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Abstract— Compared with remote sensing image (RSI)
captioning methods based on the traditional encoder–decoder
model, two-stage RSI captioning methods include an auxiliary
remote sensing task to provide prior information, which enables
them to generate more accurate descriptions. In previous two-
stage RSI captioning methods, however, the image captioning and
the auxiliary remote sensing tasks are handled separately, which
is time-consuming and ignores mutual interference between tasks.
To solve this problem, we propose a novel joint-training two-stage
(JTTS) RSI captioning method. We use multilabel classification
to provide prior information, and we design a differentiable
sampling operator to replace the traditional nondifferentiable
sampling operation to index the multilabel classification result.
In contrast to previous two-stage RSI captioning methods, our
method can implement joint training, and the joint loss allows the
error of the generated description to flow into the optimization
of the multilabel classification via backpropagation. Specifically,
we approximate the Heaviside step function with the steep logistic
function to implement a differentiable sampling operator for
the multilabel classification. We propose a dynamic contrast loss
function for multilabel classification tasks to ensure that a certain
margin is maintained between the probabilities of the positive
label and the negative label during sampling. We design an
attribute-guided decoder to filter the multilabel prior information
obtained by the sampling operator to generate more accurate
image captions. The results of extensive experiments show that
the JTTS method achieves state-of-the-art performance on the
RSI captioning dataset (RSICD), the University of California,
Merced (UCM)-captions, and the Sydney-captions datasets.

Index Terms— Image captioning, image understanding, joint
training, multilabel attributes, remote sensing image (RSI).

I. INTRODUCTION

REMOTE sensing image (RSI) captioning, which provides
a method to convert complex geographic information

from RSIs to text information, makes it easier for humans to
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utilize them. Therefore, RSI captioning has attracted increas-
ing attention from researchers [1], [2], [3], [4].

The mainstream RSI captioning process follows an
encoder–decoder sequence [5], which has the advantages of
simple structure, flexible sentence length, and natural descrip-
tion. This process takes a convolutional neural network (CNN)
as an encoder to map the image into feature vectors and
takes a sequential model, such as a recurrent neural network
(RNN) [6] or a long short-term memory (LSTM) network [7],
as a decoder to transform the feature vectors into the descrip-
tion of the input image.

The methods that follow the encoder–decoder sequence can
be further divided into single-stage methods and two-stage
methods. The methods that improve the network structure and
attention mechanisms in the encoder–decoder sequence are
called one-stage methods [8], [9], [10]. The methods that add
a stage to provide auxiliary information [11], [12], [13] are
called two-stage methods. The additional stage usually deals
with the task of image classification, image retrieval, or object
detection. Due to the introduction of auxiliary information,
two-stage methods can often generate more accurate descrip-
tions than single-stage methods [14].

As the two stages are trained separately in the previous
two-stage methods, the mutual interference between them has
been troubling. On the one hand, weak task performance in
the first stage will impact negatively on RSI captioning that
follows [11] (not to mention it is often time-consuming and
laborious to train the task). On the other hand, the errors in RSI
captioning cannot be backpropagated to the first-stage task,
which prevents the two tasks from working well together.

To solve this persistent problem, this article proposes a novel
joint-training two-stage (JTTS) method, in which the tasks of
the two stages are jointly trained and coordinated to generate
accurate descriptions. Specifically, we design a joint-training
structure to utilize the multilabel classification task in the first
stage. Then, we propose a margin-based sampling operator
(MSO) to solve the gradient explosion caused by steep logistic
function during backpropagation. Additionally, we propose a
dynamic contrast loss function into multilabel classification
as a regularization term of binary cross-entropy (BCE) loss
to take into account the distance between positive and neg-
ative labels, thereby ensuring the accuracy of the sampling
results of the first-stage task. To make better use of the
prior information provided by the multilabel classification,
we improve the two-layer LSTM structure [15] and propose
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an attribute-guided decoder to introduce three semantic gates
to guide the generation of hidden states and captions.

The main contributions of this article can be summarized
as follows.

1) We propose a JTTS method with an MSO that enables
the two-stage RSI captioning to achieve joint training.
Unlike the traditional two-stage RSI captioning method
of separate training, we train the two-stage tasks together
for the first time, producing more accurate image cap-
tions while eliminating the tedious pretraining process.

2) We propose dynamic contrast loss as a regular term
of BCE loss to consider the relative distance between
positive and negative labels in a multilabel classification
task, which improves the accuracy of the MSO and
enables the JTTS method to generate more accurate
captions.

3) We propose an attribute-guided decoder with three
semantic gate modules to guide the generation of hidden
states as well as words in the two-layer LSTM decoder.
Unlike existing methods, we use the semantic gate mod-
ules to filter the multilabel semantic prior information
during language generation, thus enabling the decoder
to better utilize the semantic information in the RSIs.

4) We conduct extensive experiments on the RSICD, the
University of California, Merced (UCM)-captions, and
the Sydney-captions datasets to validate the superior
performance of our proposed method.

The remainder of this article is organized as fol-
lows. Section II introduces related work on RSI captioning.
Section III describes the details of the proposed JTTS method.
Section IV introduces the experiments and analysis on the
three datasets. Section V summarizes this article.

II. RELATED WORK

According to their implementation, mainstream RSI cap-
tioning methods can be divided into two categories: single-
stage methods and two-stage methods.

A. Single-Stage Methods

The single-stage method is commonly designed with end-to-
end structures that do not include auxiliary prior information.
For example, Qu et al. [8] proposed a deep multimodal neural
network, in which a CNN is used as the encoder to extract
the image features, and the RNN is used as the decoder to
transfer the extracted features into comprehensive descriptions.
In addition, Qu et al. [8] built two public RSI captioning
datasets, UCM-captions and Sydney-captions, both of which
became benchmark datasets for subsequent research. Taking
into account the characteristics of RSIs, Lu et al. [9] proposed
the largest benchmark dataset for RSI captions, called the
RSI captioning dataset (RSICD). They used various image
captioning methods to provide benchmarks for the RSICD.
Li et al. [16] explored the overfitting problem caused by CE
loss in RSI captioning and proposed a novel truncation CE
(TCE) loss to reserve probability margins for nontarget words,
which helps to generate more flexible and concise descriptions
for RSIs. Li et al. [17] proposed a multilevel attention model.

Their proposal contains three attention structures, representing
the attention to different areas of the image, to different words,
and to semantics. Li et al. [18] proposed a recurrent attention
mechanism to encode the input image into a context-aware
feature representation. Zhang et al. [19] proposed a global
visual feature-guided attention (GVFGA) mechanism and a
linguistic state-guided attention (LSGA) mechanism to filter
the filter out redundant information in the image features and
the irrelevant information in the fused visual-textual feature,
respectively. Hoxha and Melgani [20] introduced a novel
decoder based on support vector machines to replace the
RNN decoder in the conventional encoder–decoder framework.
Compared with previous methods, it needs fewer annotated
samples for training and requires less training and testing time.

In general, although the existing single-stage methods are
simple and easy to train, they do not consider the prior
information in RSIs. Therefore, they are often inferior to
the two-stage methods in terms of the accuracy of generated
captions.

B. Two-Stage Methods

In the first stage of the two-stage RSI captioning method,
an auxiliary remote sensing task that differs from image
captioning is set up to obtain prior information. In the second
stage, a description is generated based on the combination
of prior information and image features extracted by the
CNN. The task in the first stage may vary; for example,
it may involve image classification, image retrieval, or object
detection. Consequently, an auxiliary task model is needed,
such as an image classification model or an object detection
model, for different tasks.

Several studies have been conducted using the two-stage
method. To understand RSIs, a geospatial relation captioning
method was proposed by Chen et al. [12]. A label-attention-
mechanism method was proposed by Zhang et al. [14]. They
established an image classification task to predict the scene
category of the image and used the prediction results to
guide the calculation of visual attention during the descrip-
tion generation process. Wang et al. [11] designed a novel
retrieval topic recurrent memory network that uses topic
information extracted from an RSI as guidance to generate
a description. A novel summarization-driven RSI captioning
approach was proposed by Sumbul et al. [21]. They first
pretrained a pointer-generator network [22] for summarization
and then combined the standard captions with the summa-
rized captions to generate a comprehensive description of
the image. Wang et al. [13] proposed a word-sentence frame-
work, including a word extractor and a sentence generator,
to improve the explainability of the RSI captioning method.
Similar to our method, their framework uses a CNN-based
multilabel classifier to provide prior information to the sen-
tence generator. In their method, however, the word extractor
and sentence generator are trained separately, and the mutual
influence between tasks cannot be considered. Zhao et al. [23]
proposed an RSI captioning method based on a structured
attention mechanism that achieves weakly supervised image
segmentation while dealing with the image captioning prob-
lem. In their work, class-agnostic image segmentation [24] can
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Fig. 1. Overall framework of our proposed JTTS method. For the input image, the pretrained encoder extracts the image features, and the multilabel classifier
predicts the multilabel attributes. Then, MSO samples the multilabel attributes and embeds them as attribute features. Finally, the attribute and image features
are input into the attribute guidance decoder to obtain the corresponding image captions.

be seen as an auxiliary task that provides prior information for
the image captioning model. Zhao [25] conducted a systematic
review of RSI captioning work. In this article, he reviewed
the existing RSI captioning methods from various perspectives
and offered insightful suggestions for potential future research
directions.

In contrast to the existing two-stage RSI captioning meth-
ods, the JTTS method proposed in this article does not require
separate pretraining for the task in the first stage. We use an
MSO to perform joint training of the multilabel classification
and the description generation, thus achieving greater synergy
between them. In addition, we design three semantic gate
modules to filter the prior information of the classification
results in the first stage to guide the description generation
process better.

III. METHODOLOGY

This section introduces in detail the proposed JTTS method.
As shown in Fig. 1, features of the input image are extracted
by the encoder, and the multilabel attributes are predicted by
a multilabel classifier. Then, multilabel attributes are sampled
by MSO, and the attributes are embedded as attribute features.
Finally, the attribute features and image features are entered
into the attribute-guided decoder to obtain the corresponding
image captions.

A. Image Feature Representation

For our JTTS method, image feature representation is crit-
ical to the quality of the generated description. In view of
the advantages of the amount of data in the ImageNet dataset,
we use a CNN pretrained on the ImageNet dataset as the image
encoder. For a given RSI I, the process of feature extraction
can be expressed as follows:

x = CNN(I ) (1)

where x ∈ RC×H×W is the image patch feature extracted by
the CNN.

To adapt to subsequent tasks, we fine-tune the extracted
image features through the fully connected layer and transform
the channel dimension from C to D, where D is the dimension
of hidden states in the language model

V = W f x + b f (2)

where V ∈ RD×H×W is the fine-tuned feature. W f ∈ RD×C

and b f ∈ RD are learned parameters.
To obtain the multilabel probability distribution of the

image, we first design a multilayer perceptron (MLP) to
predict the multilabel attributes contained in the image

V = GAP(V ) (3)

ya = MLP(V ) (4)

where GAP(·) is the global average pooling operator and
MLP(·) is an MLP with two cascaded FC-ReLU-dropout units
and one FC-sigmoid unit. V ∈ RD is the global average
pooling of V , ya ∈ R|�| represents the probability distribution
of multilabel classification, and |�| represents the size of the
dictionary.

B. Margin-Based Sampling Operator

Previously, the tasks in the two-stage RSI captioning method
had to be separately trained, because the sampling operation of
the auxiliary RSI tasks, such as image classification and image
retrieval, is not differentiable. To achieve end-to-end joint
training of the two-stage RSI captioning method, we design
an MSO to sample the results of the auxiliary multilabel
classification task.

The logistic function belongs to an important category of
smooth sigmoid functions. It was first used to model popula-
tion and cell growth. Although there have been many studies
on the logistic function, it has not been used in differentiable
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Fig. 2. Illustration of the logistic sampling operator and its derivative when
β is 1, 5, 10 and 100. (a) Curves of logistic sampling operator. (b) Curves of
derivative of logistic sampling operator.

sampling for multilabel classification tasks. For the probability
distribution ya output of the multilabel classifier, the logistic
sampling operator is defined as follows:

h(β, ya) = 1

1 + exp(−β(ya − ym + λ · margin))
(5)

where β is the reaction rate, which determines the steepness
of the sampling function; ym represents the maximum value
of ya (the probability of the most probable attribute of the
input image); λ represents the sampling coefficient; and margin
represents the interval between the mean positive and hardest
negative in the dynamic contract loss.

The sampling curves of β = {1, 5, 10, 100} are shown
in Fig. 2(a). As β increases, the logistic sampling operator
becomes steeper and approximates the Heaviside step function.

However, this operator cannot be directly used to sample
the results of multilabel classification, because the differential
of ya by the sampling operator is positively correlated with β,
and the specific expression is as follows:
∂h
(
β, y p

a

)
∂yq

a
= β exp

(−β
(

y p
a − ym + λ · margin

))
(
1 + exp

(−β
(

y p
a − ym + λ · margin

)))2

·
(

∂y p
a

∂yq
a

− ∂ym

∂yq
a

)
. (6)

Fig. 3. Illustration of MSO.

Since ym = max(ya) cannot directly obtain the derivative,
we can use the following differentiable expression to approx-
imate the maximum value function:

ym = max(ya) = lim
k→∞

1

k
log �

|�|
γ=1 exp

(
kyγ

a

)
(7)

∂ym

∂ya
= lim

k→∞ softmax(kya) = onehot(argmax(ya)) (8)

where onehot(·) represents a one-hot operator, and argmax(·)
refers to the index corresponding to the maximum value in the
vector.

As a result, we have turned the originally nondifferentiable
operation into a differentiable operation. The specific deriva-
tions of (8) are given in the Appendix. By combining (8)
with (6), we can get the partial derivative of h(β, ya) to ya.
For the nonmaximum position, that is, when q �= argmax(ya)
the expression is as follows:

∂h
(
β, y p

a

)
∂yq

a
=

⎧⎪⎨
⎪⎩

β f
(

y p
a

)
(
1 + f

(
y p

a
))2 , p = q

0, p �= q

(9)

where f (ya) equals to exp(−β(ya − ym + λ · margin)).
For the maximum position, i.e., q = argmax(ya), its partial

derivative is as follows:

∂h
(
β, y p

a

)
∂yq

a
=

⎧⎪⎨
⎪⎩

0, p = q
−β f

(
y p

a

)
(
1 + f

(
y p

a
))2 , p �= q.

(10)

We can find that the differential value of the nonmaximum
position is consistent with the value when ym is a constant.
In this case, we can draw a curve in the simplest form
of (9), as shown in Fig. 2(b). It can be found from (9) and
Fig. 2(b) that the maximum slope κ of the sampling operator is
positively correlated with β and κ = β/4. Therefore, when the
logistic function is approximated as a Heaviside step function,
that is, when β is a large value, the gradient explosion problem
may arise when training the network.

To solve the problem described earlier, we convert the
logistic sampling operator, as shown in Fig. 3, and obtain the
MSO. Inspired by [26] and [27], we define yac as the detached
copy of ya and divide the sampling process into a two-branch
structure. Specifically, we perform logistic sampling on yac and
calculate the binary mask ma and the shifting mask ba. Then,
we sample ya through ma and ba. Since the sampling process
of yac is not in the computation graph of the network, there is
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Fig. 4. Illustration of semantic gate module.

no need to calculate the gradient in the backpropagation, thus
avoiding the gradient explosion problem

ma = h(β, yac)

= 1

1 + exp(−β(yac − ymc + λ · margin))
(11)

ba = ma − yac ◦ ma (12)

ys = ma ◦ ya + ba (13)

where ◦ represents the elementwise multiplication operation.
In this case, the derivative of ys with respect to ya is as

follows:
∂y p

s

∂yq
a

= ∂
(
m p

a ◦ y p
a

)
∂yq

a
+ ∂b p

a

∂yq
a

=
{

m p
a , p = q

0, p �= q.
(14)

Since yac is the detached copy of ya , it is equivalent to
cutting off the backpropagation of the gradient in ya and
yac, so we can regard ma and ba as constant vectors when
calculating the derivative. In this way, we have solved the
gradient explosion problem that may occur during training.

The multilabel semantic features fs can then be obtained
by matrix multiplication

fs = We ys

�
|�|
γ=1 yγ

s

(15)

where We ∈ RE×|�| is the embedding matrix and E represents
the word embedding size.

C. Attribute-Guided Description Generation

We propose an attribute-guided decoder with three semantic
gate modules to filter the prior information of multilabel
semantic attributes and guide the generation of RSI captions.
Specifically, we use a two-layer LSTM architecture composed
of an attention LSTM and a language LSTM as a backbone.
The attention LSTM with hidden state h1

t ∈ RD is used to
compute visual attention, and the language LSTM with hidden
state h2

t ∈ RD is used to generate the word at time t . In contrast
to previous work, our model generates visual attention and the
corresponding description after the objects and attributes in the
image have been obtained. To achieve this, we design three
semantic gate modules so that the multilabel prior information
can be used to guide the generation of h1

t−1 in the attention
LSTM, ht−1

2 in the language LSTM, and the output word st

at time t .
As shown in Fig. 4, each semantic gate module consists

of an information vector i and an attention gate g, which
are generated by two separate linear transformations. The

information vector i of h1
t−1, h2

t−1, and st can be calculated as
follows:

i 1
t−1 = W 1

i h1
t−1 + W s1

i fs + b1
i (16)

i 2
t−1 = W 2

i h2
t−1 + W s2

i fs + b2
i (17)

i o
t = W o

i h2
t + W so

i fs + bo
i (18)

where fs represents the multilabel semantic features.
W {1,2,o,s1,s2,so}

i ∈ RD×D and b{1,2,o}
i ∈ RD are learned

parameters.
Then, the attention gate g of h1

t−1, h2
t−1, and st is calculated

as follows:
g1

t−1 = σ
(
W 1

g h1
t−1 + W s1

g fs + b1
g

)
(19)

g2
t−1 = σ

(
W 2

g h2
t−1 + W s2

g fs + b2
g

)
(20)

go
t = σ

(
W o

g h2
t + W so

g fs + bo
g

)
(21)

where W {1,2,o,s1,s2,o}
g ∈ RD×D and b{1,2,o}

g ∈ RD are learned
parameters. σ denotes the sigmoid activation function.

The semantic gates apply the attention gates to the infor-
mation vectors by using elementwise multiplication to obtain
the attended information

ˆi 1
t−1 = i 1

t−1 ◦ g1
t−1 (22)

ˆi 2
t−1 = i 2

t−1 ◦ g2
t−1 (23)

î o
t = i o

t ◦ go
t (24)

where ◦ represents the Hadamard product operation.
The workflow of the attribute-guided decoder is shown in

the top right in Fig. 1. First, the first-layer LSTM, i.e., the Att-
LSTM, is used to extract the contextual features. The input of
the Att-LSTM consists of the hidden state h2

t−1 at the time
step t − 1 of the second-layer LSTM, the output of the first
semantic gate module ˆi 1

t−1, the global visual features V , and
the word embedding feature of the input word 
t

h1
t = LSTM1

(
h1

t−1,
[
h2

t−1,
ˆi 1

t−1; V ; We
t

])
. (25)

Then, the global visual feature V and the hidden state of the
Att-LSTM h1

t are jointly used to calculate the visual attention
weights

a j
t = Wa tanh

(
WvaV + Whah1

t

)
(26)

αt = softmax(at) (27)

V̂img =
H×W∑

j=1

α
j
t V j

img (28)

where Wva, Wha ∈ RD×D are learned parameters. αt ∈
RH×W represents the visual attention weights and V̂img ∈ RD

represents the weighted visual features of the input image.
The input of the second-layer LSTM, i.e., L-LSTM, consists

of the hidden state of Att-LSTM h1
t at time step t , the output

of the second semantic gate module ˆi 2
t−1, and the weighted

visual features V̂img

h2
t = LSTM2

(
h2

t−1,
[
h1

t ; ˆi 2
t−1; V̂img

])
. (29)

We denote the generated image captions as S =
[s1, s2, . . . , st , . . . , sT ]. Combining (24) and (29), the word
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Fig. 5. Illustration of the dynamic contrast loss function for multilabel
classification tasks.

st can be generated by the output of the third semantic gate
module î o

t at time t

st = argmax
(
softmax

(
Woî o

t + bo

))
(30)

where Wo ∈ R|�|×D and bo ∈ R|�| are learned parameters.

D. Training and Objectives

Most previous multilabel classification tasks used only BCE
loss as the objective function. Although BCE loss can make the
output of the multilabel classifier close to the distribution of
the ground truth, it does not take into account the problem of
label imbalance in multilabel classification and cannot control
the probability distribution of positive and negative samples.
Therefore, only using BCE loss as the objective function of
multilabel classification cannot ensure the accuracy of MSO
sampling results. We propose a dynamic contrast loss function
for multilabel classification that controls the margin between
positive and negative labels and reduces the imbalance of pos-
itive and negative labels during training. The schematic of the
dynamic contrast loss function for multilabel classification is
shown in Fig. 5. Our method calculates the average probability
of positive labels and constrains its distance from the hardest
negative label. In this way, the problem of label imbalance is
reduced, thereby improving the sampling accuracy of MSO.
Specifically, the expression of dynamic contrast loss function
for multilabel classification is as follows:

Ld = max

(∑�
γ=1 yγ yγ

a∑�
γ=1 yγ

− max((1 − y) ◦ ya) + margin, 0

)

(31)

where y represents the ground truth of multilabel
classification.

The above-mentioned dynamic contrast loss function con-
strains that the distance from the average of the positive labels
to the hardest label is greater than the margin. It is worth
mentioning that when λ in (11) is 1.0, the MSO samples
the labels in the probability range [ymc − margin, ymc]. Since
ymc >= (

∑�
γ=1 yγ yγ

a )/(
∑�

γ=1 yγ ) is always true, the accuracy
of the sampling results is ensured. Moreover, when λ > 1,
the accuracy of the sampling results will decrease, but the
diversity will increase. Similarly, when λ < 1, the accuracy
of the sampling results will increase, but the diversity may
decline.

We retain the following BCE loss to accelerate the training
of multilabel classification tasks:

Lbce = 1

�

�∑
γ=1

(
yk log

(
yγ

a

)+ (1 − yγ ) log
(
1 − yγ

a

))
. (32)

For RSI captioning, we train the proposed model by opti-
mizing the CE loss

Lcap = −
T∑

t=1

log
(

pθ

(
s∗

t

∣∣s∗
1:t−1

))
(33)

where s∗
1:t−1 denotes the target ground truth sequence.

Then, the total loss function is as follows:
L total = Lcap + Lbce + Ld . (34)

IV. EXPERIMENTS

We conducted extensive numerical experiments to verify the
effectiveness of our JTTS method. This section first introduces
the datasets and the evaluation metrics used. Then, the exper-
imental settings are specified. We also conducted a series of
ablation experiments to verify the effect of each submodule
in our method. We compared the experimental results of
our proposed method with those of state-of-the-art methods.
Finally, we discussed the selection of hyperparameters in our
experiments.

A. Datasets

To verify the effectiveness of our proposed method,
we conduct extensive experiments using the RSICD, the
UCM-captions, and the Sydney-captions datasets.

1) UCM-Captions: This dataset, based on the UC Merced
land-use dataset [28], was proposed in [8]. The
dataset contains 2100 high-resolution aerial images
(21 scenes with 100 images each). All the images are
256 × 256 pixels, with a pixel resolution of 0.3048 m.
Each image is annotated with five descriptions, giving
10 500 sentences.

2) Sydney-Captions: This dataset, based on the Sydney
dataset [29], was also proposed in [8]. The images
were acquired from the Sydney area of Google Earth.
It contains a total of 613 high-resolution RSIs with
seven categories. All the images have been cropped to
500 × 500 pixels (with a pixel resolution of 0.5 m).
Five different descriptions are included for each image,
giving a total of 3065 sentences.

3) RSICD: This dataset was provided in [9]. It is by far the
largest public RSI captioning dataset. The images were
collected from Google Earth, Baidu Map, MapABC, and
Tianditu. It contains 10 921 images covering 30 scene
categories. The images are 224 × 224 pixels. A total
of 24 333 different sentences are provided. Lu et al. [9]
extended the number of descriptions to 54 605 by ran-
domly duplicating the existing sentences, ensuring each
image has five descriptions.

From these three datasets, we used 80% of the data for
training, 10% for evaluation, and 10% for testing. Specifically,
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we used the same settings as the papers that proposed these
datasets [8], [9]. These divisions are consistent with the
comparison methods, ensuring a fair comparison.

B. Evaluation Metrics

To evaluate the performance of our proposed method and
the quality of the generated sentences, we used nine metrics,
including BLEU-n (n = 1, 2, 3, 4), recall-oriented understudy
for gisting evaluation (ROUGE_L), METEOR, consensus-
based image description evaluation (CIDEr), semantic propo-
sitional image caption evaluation (SPICE), and Sm.

1) BLEU-n: Bilingual evaluation understudy (BLEU) [30]
is a metric first used to evaluate the performance
of machine translation methods. It measures the
co-occurrences of n-grams in generated sentences and
ground truth sentences. Commonly used values of n
are 1, 2, 3, and 4.

2) METEOR: Metric for evaluation of translation with
explicit ordering (METEOR) is used to evaluate the
accuracy of machine translation [31]. The metric is
calculated by generating an alignment between the gen-
erated sentences and ground truth sentences. Unlike
BLEU-1, METEOR takes into account the uni-gram
precision and the uni-gram recall.

3) ROUGE_L: It is a metric for evaluating automatic
summarization and machine translation [32]. ROUGE_L
is the F-measure of the longest common subsequence
between the generated sentences and the ground truth
sentences.

4) CIDEr: It is specially designed for image captioning
tasks [33]. It applies term frequency-inverse document
frequency (TF-IDF) weights to n-grams in the generated
and ground truth sentences.

5) SPICE: It is a principled metric for evaluating image
captioning that takes semantic content into account [34].
This method converts the generated sentences and
ground truth sentences into a graphic-based semantic
representation to evaluate the quality of the generated
descriptions.

6) Sm is the arithmetic mean of BLEU-4, METEOR,
ROUGE_L, and CIDEr. It was proposed in the 2017 AI
Challenger1 to evaluate the quality of the generated
sentences

Sm = 1

4
(BLEU-4 + METEOR + ROUGE_L

+ CIDEr). (35)

C. Experimental Settings

We performed the experiments on NVIDIA Quadro RTX
5000 with PyTorch version 1.6.0. We used ResNet-101 [35]
pretrained on the ImageNet dataset as the encoder. For the
multilabel classification task, we extracted high-frequency
nouns and adjectives from the target ground truth sequences of
the datasets as the multilabel classification labels. More specif-
ically, due to the different sizes of the UCM-Captions dataset,
the Sydney-captions dataset, and the RSICD, we selected

1https://challenger.ai/competition/caption

words that appear more than 100, 50, and 200 times, respec-
tively, as the ground truth labels. The reaction rate β was
set to 100. The best values on the validation set for all
datasets are margin = 0.2 and λ = 0.5. In the attribute-
guided description generation step, we used GloVe [36] to
embed the multilabel classification results into feature vectors.
The hidden state dimensions of the LSTMs were set to 1000.
We used RAdam [37] to optimize the entire model with the
learning rate 5e-4. The batch size was set to 10. All models
were trained for a total of 30 epochs.

D. Exploring the Efficient CNN Structure

To explore the efficient CNN structure for our method,
in this section, we discuss several most commonly used
CNN encoders in RSI captioning task, i.e., AlexNet [38],
VGG-16 [39], VGG-19 [39], GoogleNet [40], and
ResNet-101 [35].

The results of the comparison experiments under differ-
ent CNN encoder structures are shown in Table I. On the
UCM-Captions dataset, different CNNs significantly impact
the experimental results. Among them, our method performs
best when ResNet-101 is used as the encoder, and the SPICE
and Sm scores are 0.5231 and 1.4437, respectively. It is worth
noting that although the performance of our method is lower
than that of ResNet-101 when using other CNNs, it still
achieves competitive performance compared with the previous
methods. On the Sydney-captions dataset, there is not much
difference in performance when using different CNNs. It may
be because the number of images in the Sydney-captions
dataset is relatively small, and all CNNs can obtain good image
feature representations on this dataset. On the RSICD, our
method achieved the best results when ResNet-101 was used
as the encoder, with SPICE and Sm scores of 0.4877 and
1.0922, respectively.

Considering the performance of our method under different
CNNs on the three datasets, we find that ResNet-101 is the
most suitable encoder for our method. It is possible that
ResNet-101 can extract more discriminative feature repre-
sentations than other CNNs, which is very important to our
method because the features extracted by CNN in our method
are entered into both the decoder and the multilabel classifier.

E. Comparison With State-of-the-Art Methods

To demonstrate the effectiveness of our proposed method,
exhaustive comparative experiments were conducted with
the following 17 state-of-the-art methods: vector of locally
aggregated descriptors (VLAD)-LSTM [9], scale-invariant fea-
ture transform (SIFT)-LSTM [9], collective semantic metric
learning framework (CSMLF) [41], FC-ATT + LSTM [10],
SM-ATT + LSTM [10], soft attention [9], hard attention [9],
Sound-a-a [42], SAT (LAM) [14], ADAPTIVE (LAM) [14],
the TCE loss-based method [16], the word-sentence frame-
work [13], Recurrent-ATT [18], GVFGA + LSGA [19],
structured attention [23], SVM-D BOW [20], and SVM-D
CONC [20]. VLAD-LSTM and SIFT-LSTM use handcrafted
features to represent the image, and the remaining methods
use CNNs as encoders to extract the image features. These
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Fig. 6. Illustration of ablation study. (a) “b.” (b) “b. + sg/s.” (c) “b. + sg + ls” and “b. + sg + MSO.” (d) “b. + sg + MSO + Ld .” “b. + sg + MSO +
Ld .” The “b” denotes the structure of the baseline model. “b. + sg/s” denotes the baseline model combined with the semantic gate modules, which the models
in two tasks are separately trained. “b. + sg + ls” denotes the joint-training image captioning model with logistic sampling. “b. + sg + MSO” denotes the
joint-training image captioning model with MSO. “b. + sg + MSO + Ld ” denotes the model introduces the dynamic contrast loss function as the objective
function for a multilabel classification task based on “b. + sg + ls” model. “b. + sg + MSO + Ld” denotes the model introduces the dynamic contrast loss
function as the objective function for a multilabel classification task based on “b. + sg + MSO” model.

TABLE I

COMPARISON RESULTS OF DIFFERENT CNN ENCODER STRUCTURES

CNNs are pretrained on the ImageNet dataset, as is the case
in our method. The details of these methods are as follows.

VLAD-LSTM and SIFT-LSTM were both proposed in [9].
They use handcrafted features (VLAD features [43] and SIFT
features [44]) to represent the input image and use an LSTM as
the decoder to generate image captions. Specifically, the RSI is
first resized to 224 × 224 and then segmented into 16 patches,
each with a size of 56 × 56. Then, an SIFT feature is obtained
for each patch by principal component analysis of the original
SIFT features. Finally, 16 SIFT features are arranged into a
vector to represent the image. The VLAD feature is obtained
by aggregating the SIFT features.

CSMLF was proposed in [41], in which metric learning was
introduced to learn the latent semantic embeddings of the input
image and corresponding captions.

FC-ATT + LSTM and SM-ATT + LSTM were both pro-
posed in [10]. Both methods extracted high-level features to
represent attributes using a CNN, and they used the features to
guide the calculation of attention. FC-ATT + LSTM extracts
the high-level features from the output of the last fully

connected layer, and SM-ATT + LSTM extracts the high-level
features from the output of the softmax layer.

Hard attention and soft attention were both proposed in [9].
The authors proposed a new benchmark dataset, the RSICD,
for the RSI captioning task, and they used the encoder–decoder
models based on the “soft” and “hard” attention mechanisms
proposed in [45], to evaluate the performances of the two
methods on the RSICD.

Sound-a-a was proposed in [42]. The method used sound
information as the active attention for generating more accu-
rate RSI captions.

SAT (LAM) and ADAPTIVE (LAM) were both proposed
in [14]. It proposed a label-attention-mechanism method,
which used the word embedding vector of a predicted label to
guide the calculation of an attention mask, to exploit redundant
image features of the RSI.

The TCE loss-based method was proposed in [16].
By reserving a probability margin for the nontarget words,
a novel TCE loss was proposed to alleviate the overfitting
problem caused by CE loss in RSI captioning.
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TABLE II

COMPARISON RESULTS WITH 17 STATE-OF-THE-ART METHODS ON THE UCM-CAPTIONS DATASET

The word-sentence framework was proposed in [13].
By dividing the task into two stages, word extraction and
sentence generation, it provides a more intuitive way for the
RSI captioning task.

Recurrent-ATT was proposed in [18]. It utilized a recur-
rent attention mechanism to encode the input image into
context-aware feature representation and employed different
dilated convolutions to capture multiscale features.

GVFGA + LSGA was proposed in [19]. By exploiting
GVFGA and LSGA mechanisms, it filtered out redundant
information in image features and irrelevant information in
the fused visual-textual features.

SVM-D BOW and SVM-D CONC were both proposed
in [20]. They replaced the RNN decoder in the traditional
encoder–decoder framework with a support vector machine for
decoding image features into image captions. SVM-D BOW
and SVD-D CONC denote the methods for encoding sentences
based on the bag-of-words model and word concatenation,
respectively.

Structured attention was proposed in [23]. It utilized selec-
tive search [24] to segment the input image into a set
of class-agnostic segmentation proposals. Then, it used a
structured attention module to guide the model to focus on
structured features during training.

1) Results on the UCM-Captions Dataset: Table II shows
the comparison results of the methods described earlier and our
method on the UCM-Captions dataset. Our method achieves
the highest performance for all nine metrics. For the CIDEr
score, which is used to evaluate the image captioning task, our
method achieved 3.7102, improving 2.5% over the previous
state-of-the-art methods. For the comprehensive score Sm,
our method achieved 1.4437, which is 3.0% higher than the
previous state-of-the-art methods.

2) Results on the Sydney-Captions Dataset: The compar-
ative results on the Sydney-captions dataset are shown in
Table III. Similar to the results obtained from the UCM-
Captions, our method achieves the highest scores for all nine
metrics. Although our method improves by only 0.6% in the

METEOR score compared with the “TCE loss-based method,”
our method’s comprehensive performance has obvious advan-
tages over the previous state-of-the-art methods. Compared
with the “recurrent-ATT” method, which has the previous
highest Sm score, our method achieves a 7.6% improvement
on Sm. Moreover, our method achieves a 6.5% improve-
ment on the CIDEr score compared with the “recurrent-ATT”
method.

3) Results on the RSICD: Table IV shows the results of
comparative experiments on the RSICD. Our method achieves
the highest performance on the RSICD, scoring first in all
nine metrics. For the CIDEr metric, which specifically reflects
the performance of the image captioning tasks, our method
achieves 2.7958, a 1.5% improvement over the second-highest
score (“recurrent-ATT” method). In addition, for the Sm score,
which comprehensively evaluates the performance of the RSI
captioning task, our method has improved by 1.8% over the
“recurrent-ATT” method.

F. Ablation Study

To verify the effectiveness of each submodule in our pro-
posed model, we conducted extensive ablation experiments
on the RSICD, the UCM-captions, and the Sydney-captions
datasets. The baseline model uses a CNN pretrained on the
ImageNet dataset as the encoder and the two-layer LSTM
model [15] as the decoder. For convenience, we denote the
baseline model as “b.” The structure of the baseline model
is shown in Fig. 6(a). We have conducted the following five
ablation experiments.

1) “b. + sg/s:” The baseline model is combined with the
semantic gate modules when the multilabel classifier and
the image captioning model are separately trained.

2) “b. + sg + ls:” The multilabel classifier and the caption-
ing model are jointly trained, and the logistic sampling
operator in (5) is used to sample the classification
results.
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TABLE III

COMPARISON RESULTS WITH 17 STATE-OF-THE-ART METHODS ON THE SYDNEY-CAPTIONS DATASET

TABLE IV

COMPARISON RESULTS WITH 17 STATE-OF-THE-ART METHODS ON THE RSICD

3) “b. + sg + MSO:” The multilabel classifier and the
image captioning model are jointly trained, and the
sampling operator adopts the MSO in (11)–(13).

4) “b. + sg + MSO + Ld :” On the basis of “b. + sg
+ ls,” the dynamic contrast loss function is introduced
into the multilabel classification as part of the objective
function.

5) “b. + sg + MSO + Ld (ours):” The method proposed
in this article, that is, on the basis of “b. + sg + MSO,”
the dynamic contrast loss function is introduced into the
objective function of the multilabel classification.

It is worth mentioning that, since β is set to 100, the gradient
explosion problem may occur in the backpropagation in “b. +
sg + ls” and “b. + sg + MSO + Ld ,” which may easily lead
to the collapse of the model training. To solve this problem,
we introduce the strategy of gradient clipping, which restricts
the gradient in the range of [−1, 1] during backpropagation.
After adding the gradient constraint, the “b. + sg + ls” and
“b. + sg + MSO + Ld ” models can be trained stably.

We analyzed the effect of each submodule in combination
with the experimental results in Table V.

1) Effect of Attribute-Guided Decoder: Comparison of the
experimental results of “b.” and “b. + sg/s” in Table V
shows that adding semantic gate modules in the decoding
stage to introduce the multilabel semantic prior information
improves the performance on three datasets. Specifically, in the
UCM-Captions dataset, the SPICE and Sm scores of “b. +
sg/s” increase by 3.9% and 3.4%, respectively, compared with
those of “b.;” in the Sydney-Captions dataset, the SPICE
and Sm scores of “b. + sg/s” are increased by 1.8% and
3.1%, respectively, compared with those of the “b.;” in the
RSICD, the SPICE and Sm scores of “b. + sg/s” are increased
by 3.6% and 1.1%, respectively, compared with those of
“b.” These results show that the attribute-guided decoder can
effectively use multilabel semantic information and is suitable
for different datasets.

2) Effect of Joint Training: The experimental results of
“b. + sg + ls” and “b. + sg/s” in Table V show that, compared
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Fig. 7. Captioning examples with the predicted multilabel attributes and the sentences generated by the baseline model and our proposal. The “GT” denotes
the ground truth sentence. The “base” denotes the sentence generated by the baseline model. The “pattr” denotes the multilabel attributes predicted by the
multilabel classifier. The “Ours” denotes the sentence generated by our method. The words in red are words that are not matched with the corresponding
image.

with the previous method of training two-stage tasks, the
joint-training of two-stage tasks by using logistic sampling
improves the performance of the model on the RSICD and
the UCM-Captions datasets. However, in the Sydney-captions
dataset, “b. + sg/s” behaves similar to “b. + sg + ls.” This may
be because the gradient distribution of the logistic sampling
method is very steep when β is 100, as shown in Fig. 2(b).
Although the model can be made trainable through the strategy
of gradient clipping, the derivative of the logistic function
with a β of 100 is zero in some situations. In the zero
gradient interval, the joint training of multilabel classification
and image caption tasks will degenerate into an effect similar
to that of separate training.

3) Effect of Margin-Based Sampling: The results of “b. +
sg + MSO” and “b. + sg + ls” in Table V show that after
improving the sampling method, the performance of the model
on the three datasets improved. This is because the MSO
not only solves the problem of gradient explosion but also
alleviates the problem of the gradient of the steep logistic
function sometimes being zero in joint training.

4) Effect of the Dynamic Contrast Loss Function: We
established two groups of comparative experiments to ver-
ify the effectiveness of introducing the dynamic contrast
loss function to multilabel classification. The results of

“b. + sg + MSO + Ld ” and “b. + sg + ls” demonstrate
that the performance of the model on the three datasets
improved after introducing the dynamic contrast loss function.
Similarly, the performance of “b. + sg + MSO + Ld ”
compared with “b. + sg + MSO” also improved on the three
datasets. In particular, after introducing the dynamic contrast
loss function, the most obvious improvement is on the Sydney-
captions dataset. The Sm score of “b. + sg + MSO + Ld ” is
5.1% higher than that of “b. + sg + ls” and the Sm score
of “b. + sg + MSO + Ld ” is 3.7% higher than that of
“b. + sg + MSO.”

G. Parameter Sensitivity Analysis

There are two significant hyperparameters in the JTTS
method, margin and λ. Margin corresponds to the distance
between the average positive labels and the most difficult
negative label in the dynamic contract loss, and λ corresponds
to the sampling coefficient in the MSO. In this section, we per-
formed a sensitivity analysis of the JTTS method in terms of
these two hyperparameters, which not only helps to evaluate
the extent to which various hyperparameter selections affect
the performance of our method but also provides guidance for
the hyperparameter initialization when transferring our method
to a new RSI dataset in the future.
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TABLE V

ABLATION STUDY RESULTS ON THE THREE DATASETS

Fig. 8. Visualized attention results of the baseline model and our proposal. In the figures, the closer it is to red, the higher the degree of attention, and the
closer it is to blue, the lower the degree of attention.

The impact of margin on our method is shown in Table VI.
For the experiments, we set λ = 0.5 as described in
Section IV-C, and set the margin from 0.1 to 0.6. Overall, the
performance of our method fluctuates with different margin
choices but is still competitive with the previous state-of-the-
art methods on the three datasets. On the Sydney-captions
dataset, our method has the highest sensitivity to margin.

In comparison with the performance at margin = 0.2, the Sm
and SPICE scores decline at margin = 0.6 by 4.5% and 4.3%,
respectively. It could be because the Sydney-captions dataset is
the smallest of the three datasets and when the margin is large,
it is easier to overfit the label distribution of the training set.

The impact of λ on our method is shown in Table VII.
For the experiments, we set λ to 0.1, 0.3, 0.5, 1.0, and
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TABLE VI

COMPARISON RESULTS WITH DIFFERENT MARGINS
ON THE DIFFERENT DATASETS

TABLE VII

COMPARISON RESULTS WITH DIFFERENT SIZE

OF λ ON THE DIFFERENT DATASETS

2.0, respectively, and set the margin to 0.2, as described in
Section IV-C. Similar to the analysis of margin, the per-
formance of our method fluctuates with different λ choices
but has an overall advantage over the previous state-of-the-
art methods. Among the three datasets, our method has the
highest sensitivity to λ on the Sydney-captions dataset. The
performance of our method decreases significantly when λ is
0.1 and 2.0. As can be seen from (11), when λ is less than
1.0, sampling accuracy increases, while diversity drops and
vice versa. From the experimental results, we can find that
our method effectively balances accuracy and label diversity
when lambda is set at 0.5 or 1.0.

H. Qualitative Analysis

To show the effectiveness of our proposed JTTS method,
we selected some of the generated captions from all three
datasets for qualitative analysis, as shown in Fig. 7. In the fig-
ure, “GT” represents the ground truth sentences of the image,
“base” represents the description generated by the baseline
model mentioned in Section IV-F, “pattr” represents the results

of multilabel classification, and “Ours” represents the descrip-
tion generated by the JTTS method.

To facilitate comparison, we manually marked the inappro-
priate descriptions in red. The overall description results show
that the descriptions generated by our method are more in
line with the content of the image than those of the baseline
model. In the first image in the first row, for example, our
method accurately describes the scene as a resort near a beach,
whereas the baseline model mistakes it for a parking lot next
to an airport. Moreover, the results of multilabel classification
can guide the generation of descriptions. The results in Fig. 7
show that most images with accurate multilabel predictions
are accurately described. However, for the fifth image in the
first row, the description generated by our method has some
mistakes. As the multilabel classifier incorrectly predicts that
the scene contains “forest,” our method describes the scene
as “many buildings are in a piece of forest.” It shows that
the results of multilabel classification significantly impact our
method.

In addition, according to (25)–(27), we can find that the
output of the semantic gate module can guide the calculation
of visual attention. Therefore, we compared the results of the
attention weights of our JTTS method and the baseline method
when generating each word. The visualized results are shown
in Fig. 8.

It can be seen from Fig. 8 that our method focused on the
area of the house when generating the first word due to the
introduction of semantic prior information. Then, it accurately
focused on the area containing “trees” and “lawn” when
describing the background. In the baseline method, the image
is described as a baseball field. This error is reasonable for
the algorithm because the fan-shaped contour in the upper left
corner of the image is similar to a baseball diamond. How-
ever, the baseline method’s visual attention is chaotic when
generating captions. When it generates words corresponding
to a baseball diamond, it focuses on the upper right corner
of the image, which is irrelevant to the easily confused area.
Our method can produce more accurate attention and image
captions than the baseline through semantic gate modules and
joint training.

I. Analysis of Training and Testing Time

In engineering deployment, algorithmic efficiency is signif-
icant. To evaluate the efficiency of our method, we, respec-
tively, calculated the pretraining time, training time, testing
time, floating point operations (FLOPs), and the number of
parameters of SAT, baseline model, and our method on the
UCM-Captions dataset, as shown in Table VIII.

From the results of the comparison experiments, we can find
that since our method adds a multilabel classification branch
and three semantic gate modules, the FLOPs and number of
parameters of our method are more than the baseline model.
However, our method is superior in terms of performance
and total training time (training for 30 epochs) compared
with the previous two-stage methods that train two tasks
separately. In addition, the performance of our method is the
best among the three methods. Thus, considering the time cost
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TABLE VIII

COMPARISON RESULTS OF THE TRAINING AND TESTING TIME OF DIFFERENT METHODS ON THE UCM-CAPTIONS DATASET

TABLE IX

COMPARISON RESULTS OF DIFFERENT PRETRAINED DATASETS

and performance factors, our method trades a relatively small
time cost for a significant performance improvement.

V. CONCLUSION

In this article, we propose a JTTS method for RSI cap-
tioning to collaboratively train tasks in two-stage RSI cap-
tioning. We established multilabel classification to provide
prior information for image description generation, and we
designed a differentiable MSO to replace the traditional
sampling process in multilabel classification. We propose a
dynamic contrast loss function as a regularization term for
the multilabel classification task to improve the accuracy of
the sampling results. Our proposed method allows for joint
training for both multilabel classification and language models.
The results of extensive experiments show that our proposed
method outperforms the current state-of-the-art methods on the
RSICD, the UCM-captions, and the Sydney-captions datasets.
However, one limitation of this work is that our method cannot
generate fine-grained RSI captions based on practical appli-
cation scenarios, such as road traffic management, disaster
assessment, and so on, since the annotations of current RSI
captioning datasets are coarse-grained. In the future, we will
use fine-grained RSI classification datasets and corpus data
to provide detailed prior information for the RSI captioning
task to generate more detailed image captions, which enables
the RSI captioning model to provide more helpful information
for practical application scenarios. We also want to implement
our method on MindSpore, a new deep-learning computational
framework. These problems are left for future work.

APPENDIX

A. Proof for (8) in This Article

Here, we provide the proof of (8) in this article. The proof
of (∂ym/∂ya) = limk→∞ softmax(kya) in (8) is as follows:
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Therefore, we can get the following derivation:
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The proof of limk→∞ softmax(kya) = onehot(argmax(ya))
in (8) is as follows. Assuming that y ′
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When k tends to ∞, we can get the following expression:
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Due to softmax(kya) = softmax(ky ′
a), we have
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= onehot(argmax(ya)). (40)

B. Discussion on Pretraining Dataset

Most previous works on RSI captioning used CNNs pre-
trained on the ImageNet dataset, but natural images in Ima-
geNet are very different from RSIs. Therefore, we set up the
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case of CNN pretrained on the NWPU-RESISC45 dataset,
a remote sensing scene classification dataset, to compare with
the case of CNN pretrained on the ImageNet dataset, and the
results are shown in Table IX.

The comparison results in Table IX show that CNN pre-
trained on NWPU-RESISC45 can achieve better results than
those pretrained on ImageNet. It proves that pretraining on an
RSI dataset is more helpful for RSI captioning than pretraining
on a natural image dataset.
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