the only language the

API supported. The graphics package itself was

also written in FORTRAN.

CDC’s 2-D API supported a multilevel, seg-

mented display list. The application could store

many or few display instructions in each seg-

ment until SC17 memory ran out. The display

instructions drew 2-D vectors and had multiple

types of branch instructions. Unconditional

branches let parts of the display list be skipped;

push/pop supported hierarchical display lists.

Our 3-D API extension had to be consistent with

Figure 4. CDC 6600 Mainframe showing typical

“spaghetti wiring” (Used under CC by 2.0 license).10

Figure 5. CDC System Architecture.

Visual Computing: Origins

96 IEEE Computer Graphics and Applications

the legacy 2-D API and retain its ability to create,

modify, and delete graphics segments.

We had to create the illusion of 3-D using a

vector, wireframe display. There were two basic

techniques: transforming object(s) under user

control and visual tricks like perspective and

depth cueing. We ultimately combined the two

and enabled dynamic transformation of data dis-

played using visual tricks.

Depth cueing proved more effective than per-

spective. The 777 line draw instruction included

x,y,intensity. Since we knew the z coordinate and

display volume, we could compute intensity to

make points nearer the user brighter. The

scheme was fast and easy to compute. While

observing users looking at and working with

their 3-D data, Ed and I noted that most had

depth cueing enabled.

As at GM, the biggest architectural decision

concerned the division of labor between the

mainframe and the minicomputer: where should

the operation of multiplying each x, y, z by the

current transformation matrix and projecting it

to the correct to x, y, intensity be performed?

When the 777 arrived at Battelle, we decided

to try the mainframe transform/project tech-

nique. It was simpler to program but proved

problematic. Our first experiments resulted in a

number of highly annoyed users because CDC

had an OS bug that crashed the mainframe when

my program performed dynamic transforma-

tions. Doing all transformations on the main-

frame cost our users real money. Finally, there

were numerous users sharing the computer; it

was impossible to guarantee consistent interac-

tive performance on a time-shared computer.

Therefore, we quickly chose to do all 3-D->2-D

transform/project operations on the SC17. Our

3-D API packaged the 3-D coordinates and trans-

formation matrices into dedicated 3-D segments.

Unfortunately, the 3-D segments consumed mem-

ory for both the 3-D and 2-D coordinates. The

32K memory was a challenge.

Doing dynamic rotation required interactive

control to change parameters (e.g., rotation axis,

scale, and translate). We wrote a minicomputer-

based lightpen input handler that let us change

the parameters without mainframe intervention.

The final architectural decision was how to

divide the work between Ed and me. Because Ed

had other responsibilities, he did all the main-

frame development. I had to learn CDC SC17

assembly programming, the mechanics of CDC’s

SC17 code, how to perform 3-D->2-D transforma-

tions, how to dynamically build each 2-D display

instruction, and how to debug both assembly

language and display instructions.

Adventures

Battelle received CDC’s first production 777.

The SC17 was a royal pain when trying to load

new software. Software was read from a deck of

punch cards through a short, manually entered

boot program. I learned new swear words when

one of my coding errors clobbered the boot pro-

gram and I had to manually re-enter it. An

“Enter” button hardware bug often stored the

same instruction in multiple locations. It often

took 30þ minutes to re-enter the boot program

just to find out I had another bug in my code

once I could run it.

Minicomputer and display instruction debug-

ging became an art. The minicomputer allowed

single step walks through the assembly code.

Specific registers could be examined using the

console lights. The display processor had toggle

switches to create a breakpoint and single step-

ping from there. The main problem was that the

picture disappeared immediately because dis-

play loop stopped. A blank screen contained no

useful diagnostic information.

The CDC mainframe had 60-bit words with

floating point. 60-bit arithmetic proved adequate

for accurate scientific/engineering computation.

The minicomputer had 16-bit words and no float-

ing point. I learned the hard way that continuous

rotation requires lots of multiplication. Numeric

significance deteriorated so quickly that 3-D

images became unrecognizable when rotated for

more than a few seconds. Tom, a colleague,

solved the problem by looking up sines and

cosines in a table each time the transformation

changed.

60-bit vs. 16-bit also caused problems with

alphanumeric characters. Each 60-bit mainframe

word contained 10 characters; each character

had 6-bits. There were no lowercase characters

and few special characters. The 16-bit minicom-

puter had 2 8-bit ASCII characters per word.

September/October 2020 97

More assembly language software had to be writ-

ten to display text correctly.

Other Battelle staff members visited me in

the graphics lab just to see what I was doing.

One of the systems programmers summarized

his jealousy: “Gee, Dave. You’re lucky. You actu-

ally get to see pictures on a screen.” I am still

hooked on seeing computer-generated pictures.

Battelle Assessment and Lessons Learned

Writing software for any new device requires

grit and patience. The CDC 3-D project was no

different. Those frustrations were more than off-

set by the fun of learning interactive 3-D graphics

and how to make the system work.

The new 3-D software API and minicomputer

code became part of Control Data’s Cyber

Graphics 777 product offering. The code remained

in production as long as CDC sold the product.

TheAir Force (Wright-Patterson) awarded Battelle

two different contracts to develop 3-D applica-

tions for the 777. Battelle’s graphics group of two

grew to six over the next 3 years to keep up with

increased internal demand. When I decided to

leave Battelle in 1977, I got a job offer because one

of my graduate school professors saw me in a film

demonstrating my 3D application work. The pro-

fessor was on sabbatical at Boeing and succeeded

in offering me a job. I accepted and began a

35-year Boeing career.

There were too many technology lessons

learned to document many here. Most important

was finding a way to prevent flicker caused by

frame rate limitations. Careful decisions, e.g.,

doing 3-D->2-D projections on the minicomputer,

minimized timeshared mainframe use. Frames

could be computed at acceptable frame rates on

the single-user minicomputer. I made a poor deci-

sion when I decided to forgo double buffering and

circular buffering. The result was flicker during

continuous rotation. Double buffering required

keeping a second copy of the 2-D instructions,

which would have let even fewer 3-D coordinates

be stored in the limited minicomputer memory. I

ran out of development time before implementing

a circular buffer. The user community was still

reasonably happy because of the steady rate.

The follow-on Air Force contracts had their

own lessons—in business rather than technology.

I almost lost the first when I decided to propose

the same work but organize it differently from the

request-for-proposal (RFP). The RFP author listed

�25 tasks. I believed they could be more logically

organized and I wrote the proposal my way. The

RFP author was totally confused by the new orga-

nization and came close to disqualifying the pro-

posal for being nonresponsive. Cooler heads and

hands-on with 3-D led to a Battelle win. During

contract negotiations, the Air Force had to cut

the cost to meet the budget. I couldn’t figure out

how to cut enough until the RFP author went over

every estimate. He got me to agree to shaving 4

hours here, 8 hours there until the cost came in

line with budget. Amazing how saving enough

nickels can lead to saving real dollars. Finally, the

first demos to the Air Force RFP author occurred

at least 18 months prior. I learned that it takes a

long time to cultivate customers and get new

business. The same holds true today.

SIMILARITIES AND DIFFERENCES
During the early and mid-1970s, John and

Dave worked about 200 miles away from one

another but in highly dissimilar environments.

GMR then had 1500 employees while parent GM

had hundreds of thousands of employees who

designed and built cars, trucks, and buses. Bat-

telle is still a leading contract research lab with

hundreds of employees who generally write

research proposals and reports.

Bothorganizationswere starting to rely on com-

puters heavily. Both user communities designed

and engineered complex systems, were 3-D-savvy,

and wanted to use interactive computer graphics

to understand their 3-D data.

Battelle’s physical environment was simpler.

There was a single 777 terminal that had to com-

pute 3-D frames fast enough to satisfy a single

user. The minicomputer attached to the graphics

terminal was within 100 feet of a single mainframe

and was connected by a high-speed, dedicated

line. Themainframe itself had to service dozens of

time-share users and batch jobs. By contrast, GM

had many more users for about 100 DEC GT48s.

The userswere often remote and connected to the

mainframe via slow telecommunications lines.

GM’s applications ran on multiple, top-of-the-line

mainframes that incurred no usage fees.

Ultimately, both of us loved seeing our work

appear as 3-D images. Watching people interact

Visual Computing: Origins

98 IEEE Computer Graphics and Applications

with pictures inspired each to make computer

graphics into 50þ year careers.

CONCLUSION
When we started this article, we believed that

the primary takeaway lay in convincing readers

that system architecture decisions are as impor-

tant today as they were in the early 1970s. We

each had to balance hardware, software, com-

munications, and cost to satisfy interactive per-

formance requirements that let people perceive

3-D on a 2-D screen. The detailed decisions we

made were different but resulted in successful

systems. John’s work led to production use for

hundreds in GM. Dave’s work led to production

use for tens in Battelle and the Air Force and a

commercial product. All our success is attribut-

able to making the right architectural decisions.

As we merged our writing, we realized that

there is a second, equally important aspect to

architectural decisions: scale. 1970s hardware and

software could address problems measured in

units measured as kilo’s- and mega’s-. Today’s

hardware canhandle problemsmeasured in giga’s-

and tera’s-. There are now millions of 3-D users.

Graphics devices cost hundreds, not hundreds of

thousands. Communication that was efficient for

tens of miles is now globally efficient. Today’s

scale forces system architecture decisions that

may be different fromours yet no less critical.

Balancing scale and human performance with

computing limits and capabilities continues to

make interactive graphics challenging. . .and fun.

ACKNOWLEDGMENTS
The authors would like to thank their superb

leaders and co-workers. At GM, George Dodd, Fred

Krull, Bill Gordon, and Jim Thomas were a con-

stant source of inspiration. Battelle’s Bill Evans

and Ed Edwards provided guidance. The authors

would also like to thank Editor Mary Whitton for

her keen eyes, patience, and persistence.

& REFERENCES

1. E. Jacks, “A laboratory for the study of graphical

man-machine communication,” Proc. FJCC, vol. 26,

pp. 343–350, 1964.

2. I. Sutherland, Sketchpad: A Man-Machine Graphical

Communication System. New York, NY, USA: Garland

Publishers, 1980.

3. F. Krull, “The origin of computer graphics within

General Motors,” IEEE Ann. History Comput., vol. 16,

no. 3, pp. 40–56, Sep./Nov. 1994.

4. Mar. 2020. [Online]. Available: //en.wikipedia.org/wiki/

IBM_2250

5. J. Nielsen, “Response times: The three important

limits,” Jan. 1993. [Online]. Available: //www.nngroup.

com/articles/response-times-3-important-limits/

6. G. Erlikhman., S. Sutentag, C. Blair, and G. Caplovitz,

“Interactions of flicker and motion,” Vis. Res., vol. 155,

pp. 24–34, Feb. 2019.

7. R. Silva. “Video frame rate vs. screen refresh rate,”

2020, [Online]. Available: //www.lifewire.com/video-

frame-vs-screen-refresh-rate-1847855

8. A. vanDam, “Intelligent satellites for interactive graphics,”

Proc. IEEE, vol. 62, no. 4, pp. 483–492, Apr. 1974.

9. J. Dill and J. Thomas, “On the organization of a low

cost remote intelligent graphics terminal,” Comput.

Graph., vol. 9, no. 3, pp. 1–8, 1975.

10. Jul. 2020. [Online]. Available: //en.wikipedia.org/wiki/

CDC_6600#/media/File:CDC_6600.jc.jpg, J. Couperous,

licensed //creativecommons.org/licenses/by/2.0/deed.en

David J. Kasik is a Boeing Senior Technical Fellow

Emeritus. ACM named him a Fellow in 2013 and a

Distinguished Speaker in 2018. ACM SIGGRAPH,

presented him the Outstanding Service Award in

2012. He is a member of the IEEE CG&A Advisory

Board. He holds 10 patents, has published over

35 papers, and coauthored 2 books. He received the

Master’s degree in computer science from Colorado

in 1972 and the Bachelor’s degree in quantitative stud-

ies from JohnsHopkins, Baltimore, MD, USA, in 1970.

John C. Dill is a Professor Emeritus with the

Schools of Engineering Science and Interactive Arts

and Technology, Simon Fraser University, Burnaby,

BC, Canada. His prior positions include Cornell Uni-

versity and the General Motors Research Laborato-

ries. He has served on IEEE InfoVis and VAST

Steering Committees, co-chaired VAST 2007, and

was EIC of IEEE’s CG&A Editorial Board. He received

the IEEE VGTC 2016 Visualization Career Award. He

is a Life Member of IEEE and a Member of IEEE CS.

He received the Ph.D. degree from Caltech, in 1969.

Contact department editors David Kasik at dave.

kasik@gmail.com, Chris Johnson at crj@sci.utah.

edu, and Mary Whitton at mcwhitton@gmail.com.

September/October 2020 99

//en.wikipedia.org/wiki/IBM_2250
//en.wikipedia.org/wiki/IBM_2250
//www.nngroup.com/articles/response-times-3-important-limits/
//www.nngroup.com/articles/response-times-3-important-limits/
//www.lifewire.com/video-frame-vs-screen-refresh-rate-1847855
//www.lifewire.com/video-frame-vs-screen-refresh-rate-1847855
//en.wikipedia.org/wiki/CDC_6600#/media/File:CDC_6600.jc.jpg
//en.wikipedia.org/wiki/CDC_6600#/media/File:CDC_6600.jc.jpg
//creativecommons.org/licenses/by/2.0/deed.en

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

