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Abstract— This work explores the properties characterizing the
phase nonclosure of multilook (ML) synthetic aperture radar
(SAR) interferograms. Specifically, we study the implications of
ML phase time incongruences on the generation of ground dis-
placement time series through small baseline (SB) multitemporal
InSAR (Mt-InSAR) methods. Our research clarifies how these
phase inconsistencies can propagate through a time-redundant
network of SB interferograms and contribute, along with phase
unwrapping (PhU) errors, to the quality of the generated ground
displacement products. Moreover, we analyze the effects of
short-lived phase bias signals that could happen in sequences of
SB interferograms and propose a strategy for their mitigation.
The developed methods have been tested using both simulated
and real SAR data. The latter were collected by the Sentinel-1
A/B (C-band) sensors over the study areas of Nevada, USA, and
Sicily, Italy.

Index Terms— Ground deformations, multitemporal InSAR
(Mt-InSAR) algorithms, phase closure.

I. INTRODUCTION

THREE synthetic aperture radar (SAR) images that inter-
fere with each other can generate three interferograms.

Several investigations (e.g., [1], [2], [3], [4]) have disclosed
a lack of consistency among triplets of interferograms when
multilooking operations (or any other statistical procedure,
e.g., the noise filtering [5], [6], [7]) are independently applied
to every single interferometric SAR data pair. Furthermore,
unlike the statistical nature of the nonclosure phase triplets,
they have also been related to some underlying systematic
physical sources [2], [8]. Some scholars have shown that phase
nonclosure signals can bring valuable information on ground
properties, for instance, related to the soil moisture content
[9], [10], [11], [12], [13], [14], [15], [16], complementing
information obtained from the amplitude of SAR images [17].
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The phase inconsistencies among a triplet of SAR interfer-
ograms have an impact on the retrieval of ground displace-
ment time series through the multitemporal interferometric
SAR (Mt-InSAR) techniques [3], [18], [19], [20], [21]. For
instance, phase nonclosure triplets might lead to increased
phase unwrapping (PhU) errors in a sequence of time-
redundant, multitemporal multilook (ML) SAR interferograms
because they hinder the time inconsistency of the unwrapped
phases [22], [23], [24], [25], [26], [27], [28]. Besides, some
advanced Mt-InSAR methods exploit triplets of unwrapped
phases to straightforwardly correct PhU errors in sequences
of differential SAR interferograms (DInSAR) [25], [29], [30],
[31], [32], [33]. Moreover, recent works [34], [35], [36] have
claimed that the phase nonclosure signals could lead to a
bias in the estimate of the mean ground deformation velocity
through small baseline (SB)-oriented Mt-InSAR algorithms.
Moreover, some phase bias mitigation approaches have very
recently been proposed (see [37], [38]). These methods share
some similarities: they exploit long polygon-shaped phase
loops and hold the simplified assumption that the phase bias
depends on the interferograms temporal baseline (i.e., one
phase bias correction for each group of interferograms with
a specific temporal baseline).

In our work, we study the properties of phase nonclosure
among sets of time-redundant networks of ML SAR interfero-
grams to characterize their effects on the ground displacement
time series retrieved using Mt-InSAR SB algorithms. They
exploit time-redundant, reduced networks of interferograms
with small perpendicular and temporal baselines [19], [21],
[31], [39], [40], [41]. We show that a set of stable, coherent
pixels at the ML scale, can be suitably identified by analyzing
the phase triplets obtained from the selected networks of
SB interferograms [42], [43]. Furthermore, a method for
estimating and reducing the phase biases into sequences of ML
interferograms, relying on the exclusive use of phase triplets,
is developed. Experiments were carried out on simulated data
and two sets of SAR images collected by the European
Copernicus Sentinel-1/A-B (S-1/A-B) sensors over Nevada,
USA, and Sicily, Italy. The proposed investigation demon-
strates the validity of the developed phase bias mitigation
method.

This article is organized as follows. Section II presents
the theoretical background of the interferograms’ phase
nonclosures. Section III proposes a method for phase bias
reduction in sequences of ML SB interferograms. Section IV
shows some simulations. Section V studies the implications

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3698-908X
https://orcid.org/0000-0002-7843-3565


5120117 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

of noncompensated phase closures for generating interfero-
metric SAR (InSAR) products through SB-oriented Mt-InSAR
processing chains. Experimental results are shown in
Section VI. Conclusions are finally addressed in Section VII.

II. PHASE TRIPLET’S CLOSURE PROPERTIES

Let us consider a set of N SAR images collected at the
ordered times t = [t0, t1, . . . , tN−1]T and co-registered to a
common reference geometry, and let � = [φ0, φ1, . . . , φN−1]T

be the (unknown) vector of the full phases (i.e., not restricted
to the [−π, π] range) associated with every single SAR image.
Given three interferometric SAR data pairs computed from
three generic SAR images collected at times th, tk, tq (see
Fig. 1), the following relation holds:

�φh,k +�φk,q +�φq,h = 0 (1)

where �φn,m = φm − φn is the phase difference between the
single-look (SL) SAR images at times tm and tn . However,
the relation (1) is not applicable when ML interferograms are
considered because they involve the estimation of averaged
phase values that are independently computed (interferogram
by interferogram) over a group of neighboring SAR pixels and
they are generally time-inconsistent. In this case, the phase
turns out to be a rotational field, see [2] and [44]

�φML
h,k +�φML

k,q +�φML
q,h �= 0 (2)

where �φML
n,m = �ϕML

n,m + 2πUn,m is the phase of
the generic (n,m) ML SAR interferogram, �ϕML

n,m =
�
�
(1/L)

�
�

exp
�

j (ϕm − ϕn)
��

is the relevant (wrapped) ML

interferometric phase, Un,m is the number of correct (generally
unknown) 2π-cycles of the (n,m) unwrapped ML interfero-
gram, and L is the number of looks. Note that j = √−1 and
� is the phase extraction operator; also, � is the group of
averaged SAR pixels at the SL scale used to compute the ML
interferograms. The (time) rotational phase field in (2) is called
a nonclosure phase triplet. The excess phase that prevents the
closure of the triplet in (2) has different contributions related
both to random and systematic sources [1], [2], [34], [44],
[45], [46]. The nonclosure phase is a time rotational (i.e., a
time-inconsistent) field.

Note that given N SAR images, among the whole pos-
sible N(N − 1)/2 SAR interferograms that can be gener-
ated, only N − 1 are independent. In contrast, the others
(N − 1)(N − 2)/2 can be calculated from linear combinations
of the previous ones. Multitemporal SB InSAR techniques
[18], [47] rely on processing a set of SB ML interferograms
M ≤ N(N − 1)/2, which are typically selected by imposing
thresholds on the maximum allowed temporal and perpen-
dicular baselines of the SB interferograms. Given such a
set of M SB SAR data pairs, a number, say �, of phase
triplets could then be identified. Specifically, it is worth noting
that, considering only a set of SB SAR data pairs, � could
be noticeably smaller than the maximum number of triplets
that can be formed with N SAR images, which is equal to
�max = [N(N − 1)(N − 2)]/6, of which only �independent =

[(N − 1)(N − 2)]/2 are independent [2]. We observe that the
zth ML phase triplet can be expressed as

�φtr
z = �φML

h(z),k(z) +�φML
k(z),q(z) +�φML

q(z),h(z)

= �ϕ tr
z + 2πUz, z = 0, 1, 2, . . . ,�− 1 (3)

where �φtr
z and �ϕ tr

z = W [�φtr
z ] �= 0 are the zth unwrapped

and wrapped nonclosure phase triplet, respectively, Uz is the
composite 2π-integer multiple of the zth triplet, and h(z), k(z),
and q(z) are the three epochs of the zth triplet. Note also that
W (·) is the operator that wraps out the phase into the [−π, π]
range. It can be demonstrated that

Uz = Uh(z),k(z) + Uk(z),q(z) + Uq(z),h(z) + Uh(z),k(z),q(z) (4)

where the last term on the right-hand side of (4)

Uh(z),k(z),q(z)

= �
�ϕML

h(z),k(z) +�ϕML
k(z),q(z) +�ϕML

q(z),h(z) −�ϕ tr
z

�	
2π

is the spurious phase cycle arising from the observation
that the zth nonclosure phase triplet could exceed [−π, π].
Remarkably, the integer terms in (4) are estimated during
the space–time PhU operations (see [22]). Nonetheless, the
wrapped phase contribution for the considered triplet �ϕ tr

z per-
sists, even when PhU operations are perfectly accomplished.
If not adequately compensated for, the data vector ��tr =
[�ϕ tr

0 ,�ϕ
tr
1 , . . . ,�ϕ

tr
�−1]T might influence the quality of the

Mt-InSAR results (i.e., the ground deformation time series and
the relevant mean ground deformation velocity maps) obtained
after inverting the sequence of unwrapped ML interferograms
�� = [�φ0,�φ1, . . . ,�φM−1]T .

A. ML Speckle Noise Model

The mentioned phase triplets’ inconsistencies ��tr could
arise, for instance, when in the ML averaging box, different
populations of scatterers, characterized by independent phase
histories, interfere with one another [9]. Indeed, both the
spatial and the temporal inconsistency in the ML averag-
ing window can give rise to nonzero closure phases [38].
To investigate the origin of these phase inconsistencies, let
us consider the nth phase triplet, namely �ϕ tr

n , which involves
the three SAR images collected at times (th, tk, tq), see Fig. 1.
First, let us focus on the (th, tk) SAR data pair and consider
a scenario with F independent populations of scatterers in
the averaging window. The generic f th scatterers’ population
can be assumed, for the sake of simplicity, to have only two
independent phase contributions:1 the (averaged) true ground
deformation signal, namely, �φML,defo

h,k , and an inherent phase
term that characterizes a specific, local physical property
of the scatterers, namely, �φML, f

h,k . Given the two complex-
valued SAR images Sh and Sk forming the relevant (h, k)
interferogram, the ML speckle noise model for the Hermitian
product Sh S∗

k developed by López-Martínez and Pottier [48]

1Other time-consistent, nonlocal phase signals that are common to all
families of scatterers (such as the topographic residuals and orbital phase
artifacts) can be seen included in the ground deformation phase term.
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Fig. 1. Pictorial representation of a generic interferometric phase triplet in
the temporal/perpendicular baseline plane. The nodes highlight the ith SAR
image (gathered at times th , tk , and tq ), whereas the three arcs represent the
interferometric phases.

can be adopted



Sh S∗

k

�
L

=
F�

f =1



Sh S∗

k

�
L f

=
F�

f =1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψ f ρ f exp
�

j
�
�φML,defo

h,k +�φ
ML, f
h,k

��
+ψ f

�
nm, f − Nc, f z̄L f

�
× exp

�
j
�
�φML,defo

h,k +�φ
ML, f
h,k

��
+ψ f

�
nar, f + jnai, f

�

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5)

where the symbol �·�L denotes the spatial average opera-
tion computed over L samples, in which L = �F

f =1 L f .
Moreover, � = �F

f =1 � f is the partition of the group
of pixels � of the averaging window into F indepen-
dent subgroups, representing the relevant scatterers’ popula-
tions, with every single set � f with L f looks. We remark
that ψ f ρ f exp[ j (�φML,defo

h,k +�φ
ML, f
h,k )] is the true, expected

signal component related to the f th population, with ρ f

being the corresponding coherence value of the scatterer’s
family. Moreover, nm, f is a multiplicative noise com-
ponent, Nc, f

∼= 1 − 1/(8L f ), and z̄L f is defined in
[48], where E[nm, f − Nc, f z̄L f ] = 0 and var

�
nm, f

� =
N2

c, f

��
1 + |ρ f |2

�
/2L f

�
. Note that E[·] is the statistical expec-

tation operator. Finally, nar, f + jnai, f is a complex-valued
additive noise term with E[nar, f ] = E[nai, f ] = 0 and vari-
ance var[nar, f ] = var[nai, f ] = (1/2L f )(1 − |ρ f |2)1.32(L f )

1/2
.

Of course, in order to describe the characteristics of the scatter-
ers’ families involved in the ML window, other speckle noise
models, such as the one proposed in [38], might be applied.

Accordingly, considering the speckle noise model described
by (5), the ML (expected) phase related to the (h, k) interfer-
ometric SAR data pair can be expressed as

�ϕML
h,k = �



Sh S∗

k

�
L

= W

⎧⎨
⎩�ϕML,defo

h,k + �

⎡
⎣ F�

f =1

ψ f ρ f e j�φML, f
h,k

⎤
⎦ + ζh,k

⎫⎬
⎭
(6)

where ζh,k is a resulting zero-mean additive noise phase term.
As a first approximation, we can assume that the model

in (6) depends only on the temporal baseline of the

considered (th, tk) SAR data pair �th,k = |tk − th|. Under

this simplified hypothesis, ρ f = ρ f (th, tk) = ρ f (|tk − th|),
�φ

ML, f
h,k (th, tk; |tk − th |) = �φ

ML, f
h,k (|tk − th |), and ψ f =

ψ f (th, tk; |tk − th |) = ψ f (|tk − th|). Concerning the temporal
decorrelation models that describe how the coherence depends
on the interferometric temporal baseline, interested readers are
referred to the literature, see, for instance, [49], [50], and [51].

In Section III, we then relax these hypotheses to consider
a more general time-variant case. Space–time, physical and
statistical properties of local, inherent signals that contribute
to the systematic phase biased signal �[�F

f =1 ψ f ρ f e j�φML, f
h,k ]

can be found in the literature. For instance, readers are
referred to [9], [11], [12], [14], [15], [16], [52], and [53]
to have a comprehensive analysis of the models adopted for
the characterization of soil moisture content variations and its
impact on InSAR investigations. We would like to remark that,
in our work, we do not want to discriminate one another the
different inherent, local signals �φML, f

h,k ,∀ f that contribute to
the phase biased signal nor the time series of the inherent phase
contributions. Conversely, we want to estimate and mitigate
the effect of the “composite” global systematic phase biased
components �ϕbias

h,k = �
�F

f =1 ψ f ρ f e j�φML, f
h,k on the ground

deformation products, as obtained using Mt-InSAR algorithms
(e.g., [18], [19], [39], [47], [54]).

Experimental results have evidenced that the systematic
phase bias �ϕbias

h,k = �
�F

f =1 ψ f ρ f e j�φML, f
h,k is a short-lived

signal that rapidly decays as the temporal baseline increases
[34], [36], [37], [38], [55]. For small values of �th,k =
|tk − th|, we can locally expand the (full) phase bias related
to the (h, k) interferogram �φbias

h,k as

�φbias
h,k

�
�th,k

� ∼= �
v +�v

�
�th,k

��
�th,k (7)

where v is a constant decay phase velocity factor and
�v(�th,k) is a temporal-baseline-dependent phase velocity
difference term. Using (6) and (7), the nth phase triplet �ϕ tr

n
can be expressed as follows:
�ϕ tr

n = W
�
�φML

h,k +�φML
k,q +�φML

q,h

�
= W

�
�φbias

h,k +�φbias
k,q +�φbias

q,h

� + ζh,k,q

∼= W
�
�v

�
�th,k

�
�th,k +�v��tk,q

�
�tk,q −�v��th,q

�
�th,q

�
+ ζh,k,q (8)

where ζh,k,q is the zero-mean random noise phase term
related to the (th, tk, tq) interferometric triplet. From (8), the
(wrapped) triplet systematic phase bias can be expressed as
�φbias

h,k,q = �v(�th,k)�th,k+�v(�tk,q)�tk,q −�v(�th,q)�th,q ,
which solely depends on the velocity difference terms
�v(�ti, j ) i, j = h, k, q and is insensitive to the mean constant
decay velocity factor v. Because the phase bias is a short-
lived signal, with significant phase rates only at very small
temporal baselines and negligible rates at medium-to-long
baselines, it is reasonably assumed that |�φtr

n | ≤ π (see [9]).
On the other hand, using polygons of interferograms (see
[37], [38]), the probability that the absolute value of the
nonclosure phases could exceed π increases as the number
of polygon sides increases. This probability is assumed low
in [37], and however, in the case that these long phase loops
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exceed π in moduli, there would be a corrupt estimate and
compensation of the bias. On the contrary, in [38], the phase-
unwrapping operations are performed on the nonclosure phase
loops. In this case, some (unavoidable) PhU errors committed
could potentially degrade, to some extent, the reliability of the
estimation and compensation of the phase bias.

B. Statistical Properties of the Phase Triplets

Given a set of N SAR images, the selected M SB SAR
interferograms can be arranged to form � triplets. For every
radar pixel, the vector of the (wrapped) phase triplet ��tr =
[�ϕ tr

0 ,�ϕ
tr
1 , . . . ,�ϕ

tr
�−1]T is a multisample random circular

data vector whose elements have different statistics, depending
on the geometrical characteristics of the different families
of triplets that could be formed. For instance, if we con-
sider the family of interferometric triplets made by three
Sentinel-1 SAR interferograms with temporal baselines of 6,
6, and 12 days, the corresponding systematic phase bias
signal �φbias

�th,k,�tk,q ,�th,q = �v(�th,k)�th,k +�v(�tk,q )�tk,q −
�v(�th,q)�th,q equals �φbias

6,6,12 = [�v(6)−�v(12)]12.
In general, when the family of interferometric triplets with
temporal baselines of �th,k = �tk,q and �th,q = 2�th,k
is concerned, the relevant systematic phase bias equals:
�φbias

�th,k,�th,k ,2�th,k
= 2[�v(�th,k)−�v(2�th,k)]�th,k . There-

fore, under the simplified hypothesis that the model in (6)
is invariant with time, the set of � triplets, namely, Tr ≡
{Trn}�n=1, can be partitioned as Tr = �X

χ=1 Trχ , where X is
the number of different homogeneous families of interfero-
metric triplets.2 Let us now consider the generic family Trχ ,
composed of �χ elements, and the phase vector ��tr

χ =
[�ϕ tr

χ,0,�ϕ
tr
χ,1, . . . ,�ϕ

tr
χ,�χ−1]T . It can be demonstrated that

the elements of the vector ��tr
χ are Von Mises-distributed

VM(μχ, κχ), with an averaged phase value μχ and a concen-
tration parameter κχ [56]

μχ = �φbias
χ = atan

���χ−1
i=0 sin

�
�ϕ tr

χ,i

�
��χ−1

i=0 cos
�
�ϕ tr

χ,i

�
�

(9)

κχ ∼= 1

2
�
1 − 
χ

� (10)

where 
χ is the (sample) mean resultant length of the χ th
family of phase triplets


χ = 1

�χ

������
�χ−1�
i=0

exp
�

j�ϕ tr
χ,i

�������. (11)

Equations (9)–(11) show that the systematic bias of the
considered family of triplets is the mean direction of the
phase triplets’ distribution μχ , whereas the mean resul-
tant length 
χ gives us a measure of the spread of
the phase triplets with respect to μχ , accounting for the
zero-mean random noise contribution ζh,k,q . The first-order
statistics of the amplitude and phase of the directional ran-
dom data

��χ−1
i=0 exp[ j�ϕ tr

χ,i] = Rχ exp[ j��χ] are derived in

2Note that the hypothesis on the homogeneity of the phase triplet families
is subsequently relaxed in Section III.

Appendix I. It can be demonstrated that the standard deviation
of the χ th phase triplet family is given by

var
�
�χ

� ∼= 2
�
1 − 
χ

��
2 − 
χ

�
�χ

. (12)

The mean resultant length of the combined multisample data
vector ��tr = [�ϕ tr

0 ,�ϕ
tr
1 , . . . ,�ϕ

tr
�−1]T is eventually given

by


triang = 1

�

�����
�−1�
i=0

exp
�

j�ϕ tr
i

������ =
������

X�
χ=1


χ exp
�

jμχ
������� ∈ [0, 1]

(13)

which is referred in this work to as the triangular coherence of
the identified network of SB ML interferograms. We remark
that 
triang can be seen as an equivalent coherence [57] and
gets a direct measure of the nonclosure (overall) phase triplets’
dispersion to its mean value.

The triangular coherence can be used to select a group
of reliable, coherent SAR pixels at the ML scale. Indeed,
the triangular coherence gets a measure of the noise level
that affects the selected set of ML interferograms. In par-
ticular, the mean resultant length of the phase triplets
��tr = [�ϕ tr

0 ,�ϕ
tr
1 , . . . ,�ϕ

tr
�−1]T is asymptotically nor-

mal with σ 2
triang

∼= (1 − 
2
triang)/� (see Mardia and Jupp’s

book [56]). Accordingly, the variance of this estimator drasti-
cally decreases as the number of triplets � and the triangular
coherence value 
triang increase. The group of coherent SAR
pixels is thus straightforwardly identified by simply imposing
a threshold γtriang on the minimum triangular coherence value
of the analyzed pixel, as � ≡ {P : 
triang(P) ≥ γtriang}.

III. PHASE BIAS ESTIMATION AND MITIGATION

This section presents a method to estimate the phase bias
affecting a sequence of SB ML interferograms characterized
by the maximum temporal baseline �tmax.

A. Time-Invariant Case

Let us first assume that the model of (6) is time-invariant,
i.e., �φbias

h,k (th, tk) = �φbias
h,k (�th,k) ∀h, k. Under this hypothe-

sis, the expansion given by (7) is suitable. We remark that
the temporal baseline of an interferogram is a multiple of
the sampled temporal revisit time of the used SAR sensor,
namely, δ, which, for instance, is equal to six days for the
twin constellations of Sentinel-1 A/B sensors. Accordingly,
if we consider two generic interferometric SAR data pairs
with temporal baselines (λ− 1)δ and λδ, with λ ∈ Z, (7)
particularizes as

�φbias(λδ) ∼= [v +�v(λδ)]λδ (14)

�φbias[(λ− 1)δ] ∼= {v +�v[(λ− 1)δ]}(λ− 1)δ. (15)

Comparing (14) and (15), the following iterative relation is
derived:
�φbias[(λ− 1)δ]

∼= λ− 1

λ
�φbias(λδ)+ {�v[(λ− 1)δ] −�v(λδ)}(λ− 1)δ.

(16)
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Fig. 2. Simulations related to the time-variant case: Pictorial representation of allowed (red color) and not allowed (black color) triplets, considering a time
window of (a) 6 days and (b) 48 days, respectively. The arcs with the same time duration as the reference window (dark red) are highlighted in blue, as they
do not satisfy the second condition and the relevant triangles must be excluded.

Fig. 3. Flow diagram of the proposed bias estimation and mitigation algorithm.

Equation (8) defines a system of � linear equations with
respect to the (unknown) phase bias velocity differences
�V = [�v(δ),�v(2δ), . . . ,�v(kδ), . . . ,�v(�tmax)]T

��tr = Z ·�V (17)

that can be solved in the least-squares (LS) sense as �V̂ =
Z† · ��tr, where Z† is the pseudoinverse of the matrix
Z; the symbol · stands for the matrix multiplication (rows
by columns) operator. Then, the estimates �V̂ are used to
iteratively compute the phase biases at the different temporal
baselines �tλ = λδ, ∀λ = 1, 2, . . . ,�tmax/δ through (16)
using the initial condition �φbias(�tmax) = 0. As claimed in
several independent investigations [34], [36], [37], [38], the
phase bias is a signal that rapidly decays as the temporal
baseline increases. However, it is not guaranteed that the
maximum temporal baseline �tmax of the selected set of SB
interferograms is large enough to assume that �φbias(�tmax) =
0. A strategy to understand whether the maximum temporal
baseline �tmax is adequate for the phase bias correction is
to compute, and for every single SAR pixel of the scene,
the term ϒ = |�v(�tmax − δ)−�v(�tmax)|. If ϒ is larger
than a given tolerance ϒtoll (e.g., ϒ ≥ 10−4), some additional
interferograms with longer baselines must then be added.
It is worth remarking that the additional long-baseline ML
interferograms are exclusively used to compute the phase
bias. However, they are not exploited to generate the ground
deformation time series using an SB-oriented algorithm [18],
[19], [39], [47], [54].

B. Time-Variant Case
Let us now assume that the model of (6) is time-variant,

i.e., �φML
h,k = �φML

h,k (th, tk). In this case, the strategy described
in Section III-A can be specialized by locally applying it to
single time windows, by dynamically selecting and using only

subgroups of triplets’ families that encompass the selected
time window to estimate the phase bias. To describe the
developed method, let us focus on the generic i th ML SAR
interferogram that spans the time window between the times
th and tk of duration mh,kδ. The phase bias estimate related to
this i th interferogram is carried out by using (17) considering
only the triplets {α, β, γ } (see Fig. 2) that satisfy both the
following conditions.

1) At least one of the three arcs {α, β, γ } of the given triplet
must wholly be included or include the reference time
window [th, tk].

2) For all the three arcs: the generic arc of the triplet is the
reference time window [th, tk] or its duration is different
from the reference time window duration.

Fig. 2 shows some pictorial examples of allowed and not
allowed (discarded) triplets, considering as a reference a
time window of 6 days [see Fig. 2(a)] and 48 days [see
Fig. 2(b)]. Then, the phase bias estimates �φbias

h,k are used to
exclusively correct the i th ML SB interferogram as: �φ̂ML

i =
W (�φML

i −�φbias
h,k ). The block diagram of the proposed phase

bias correction method is shown in Fig. 3.

C. Compensation of the Random Phase Signal Components
Once the systematic phase bias components are estimated

and compensated for, however, some uncompensated time-
inconsistent random phase noise contributions, which lead
to phase nonclosures, can persist. They can effectively be
compensated for using the methods described in [1], [3],
[4], [46], [58], [59], [60], and [61]. In particular, the appli-
cation of the first step of the extended minimum cost flow
(EMCF)-based processing chain [3], which is fully detailed
in [57] and here referred to as enhanced multitemporal noise-
filtering (E-Mt-InSAR) algorithm, allows one to obtain a set
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of optimized, fully time-consistent set of ML SAR interfer-
ograms. More specifically, for every SAR pixel of the ML
grid, the E-Mt-InSAR method is based on searching for the
(unknown) phase vector of the wrapped phases related to the
available N SAR acquisitions that minimize the (weighted)
circular variance of the random phase vector representative
of the difference between the original and the optimized
interferograms reconstructed from the computed (wrapped)
phases associated with every SAR acquisition (i.e., the residual
phases). It is worth remarking that the (weighted) circular
variance gets a measure of the dispersion of the residual phases
about their (weighted) mean direction. However, no constraint
is imposed about the mean (weighted) direction of the residual
phases, and the estimator is not able to adequately discriminate
between the short-lived systematic phase contributions and the
zero-mean random phases associated with the ML SB inter-
ferograms, see also the experimental results shown in Appen-
dix II. An effective strategy that could be adopted is, first,
to compensate/mitigate the systematic phase bias components
using the algorithms described in Sections III-A and III-B and
then apply the E-Mt-InSAR noise-filtering algorithm to the set
of compensated ML interferograms {�φ̂ML

i }M
i=1. Accordingly,

using this strategy, both the systematic and random noise phase
contributions can be adjusted.

D. Role of PhU Errors
The presented analyses do not consider the effects of biased

time-inconsistent PhU errors. As a matter of fact, once the
ML interferograms are unwrapped, some of the observed
discrepancies in the generated InSAR products can also be due
to time-polarized PhU errors, e.g., 2π-multiples PhU errors
that are superimposed on phase triplets and are responsible for
time incongruences that can propagate through the selected
network of SB interferograms. These effects arise when the
SB interferograms are unwrapped independently [62], [63],
[64], [65] and/or using some hybrid 2-D + 2-D space–time
PhU methods [22], [26], [28] that do not ensure that the PhU
solution is time-irrotational. These effects are appropriately
considered by the temporal coherence factor, which is com-
puted after the SB inversion of the unwrapped interferograms,
as detailed in Section V. Hence, the temporal coherence value
is used to detect those pixels that are more affected by
time-inconsistent phase artifacts and exclude them from the
subsequent analyses.

IV. SIMULATION

The developed phase bias correction method was first tested
in a controlled environment by running some simulations.
Specifically, we have considered the following cases: 1) the
model (6) is time-invariant (see Section III-A) and 2) the
model (6) is time-variant where the nonstationary phase cor-
rection method described in Section III-B is applied. For both
cases, we have also considered the effects of the decorrelation
noise that has been introduced in the test environment.

A. Time-Invariant Case
In this first case, the assumption is retained that the phase

bias depends only on the time span of the considered InSAR

Fig. 4. Simulated values for the InSAR phase model (6), referred to the
second family of scatterers. The inherent (independent) phase terms �φML,2

h,k
for q = 1 and 4, respectively, are plotted in blue with solid and dashed lines,
while in orange, the coherence temporal decay ρ2 is plotted. The plots are
functions of the InSAR temporal baselines.

data pair, i.e., �φbias
h,k = �φbias

h,k (th, tk) = �φbias
h,k (�th,k), where

th and tk are the two generic time acquisitions. The simu-
lation has been carried out considering the time distribution
and the SB interferometric network settings related to the
Nevada case-study area (see Section V). We considered N =
65 SAR acquisitions and M = 895 SB InSAR data pairs
selected by imposing a maximum temporal baseline �tmax =
96 days. The interferograms’ temporal baselines are sam-
pled as: �t = {�tmax/dS,�tmax/dS−1, . . . ,�tmax/d1}, where
{dS = (�tmax/6) = 16, dS−1 = 15, . . . , d2 = 2, d1 = 1}. Con-
sidering the selected network of M SB ML interferograms,
� = 6305 InSAR triplets have been identified. By refer-
ring to the phase model described by (6), we assumed the
presence of F = 2 independent populations of scatterers
in the averaging ML spatial window and for the sake of

simplicity that �ϕML,defo
h,k = 0 ∀h, k. First, a free-noise

scenario was assumed, i.e., ζh,k = 0 ∀h, k. In this case, the
adopted InSAR phase model (6) particularizes as: �ϕML

h,k =
W {�[ψ1ρ1e j�φML,1

h,k + ψ2ρ2e j�φML,2
h,k ]}. For the first family of

scatterers, we set �φML,1
h,k = 0, ρ1 = 1, and ψ1 = 1. Differ-

ently, for the second family of scatterers, the following values
are set: �φML,2

h,k = ξ �th,k , ρ2 = e−α�th,k , and ψ2 = 1, where
α = (11/2)(1/�tmax) and ξ = qπ(1/�tmax). Fig. 4 shows the
plots of simulated inherent (independent) phase term for the
second family of scatterers versus the interferograms temporal
baseline, considering the two cases with q = 1 and 4. In this
round of simulations, we have assumed that the average phase
of the second family varies linearly with time and ρ2 =
e−α�th,k in accordance with the temporal decorrelation models
proposed in the literature (see [50]). In such a way, the made
hypothesis that model (6) is time-invariant is valid. Based on
the parameters listed above, the adopted InSAR phase model
becomes: �ϕML

h,k = W {�[1 + e−α�th,k e jξ �th,k ]}.
The simulated phases, which are plotted versus the temporal

baseline (blue lines) in Fig. 5(a) and (b), correspond to a
maximum (simulated) phase bias velocity of roughly 2.1 and
8.7 cm/year, related to InSAR data pairs with a temporal
baseline of �t = 6 days and assuming a wavelength of
5.546 cm (i.e., that of Sentinel-1 A/B), for the simulations
with q = 1 and 4, respectively. We have applied the phase
bias estimation method described in Section III-A to simulated
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Fig. 5. Simulated and estimated InSAR biased phases for the time-invariant baseline case. (a) and (b) Noise-free simulations, where the blue lines represent
the simulated phases �φML

h,k , whereas the red triangles represent the estimated phases by applying the method in Section III-A. The plots are functions of
the InSAR temporal baselines. (c) and (d) Same as (a) and (b) but with noise. The plots are functions of the simulated 895 interferograms, which have been
grouped and ordered by temporal baselines. (a) and (c) Simulation with q = 1. (b) and (d) Simulation with q = 4.

phases. We want to remark that, even with q = 4, the
simulated phases do not lead to phase triplet ambiguities, that
is, �φtr ∈ [−π, π]. For instance, if we consider a triplet
with side lengths of 6, 6, and 12 days, the excess phase
2�φ6 days − �φ12 days is of about 0.1787 rad. The same does
not happen if we use for phase estimation, instead of triplets,
closed loops forming polygons in the temporal/perpendicular
baseline plane with several SB arcs. Indeed, if we consider a
polygon formed by A = 10 arcs of side length 6 days and one
arc of side 6A days, the excess phase A�φ6 days − �φ60 days

is of about 3.1909 rad, which is outside the range [−π, π].
In this case, the polygons must first be unwrapped, and this
operation could introduce some undesired artifacts in the phase
bias estimates.

The estimated phases are shown with red triangles in
Fig. 5(a) and (b). The results show that when the model in (6)
is time-invariant, and in the absence of noise, the method
perfectly reconstructs the InSAR biased phases, also when they
exhibit a sign change [see Fig. 5(b)]. Fig. 5(c) and (d) shows
the results of the simulations obtained by adding to simulated
phases the phase noise components ζh,k �= 0, for the two cases
with q = 1 and 4. ML noise signals have been simulated
(e.g., see the statistics shown in [48]) considering a coherence
value of 0.35 and an equivalent look number (ELN) of 80.
The results demonstrate that the proposed method is robust to
decorrelation noise artifacts.

B. Time-Variant Case

At this stage, we study what happens in the more gen-
eral case that the model (6) is time-variant, i.e., �φbias

h,k =
�φbias

h,k (th, tk). To this aim, we have considered that the
second family of scatterers has the following inherent
phase signal �φML,2

h,k = ξ �th,k + ηh,k . Specifically, we

TABLE I

DETAILS OF THE TEMPORAL WINDOWS USED FOR SIMULATIONS

have added to the simulated signal of Section IV-A a sea-
sonal component for the average phase of the second fam-
ily, considering a sinusoidal signal with a period of one
year, τ = 365 days, namely, ηh,k = sin[2π(tk − t0)/τ ] −
sin[2π(th − t0)/τ ] ∀h, k. As a result, the simulated phase sig-
nal is: �ϕML

h,k = W {�[1 + e−α�th,k e j (ξ �th,k+ηh,k )]}. The phase
estimation method described in Section III-B is applied in this
case.

Fig. 6(a) [Fig. 6(b)] shows the plots of the estimated
interferograms biased phases (biased phase velocity) versus the
InSAR temporal baseline for six selected temporal windows
(dashed lines), which corresponds to the InSAR data pairs
listed in Table I. In this first case, we have considered
ξ = qπ(1/�tmax) with q = 1. The same has been repeated
considering q = 4. The plots of the estimated biased phases
(biased velocity phases) versus the InSAR temporal baselines
are shown in Fig. 6(c) [Fig. 6(d)]. Black solid lines in the
plots of Fig. 6 represent the estimated phases retrieved using
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Fig. 6. (a) and (c) Estimated InSAR phases biases, and (b) and (d) the same as (a) and (c) but expressed in terms of phase velocity biases for the simulated
time-variant case. The black solid lines represent the estimates when the time-invariant method (see Section III-A) is applied, whereas the dashed lines
represent the time-variant estimates, for some selected temporal windows, by applying the time-variant methods presented in Section III-B. The plots are the
function of the InSAR temporal baselines. (a) Simulation for the case with q = 1. (b) As (a) but expressed in terms of phase velocity bias. (c) Simulation for
the case with q = 4. (d) As (c) but expressed in terms of phase velocity bias.

Fig. 7. Simulated and estimated InSAR biased phases for the time-variant baseline case. The blue squares represent the simulated InSAR biased phases,
while the red triangles represent the estimated InSAR biased phases by applying the temporal variant baseline method in Section III-B. The simulated
895 interferograms have been grouped and ordered by temporal baselines. (a) and (b) Noise-free simulations. (c) and (d) With noise. Simulation for (a) and
(c) q = 1 case, and (b) and (d) q = 4 case.

the time-invariant algorithm of Section III-A. We can observe
that the time-invariant method cannot follow the time-variant
fluctuations of the adopted model. Fig. 7(a) and (b) shows the
comparison between the simulated and the estimated biased
phases for both the scenarios with ξ = qπ(1/�tmax) using q =
1 and 4. Simulated biased phases (blue squares) accounting
for the time-variant ηh,k terms have been shown as well as
the relevant estimates (red triangles) obtained by applying

the method described in Section III-B. The achieved results
evidence that the biased phases have correctly been estimated
using the developed method, which can track the different
fluctuations of the phase bias in the interferograms that belong
to every group of temporal baselines, especially for those with
small and very small baselines. Also, in this case, we have
evaluated the effects of the noise on the phase estimates. The
results are shown in Fig. 7(c) and (d).
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V. SB MT-INSAR METHODS

In this work, we refer to a unified representation of the SB
algorithms. Indeed, the different implementations of the SB
methods proposed in the literature have individual peculiari-
ties; however, they can almost be unified [47], [66] considering
that they solve a linear optimization problem that relates the
vector of the (known) unwrapped ML SB interferograms,
namely, �� = [�φ0,�φ1, . . . ,�φM−1]T , to a model of
Q unknown parameters of the ground deformation Md =
[Md,0,Md,1, . . . ,Md,Q−1]T . The adopted unified representa-
tion of the SB linear transformation is given as follows:

B · Md = �� (18)

where B ∈ R
M×Q is the design matrix of the considered linear

transformation. Precisely, for the implementation of the Small-
BAseline Subset (SBAS) algorithm [18], the model parameters
represent the velocities between time-consecutive SAR acqui-
sitions, namely, Md = v = [v0 = ((φ1 − φ0)/(t1 − t0)), v1 =
((φ2 − φ1)/(t2 − t1)), . . . , vN−2 = ((φN−1 − φN−2)/(tN−1 −
tN−2))]T , and the mathematical expression of the design
matrix B is that detailed in [18] and [66]. Once (18) is
solved, the obtained model vector v̂ is time-conservative, that
is to say, there exists a unique vector �̂ that satisfies the
following relation B · v̂ = A · �̂ and the Euclidean two-
norm 
A · �̂ −��
2 is minimal, where A is the incidence
matrix of the SB network nonplanar graph (which is equivalent
to the discrete gradient operator) and �̂ is the vector of the
(unwrapped) phases associated with every single SAR image
[66]. Here, we explicitly address some critical properties of the
vector ��. First, we observe that the mth (wrapped) phase
�ϕm can be decomposed into the sum of a time-consistent
�ϕ �

m and a time-inconsistent �ϕ ��
m phase component [67].

Therefore,

�φm = �ϕ �
m +�ϕ ��

m + 2πUm, m = 0, 1, . . . ,M − 1 (19)

where Um is the correct (unknown) ambiguity number asso-
ciated with the mth ML interferogram, which also considers
the ambiguity number that could arise from the sum of the
wrapped phase terms �ϕ �

m +�ϕ ��
m . Of great relevance for the

generation of the ground displacement products through SB
methods are the time-inconsistent phase terms �φ��

m , which
(as said) are responsible for nonclosure phase triplets (see
Section III). This section shows how the residuals of the LS
solution of (18), namely, ��res = B ·M̂d −��, are related to
the nonclosure phase triplets. Moreover, we summarize some
basic properties of the temporal coherence quality factor [22]
to provide a quantitative estimate of the PhU errors committed
after the SBAS inversion [3], [18], [22], [68]. We can express
it as


temp = 1

M

�����
M−1�
m=0

exp
�

j�φres
m

������ ∈ [0, 1] (20)

where �φres
m is the mth element of the residual vector ��res =

(B · M̂d −��) ∈ R
M . Accordingly, the temporal coherence


temp is the mean resultant length of the circular phase data
vector ��res. We can observe that

� ·��res = � ·
(

A · �̂ −��
)

(21)

where � ∈ Z
�×M is the discrete curl operator related to

the SB network graph, which is a sparse matrix composed
of � (number of triplets) rows and M (number of interfero-
grams) columns. Considering (19), (21) can be manipulated
as follows:

� ·��res = � · A · �̂ − � ·
[
��� +���� + 2π Û

]
(22)

where Û �= U is the vector of ambiguity numbers estimated
through PhU operations, which could generally differ from
the correct (unknown) vector U . Note also that � · A · �̂ = 0
and � · ��� = 0 being the former the discrete counterpart
of the ∇ × ∇� operator and ��� a time-conservative vector.
Furthermore, if the estimated ambiguity number vector is not
correct, namely, Û = U +�U � +�U ��, where �U � and �U ��,
respectively, are the time-correlated and time-uncorrelated
ambiguity number errors, the following relation holds:

� · 2π Û = � · 2π
(
U +�U � +�U ��) = 2π

(
� ·�U ��)

(23)

because the (true) phase ambiguity cycles and the time
correlated ambiguity number errors are time-conservative,
namely, 2π(� · U) = 0 and 2π(� ·�U �) = 0. If we assume
that no PhU errors were committed, i.e., �U �� = 0, (22)
particularizes as

� ·��res = −��tr (24)

where ��tr = W (� ·����) ∈ R
� is the vector of temporal

nonclosure phase triplets, see (3). In (24), we have also
assumed that phase triplets are within [−π, π]. Equation (24)
relates the LS residuals after SB inversion ��res and the
nonclosure phase triplets��tr, making it evident that noncom-
pensated phase triplets correspond to errors after the SB inver-
sion and have an impact on the temporal coherence. Finally,
if we relax the hypothesis that no PhU errors were committed,
we have �·��res = −��tr−2π�·�U ��. Therefore, the phase
residuals increase due to PhU errors and the corresponding
values of the temporal coherence decrease. Note that even
with a perfect compensation of the systematic and random
(wrapped) nonclosure phases, some significant phase residuals
could still arise after applying the SB inversion to unwrapped
interferograms if substantial PhU errors are present.

VI. EXPERIMENTAL RESULTS

The experiments have been carried out by independently
analyzing two sets of SAR acquisitions collected over the
Monte Cristo Range area, Nevada, USA, and Sicily, Italy,
respectively, composed of 65 descending Sentinel-1 A/B
(C-Band) SAR images acquired with terrain observation by
progressive scan (TOPSAR) mode (Path 71, vertical-vertical
(VV) polarization) from 6 January 2020 to 30 January 2021,
and 71 descending Sentinel-1A/B TOPSAR images (Path
124, VV polarization) acquired from 16 March 2020 to
10 May 2021.

A. Nevada, USA
The area is located in the Monte Cristo Range, approxi-

mately 38-km west-northwest of Tonopah. On 15 May 2020,
a severe 6.5-Mw earthquake struck the west side of the
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Fig. 8. Triangular coherence map of the area surrounding the Monte Cristo
Range, Nevada, USA. The map has been obtained using 6305 phase triplets
computed by 895 ML SB Sentinel-1 A/B interferograms. The investigated
scene is almost entirely coherent, with the exception of some localized areas
that are highlighted by blue and red dashed rectangles.

selected area, fortunately without casualties. The 2020 Monte
Cristo Range earthquake represents one of the strongest
earthquakes in Nevada in the past 100 years, precisely the
strongest since 1954 [69]. Starting from the available SAR,
ML SB interferograms were generated, by considering a
temporal baseline threshold of 96 days. For the interferogram
generation, we adopted an ML factor of 4 and 20 pixels for
the azimuth and range directions, respectively. The one-arcsec
shuttle radar topography mission (SRTM) digital elevation
model (DEM) of the scene and precise orbits of the Sentinel-1
A/B satellites was used to compute the topographic phase and
flatten the interferograms.

Fig. 8 shows the triangular coherence map of the investi-
gated area, calculated considering � = 6305 phase triplets
computed over a selected network of 895 SB ML interfero-
grams. Subsequently, we have imposed the threshold γtriang =
0.50 and exclusively processed the selected coherent pixels,
which are almost three million. The phase related to the
group of coherent SAR pixels was unwrapped through the
minimum cost flow (MCF) solver [62], and then, the SBAS
[18], [68] inversion was applied. As a result, the line-of-
sight (LOS) mean displacement ground velocity map of the
area was obtained, which is shown in Fig. 9, where the
effects of the strong rupture ascribable to the Mw 6.5 Monte
Cristo Range earthquake are evident. Indeed, on the left part
of the scene, the areas straddling the fault line, showing
opposite LOS deformation trends, are evidenced with an
absolute value of maximum LOS mean displacement velocity
of about 20 cm/year. We specify that the mean displacement
velocity map, shown in Fig. 9, has been computed from the
interferometric network composed of 895 ML InSAR pairs
with a maximum temporal baseline of 96 days, without having
applied any phase bias correction method.

Next, we have applied the phase bias estimation meth-
ods described in Sections III-A and III-B (for the time-
invariant and time-variant cases) to the Nevada SAR data set
using networks of SB interferograms, with a progressively
reduced maximum temporal baseline (i.e., from 96 to 12 days).
The selected SB ML interferograms were independently

Fig. 9. Mean displacement velocity map of the area surrounding the Monte
Cristo Range, Nevada, USA, computed from the interferometric network with
a maximum temporal baseline threshold of 96 days and without applying any
phase bias correction. The earthquake fault separates the areas in motion
of uplift and subsidence. Colored pixels are all those that have a triangular
coherence value greater than or equal to 0.50 and that have a final temporal
coherence value greater than or equal to 0.70.

Fig. 10. Average absolute values, related to the Nevada test case, of the
difference between the computed ground deformation velocities using SB net-
works at given temporal baseline thresholds and those achieved considering a
maximum temporal baseline of 96 days. In blue, no corrections applied; in red,
the time-invariant correction applied; and in black, the time-variant correction
applied. Temporal coherence greater than (a) 0.7, (b) 0.9, and (c) 0.98.

corrected, unwrapped, and inverted through the SBAS tech-
nique [18]. Then, for every SAR pixel, the values of the mean
ground displacement velocity and the temporal coherence have
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Fig. 11. Nevada test-site area maps of the ground deformation velocity differences between the case at 12 and 96 days, where only pixels larger
than given values of the temporal coherence are depicted. (a), (d), and (g) Ground deformation velocity bias considering the original interferograms.
(b), (e), and (h) Ground deformation velocity bias when the time-invariant correction method is applied. (c), (f), and (i) Ground deformation velocity
bias when the time-variant correction method is applied. Temporal coherence greater than (a)–(c) 0.7, (d)–(f) 0.9, and (g)–(i) 0.98.

been computed. Note that, for the subsequent analyses, the
atmospheric phase screen (APS) and the residual topography
components were not compensated for. Fig. 10 shows the plot
of the (average) absolute values of the difference between the
computed ground deformation velocities using SB networks
at given temporal baseline thresholds with respect to those
achieved by considering as a reference a maximum temporal
baseline of 96 days. Three groups of coherent SAR pixels have
been identified with temporal coherence values greater than
0.7 in Fig. 10(a), 0.90 in Fig. 10(b), and 0.98 in Fig. 10(c). For
every group, we plotted the absolute velocity biases (mm/year)
for the original ML interferograms (blue line), the ML inter-
ferograms compensated using the time-invariant phase bias
estimation method (red line), and those compensated with
the time-variant method (black line). The results show that
with high temporal coherence values, the developed phase
bias estimation methods reveal effective, and the time-variant
algorithm has a better performance than the time-invariant
one, especially at very SBs. Both the phase bias estimation
methods can reduce the effects of the ground displacement
velocity biases of the ML interferograms with respect to what
happens using the original, uncompensated interferograms.
Fig. 11 shows the maps of the ground deformation velocity
differences between the results at temporal baselines of 12 and
96 days, where only pixels larger than the given values of the

Fig. 12. Average absolute values, related to the Sicily Island test case,
of the difference between the computed ground deformation velocities using
SB networks at given temporal baseline thresholds with respect to those
achieved considering a maximum temporal baseline of 96 days. No correction
(blue), time-invariant correction (red), and the time-variant correction (black).
Temporal coherence is greater than 0.95.

temporal coherence are mapped. More specifically,
Fig. 11(a)–(c) shows the ground deformation velocity
bias map for the original interferograms, those compensated
using the time-invariant phase bias estimation method,
and finally those obtained using the time-variant ones,
respectively. The maps portray only SAR pixels with
temporal coherence values larger than 0.7. Fig. 11(d)–(f) is
the same as in Fig. 11(a)–(c) but shows only SAR pixels
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Fig. 13. Sicily Island test area maps of the ground deformation velocity differences between the results at temporal baselines of 6 and 96 days, where only
pixels larger than given values of the temporal coherence are mapped. (a)–(c) Velocity bias considering original interferograms. (d)–(f) Velocity bias when
the time-variant phase bias correction method is applied. Temporal coherence greater than (a) and (d) 0.5, (b) and (e) 0.7, and (c) and (f) 0.95.

with a temporal coherence larger than 0.9, and Fig. 11(g)–(i)
shows only those with a temporal coherence larger than
0.98. As demonstrated in Section V, the temporal coherence
is sensitive both to time-inconsistent phase terms and PhU
errors. No substantial ground deformation velocity biases
can be appreciated in the maps of Fig. 11(i) as well as in
the relevant plot (black line) of Fig. 10(c), whereas with the
same temporal coherence threshold, they were evident.
This demonstrates that the developed methods are effective.
The areas with lower temporal coherence values are more
affected by time-inconsistent PhU errors and the latter can
be responsible for some of the observed ground deformation
velocity differences, see, for instance, the area highlighted by
the black rectangle (dashed line) in Fig. 11(c).

B. Sicily, Italy
As a second case study, we have considered a dataset of

Sentinel-1 SAR data gathered over the area of Sicily, Italy.
The investigated area is home to one of the most important
active volcanoes of the world, the Mount Etna volcano, which
has been continuously active for the last three decades. Several
InSAR investigations have been carried out in recent years
for the characterization of the magmatic sources beneath the
volcano cones and for the study of the superficial effects of

volcanic eruptions and relevant local seismicity [42], [70],
[71]. First, starting from the available SAR images, we have
generated 1000 SB ML interferograms with a maximum tem-
poral baseline of 96 days. The interferograms were flattened
using a three-arcsec DEM of the Sicily Island and precise
orbital information. The interferograms were multilooked with
a box of 4 × 20 (azimuth and range) SAR pixels and
unwrapped [62]. We have identified different networks of
SB InSAR data pairs by imposing progressively decreased
maximum temporal baseline thresholds, from 96 to 6 days,
and we cross-compared the values of the ground displacement
velocities taking as a reference the results achieved using
a maximum InSAR temporal baseline of 96 days. Also,
in this case, to exclude their effects on the cross-comparison
analysis of the InSAR products, we did not filter out the APS
and the residual topographic components from the generated
InSAR products. It is worth remarking that in practical cases,
other strategies could also be used to identify subsets of
SB ML interferograms and use them to generate the ground
displacement products [3], [54], [72]. In this work, we want to
emphasize the performance of the developed methods in the
general case that conventional ML SB interferograms are used,
which are straightforwardly selected by imposing a threshold
on their maximum allowed temporal baseline.
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Fig. 12 shows the plot of the (absolute) SBAS-driven
ground displacement velocity differences versus the maximum
temporal baseline of the used network of SB interferograms,
taken as a reference the ground displacement velocity obtained
using 96 days as the maximum temporal baseline. The three
plots are related to the original interferograms (blue line), the
interferograms compensated using a time-invariant model (red
line), and those obtained considering a time-variant model
(black line). To exclude that (at most) the ground deformation
velocities difference could be due to time-inconsistent PhU
errors,3 only SAR pixels with a very high value of the temporal
coherence (i.e., larger than 0.95) have been considered. The
results show that the developed phase bias estimation methods
are capable of considerably reducing the effects related to
systematic phase biases in the generated ground displacement
maps. Note that in this case, we have also considered the
extreme case when only six-day interferograms are used to
compute the ground displacement time-series. We want to
remark that any potential PhU error on such six-day inter-
ferograms has a severe impact because it is time-integrated
and appears as an undesired jump in the obtained ground
deformation time-series. Fig. 13 shows the maps of mean
displacement velocity differences between the results obtained
from 96 to 6 days, for the original one in Fig. 13(a)–(c), and
those corrected by applying the developed phase estimate time-
variant method in Fig. 13(d)–(f). The maps are obtained by
considering different temporal coherence thresholds to make
it evident the spatial distribution of SAR pixels that are more
affected by PhU errors.

VII. CONCLUSION

The properties of nonclosure phase triplets in sequences of
ML SB interferograms have been addressed in this research
study. We have shown that phase triplets and phase residuals,
arising from the LS inversion of the unwrapped SB inter-
ferograms, are linked to one another. We have discussed the
implications of ML nonclosure phase triplets on the claimed
fading signals [34] into the SB-driven mean ground displace-
ment maps obtained using very SB SAR interferograms. Two
methods that could be adopted to reduce the effects of non-
compensated systematic phase biases in the generated ground
displacement time series have been proposed, considering both
a time-invariant and time-variant model for the systematic
phase bias signals. The results obtained by applying the
developed algorithms to simulated and real SAR data have
also been presented and discussed. The methods rely on the
exclusive use of triplets of ML interferograms, instead of
using polygons of ML SB interferograms, and assume that
the systematic phase bias rapidly decays over time, and it
is negligible at large temporal baselines. We also proposed
a recursive strategy to understand at which temporal baseline

3Note that time-inconsistent PhU errors are not present when pure 3-D PhU
methods [73], [74], [75] are used, but, conversely, PhU errors could still be
present and be totally indistinguishable from the true ground deformation
signal. On the other hand, hybrid 2-D + 2-D PhU methods [22], [26], [28]
and conventional 2-D PhU methods [62], [63], [64], [65] can make it evident
time-inconsistent PhU errors and the temporal coherence can be used to check
them and neglect those pixels that are severely affected by them.

we could reasonably assume that the phase bias is almost zero.
It consists of adding long-baseline ML interferograms that are,
however, only used to implement the phase bias correction
step, and they are subsequently discarded for the generation
of ground displacement time series. Yet, we have shown that
nonclosure phase triplets can be used to effectively identify
a group of coherent SAR pixels at the ML scale over which
ground deformation InSAR products can be computed.

Globally, our research study demonstrates that, under proper
hypotheses, with the preliminarily compensation/reduction of
the systematic phase errors in the sequence of original wrapped
interferograms, the SB Mt-InSAR methods reveal effective
for the generation of ground displacement products, also with
new-generation SAR systems characterized by frequent repe-
tition times (on a weekly basis or less). Nevertheless, further
developments are still required to understand the ultimate
consequences of the very small baselines and nonclosure phase
triplets for the detection and analysis of soil properties and
other “hidden” signals that can be extracted from sequences
of SB ML InSAR interferograms.

As a final remark, we want to highlight that for the presented
investigations, we have intentionally not used 3-D [73], [74],
[75] or hybrid 2-D + 2-D PhU methods [22], [26], [28].
Conversely, we have unwrapped every single interferogram
independently [62]. Also, we have selected the SB interfero-
grams to be inverted by simply imposing a threshold on the
maximum allowed temporal baseline of the interferograms.
We followed this strategy precisely to emphasize the role
played by the systematic phase artifacts and PhU errors.

APPENDIX I

Let us consider the �χ -length random directional data vec-

tor [ϕ tr
χ0
, ϕ tr

χ1
, . . . , ϕ tr

χ�χ−1
]T which are assumed to be Von-Mises

distributed VM(μχ, κχ). From the work [56], we can consider
its resultant vector, which is the following random variable:

S = 1

�χ

�χ−1�
z=0

exp
�

jϕ tr
χz

� = Rχ exp
�

j�χ

�
(I.1)

where Rχ and �χ are the mean resultant length and the mean
direction of the considered directional data vector, respectively.
Let us also ρχ and μχ assume be the average (sampled)
values of the mean resultant length and the mean direction,
respectively.

For large samples, e.g., �χ � 1, it can be shown [56] that
the following relations hold:

�χvar
�

Rχ
� ∼= ρ2

χ

�
1 − 2ρ2

χ

� + α2
�
α2 − β2

�
2α2 + 2αββ2

2ρ2
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�
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where α = E[��χ−1
z=0 cos(ϕ tr

χz
)/�χ ], α2 =

E[��χ−1
z=0 cos(2ϕ tr

χz
)/�χ ], β = E[��χ−1

z=0 sin(ϕ tr
χz
)/�χ ],

and β2 = E[��χ−1
z=0 sin(2ϕ tr

χz
)/�χ ].
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Fig. 14. (a) Distribution of the SB interferometric SAR data pairs for the Nevada case-study area as obtained by imposing a maximum temporal baseline
of 96 days. (b) Distribution of the SB interferometric SAR data pairs for the Nevada case-study area as obtained by imposing a maximum temporal baseline
of 12 days. (c) Difference between the mean ground deformation velocity of the area obtained by independently applying the E-Mt-InSAR noise-filtering
method [57] and the SBAS inversion [18] to the SB networks depicted in (a) and (b). (d) Difference between the mean ground deformation velocity of the
area obtained by independently applying only the E-Mt-InSAR algorithm in the network (a), and subsequently, the noise-filtered interferograms (a) or a subset
of them (b) are inverted through the SBAS algorithm and obtain the results at (a) 96 days and (b) 12 days.

Interested readers can find some approximate relationships
for the variance of �χ and Rχ in [56, pp. 76–78]. For instance,
the variance of the phase is better described with

�χvar
�
�χ

� ∼= 1

κχ

 
1 + 1

2κχ

!
(I.4)

where κχ is the concentration parameter of the Von Mises
distribution. Equations (I.2)–(I.4) show that the precision of
the mean direction and mean resultant length measurement
critically depends on the number of elements constituting the
directional data vector population �χ .

APPENDIX II

In this section, we show some experimental results obtained
by applying the E-Mt-InSAR algorithm to conventional
(nonphase-bias-corrected) ML interferograms. The method is
detailed in [57]. Here, we want to point out that, for every
analyzed SAR pixel, the optimized set of phases associated
with the available N SAR acquisitions are exploited to recon-
struct the set of M optimized, wholly time-consistent ML SB
interferograms, namely, {�φML

opt,i}M−1
i=0 , which markedly have a

zero phase closure.4 Accordingly, once the E-Mt-InSAR noise-
filtering method is applied, any subset of the optimized ML
SB interferograms that could be extracted from {�φML

opt,i}M−1
i=0

and that involves all the available N SAR acquisitions is,

4Note that the E-Mt-InSAR noise-filtering method also involves a subse-
quent nonlinear combination step between the original interferograms and
those reconstructed from the optimized set of acquisition phase. It was
proposed in [3, eq. (4)] to preserve the spatial coherence of the very
coherent interferograms. This nonlinear operation, however, reintroduces some
nonclosure phase triplets.

by design, time-consistent. Therefore, the ground deforma-
tion time series that one could generate by inverting these
subsets of optimized ML SB interferograms using any SB-
oriented Mt-InSAR method [18], [19], [20], [47], [54] are
necessarily coincident. Of course, this statement is true when
we exclude the effects of localized PhU errors and the role
of some specific processing stages, such as those for the
estimation of the residual topographic phase components and
the compensation of the APS, whose results could depend on
the selected subset of the optimized ML SB interferograms.
Although the ground deformation time series obtained by
inverting these different subsets of M � optimized interfero-
grams extracted from {�φML

opt,i}M−1
i=0 are coincident, however,

this does not mean that the E-Mt-InSAR noise-filtering method
[57] is capable of wholly compensating for the effects of the
systematic phase biases in the ground displacement InSAR
products, which could still be present even with coinci-
dent time series if the phase bias compensation was made
incorrectly.

To prove the validity of these statements, we performed
an experiment using the conventional SB ML interferograms
related to the Nevada case-study area. We independently
applied the E-Mt-InSAR noise-filtering method [57] to the
set of SB interferograms selected with a maximum tempo-
ral baseline of 96 days [see Fig. 14(a)] and 12 days [see
Fig. 14(b)]. The optimized noise-filtered interferograms were
independently unwrapped [62] and inverted by the SBAS
algorithm [18]. Fig. 14(c) shows the difference of the mean
ground displacement velocity of the study area as obtained
using the SB networks with maximum temporal baselines
of 12 days [see Fig. 14(a)] and 96 days [see Fig. 14(b)].
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The map only depicts SAR pixels with temporal coherence
values greater than 0.95 to exclude that some of the observed
differences could be ascribed to PhU errors.

The achieved results show that some differences in the
ground displacement velocity maps persist. As a matter of
fact, the E-Mt-InSAR method [57] was designed to mitigate
the decorrelation noise in sequences of ML interferograms
by exploiting their temporal relationships, but it did not con-
sider specifically the presence of short-lived systematic phase
contributions that, as said, occur at small/very-small temporal
baselines. Nonetheless, depending on the used network of
SB interferograms, the E-Mt-InSAR method allows obtaining
time-consistent filtered ML interferograms that are character-
ized by perfectly compensated phase closures. We also remark
that the method does not require that the SB interferograms
form a planar triangulation in the temporal/perpendicular
baseline plane.5

To further prove the validity of the above-mentioned state-
ments, we have carried out a second experiment. We have
applied the E-Mt-InSAR algorithm to the network of SB inter-
ferograms shown in Fig. 14(a), characterized by a temporal
baseline threshold of 96 days. Subsequently, from the gener-
ated group of 895 filtered interferograms, we have extracted
a subset of them consisting of 125 filtered interferograms that
form the SB network shown in Fig. 14(b) with a maximum
temporal baseline of 12 days. The two sets of interferograms
were unwrapped and the relevant ground displacement velocity
maps were compared. Fig. 14(d) shows the mean ground
deformation velocity difference between the results obtained
with the SB networks at 96 days in Fig. 14(a) and 12 days
in Fig. 14(b) but using for both the same set of optimized
noise-filtered ML interferograms, as above clarified. The
results show that the ground displacement velocity difference
is almost zero everywhere but some localized zones with tiny
PhU errors. Also, in this case, we only portray SAR pixels
with temporal coherence values larger than 0.95. As said,
this outcome does not automatically mean that the systematic
phase contributions were perfectly compensated for. Con-
versely, it does mean that these phase artifacts cannot be
easily discriminated by the (true) ground deformation signals
because they are time-consistent and, hence, they do not lead
to time discrepancies that could be straightforwardly visible by
comparing the obtained ground displacement velocity maps.

We hope that the results of our analyses could be useful
to unravel some of the (potential) reasons that are behind the
apparent disagreement existing between the main outcomes of
the investigations presented in [34] and [76].

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers for
their valuable comments and suggestions.

5We want to explicitly remark that the E-Mt-InSAR method, which is also
implemented in the P-SBAS processing chain [68], [76], operates on the whole
set of the selected ML SB interferograms. Only once the optimized set of
noise-filtered SB ML interferograms is computed, the EMCF-based SBAS
processing chain [3] exploits triangulations, but with the exclusive aim to
speed up and improve the PhU operations and efficiently generate the SBAS
ground displacement time series. In this work, we only applied the E-Mt-
InSAR noise-filtering algorithm.
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