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On the Phase Nonclosure of Multilook SAR
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Abstract— This work explores the properties characterizing the
phase nonclosure of multilook (ML) synthetic aperture radar
(SAR) interferograms. Specifically, we study the implications of
ML phase time incongruences on the generation of ground dis-
placement time series through small baseline (SB) multitemporal
InSAR (Mt-InSAR) methods. Our research clarifies how these
phase inconsistencies can propagate through a time-redundant
network of SB interferograms and contribute, along with phase
unwrapping (PhU) errors, to the quality of the generated ground
displacement products. Moreover, we analyze the effects of
short-lived phase bias signals that could happen in sequences of
SB interferograms and propose a strategy for their mitigation.
The developed methods have been tested using both simulated
and real SAR data. The latter were collected by the Sentinel-1
A/B (C-band) sensors over the study areas of Nevada, USA, and
Sicily, Italy.

Index Terms— Ground deformations, multitemporal InSAR
(Mt-InSAR) algorithms, phase closure.

I. INTRODUCTION

HREE synthetic aperture radar (SAR) images that inter-

fere with each other can generate three interferograms.
Several investigations (e.g., [1], [2], [3], [4]) have disclosed
a lack of consistency among triplets of interferograms when
multilooking operations (or any other statistical procedure,
e.g., the noise filtering [5], [6], [7]) are independently applied
to every single interferometric SAR data pair. Furthermore,
unlike the statistical nature of the nonclosure phase triplets,
they have also been related to some underlying systematic
physical sources [2], [8]. Some scholars have shown that phase
nonclosure signals can bring valuable information on ground
properties, for instance, related to the soil moisture content
[9], [10], [11], [12], [13], [14], [15], [16], complementing
information obtained from the amplitude of SAR images [17].
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The phase inconsistencies among a triplet of SAR interfer-
ograms have an impact on the retrieval of ground displace-
ment time series through the multitemporal interferometric
SAR (Mt-InSAR) techniques [3], [18], [19], [20], [21]. For
instance, phase nonclosure triplets might lead to increased
phase unwrapping (PhU) errors in a sequence of time-
redundant, multitemporal multilook (ML) SAR interferograms
because they hinder the time inconsistency of the unwrapped
phases [22], [23], [24], [25], [26], [27], [28]. Besides, some
advanced Mt-InSAR methods exploit triplets of unwrapped
phases to straightforwardly correct PhU errors in sequences
of differential SAR interferograms (DInSAR) [25], [29], [30],
[31], [32], [33]. Moreover, recent works [34], [35], [36] have
claimed that the phase nonclosure signals could lead to a
bias in the estimate of the mean ground deformation velocity
through small baseline (SB)-oriented Mt-InSAR algorithms.
Moreover, some phase bias mitigation approaches have very
recently been proposed (see [37], [38]). These methods share
some similarities: they exploit long polygon-shaped phase
loops and hold the simplified assumption that the phase bias
depends on the interferograms temporal baseline (i.e., one
phase bias correction for each group of interferograms with
a specific temporal baseline).

In our work, we study the properties of phase nonclosure
among sets of time-redundant networks of ML SAR interfero-
grams to characterize their effects on the ground displacement
time series retrieved using Mt-InSAR SB algorithms. They
exploit time-redundant, reduced networks of interferograms
with small perpendicular and temporal baselines [19], [21],
[31], [39], [40], [41]. We show that a set of stable, coherent
pixels at the ML scale, can be suitably identified by analyzing
the phase triplets obtained from the selected networks of
SB interferograms [42], [43]. Furthermore, a method for
estimating and reducing the phase biases into sequences of ML
interferograms, relying on the exclusive use of phase triplets,
is developed. Experiments were carried out on simulated data
and two sets of SAR images collected by the European
Copernicus Sentinel-1/A-B (S-1/A-B) sensors over Nevada,
USA, and Sicily, Italy. The proposed investigation demon-
strates the validity of the developed phase bias mitigation
method.

This article is organized as follows. Section II presents
the theoretical background of the interferograms’ phase
nonclosures. Section III proposes a method for phase bias
reduction in sequences of ML SB interferograms. Section IV
shows some simulations. Section V studies the implications
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of noncompensated phase closures for generating interfero-
metric SAR (InSAR) products through SB-oriented Mt-InSAR
processing chains. Experimental results are shown in
Section VI. Conclusions are finally addressed in Section VII.

II. PHASE TRIPLET’S CLOSURE PROPERTIES

Let us consider a set of N SAR images collected at the
ordered times ¢ = [to,t1,...,ty_1]’ and co-registered to a
common reference geometry, and let ® = [¢g, P1, ..., dy_117
be the (unknown) vector of the full phases (i.e., not restricted
to the [z, 7] range) associated with every single SAR image.
Given three interferometric SAR data pairs computed from
three generic SAR images collected at times 15, %, t, (see
Fig. 1), the following relation holds:

Appi + Adrg + Apgn =0 (1

where A@, , = ¢ — ¢ is the phase difference between the
single-look (SL) SAR images at times #, and t,. However,
the relation (1) is not applicable when ML interferograms are
considered because they involve the estimation of averaged
phase values that are independently computed (interferogram
by interferogram) over a group of neighboring SAR pixels and
they are generally time-inconsistent. In this case, the phase
turns out to be a rotational field, see [2] and [44]

Ay + Mgy + Agyly #0
where A¢,I;Ak Ago%% + 27U,,, is the phase of
the generic (n,m) ML SAR interferogram, Aq)%

4{ (1/L) Z exp [j (pm — (p,l)} is the relevant (wrapped) ML

interferometric phase, U, ,, is the number of correct (generally
unknown) 2z -cycles of the (n, m) unwrapped ML interfero-
gram, and L is the number of looks. Note that j = «/—1 and
£ is the phase extraction operator; also, = is the group of
averaged SAR pixels at the SL scale used to compute the ML
interferograms. The (time) rotational phase field in (2) is called
a nonclosure phase triplet. The excess phase that prevents the
closure of the triplet in (2) has different contributions related
both to random and systematic sources [1], [2], [34], [44],
[45], [46]. The nonclosure phase is a time rotational (i.e., a
time-inconsistent) field.

Note that given N SAR images, among the whole pos-
sible N(N —1)/2 SAR interferograms that can be gener-
ated, only N — 1 are independent. In contrast, the others
(N — 1)(N — 2)/2 can be calculated from linear combinations
of the previous ones. Multitemporal SB InSAR techniques
[18], [47] rely on processing a set of SB ML interferograms
M < N(N —1)/2, which are typically selected by imposing
thresholds on the maximum allowed temporal and perpen-
dicular baselines of the SB interferograms. Given such a
set of M SB SAR data pairs, a number, say A, of phase
triplets could then be identified. Specifically, it is worth noting
that, considering only a set of SB SAR data pairs, A could
be noticeably smaller than the maximum number of triplets
that can be formed with N SAR images, which is equal to
Amax = [N(N — 1)(N —2)]/6, of which only Aindependent =

)
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[(N — 1)(N —2)]/2 are independent [2]. We observe that the
zth ML phase triplet can be expressed as

ML ML ML
APT = Adiae + APGae + AE e
= Ap" +27U,, z=0,1,2,...,A 1

z

3)

where A@Y and Ap! = W[A@!] # 0 are the zth unwrapped
and wrapped nonclosure phase triplet, respectively, U, is the
composite 27 -integer multiple of the zth triplet, and /(z), k(z),
and ¢(z) are the three epochs of the zth triplet. Note also that
W (-) is the operator that wraps out the phase into the [—7, 7 ]
range. It can be demonstrated that

U: = Unhk(x) T Usk(2).90) + Vg he) + Unkra) - (4)

where the last term on the right-hand side of (4)

Un@).k(2).4()
ML ML ML ¢
= [Aq)h(z),k(Z) T AV g T AP He) — Aq)ﬂ /2”

is the spurious phase cycle arising from the observation
that the zth nonclosure phase triplet could exceed [—x, 7 ].
Remarkably, the integer terms in (4) are estimated during
the space—time PhU operations (see [22]). Nonetheless, the
wrapped phase contribution for the considered triplet Ap!" per-
sists, even when PhU operations are perfectly accomplished.
If not adequately compensated for, the data vector A®" =
[Agd, Apl, ..., Ap% 1T might influence the quality of the
Mt-InSAR results (i.e., the ground deformation time series and
the relevant mean ground deformation velocity maps) obtained
after inverting the sequence of unwrapped ML interferograms
A® =[Apoy, Adr, ..., Ay,

A. ML Speckle Noise Model

The mentioned phase triplets’ inconsistencies A®" could
arise, for instance, when in the ML averaging box, different
populations of scatterers, characterized by independent phase
histories, interfere with one another [9]. Indeed, both the
spatial and the temporal inconsistency in the ML averag-
ing window can give rise to nonzero closure phases [38].
To investigate the origin of these phase inconsistencies, let
us consider the nth phase triplet, namely AgY, which involves
the three SAR images collected at times (#;, %, ), see Fig. 1.
First, let us focus on the (7, f;) SAR data pair and consider
a scenario with F independent populations of scatterers in
the averaging window. The generic fth scatterers’ population
can be assumed, for the sake of simplicity, to have only two
independent phase contributions:! the (averaged) true ground
deformation signal, namely, Aq&%,f’defo, and an inherent phase
term that characterizes a specific, local physical property
of the scatterers, namely, A¢£/’I,I:’f . Given the two complex-
valued SAR images S, and S; forming the relevant (&, k)
interferogram, the ML speckle noise model for the Hermitian
product §,,S; developed by Lopez-Martinez and Pottier [48]

10ther time-consistent, nonlocal phase signals that are common to all
families of scatterers (such as the topographic residuals and orbital phase
artifacts) can be seen included in the ground deformation phase term.
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Fig. 1. Pictorial representation of a generic interferometric phase triplet in
the temporal/perpendicular baseline plane. The nodes highlight the ith SAR

image (gathered at times #;,, , and f,), whereas the three arcs represent the
interferometric phases.

can be adopted

F

<ShSlf>L_ <ShSlt>Lf
=

Wips exp{] (A@I:A]I:defo n A¢ML f)}
+ v (tm. s — NeyZe,)

« exp[ (A¢MLdeto+ A¢MLf)}
+yr (nar,f + ]nai,f)

-5

f=1

(5)

where the symbol (-); denotes the spatial average opera-
tion computed over L samples, in which L = Zf:l Ly.
Moreover, E Ujf:l EZr is the partition of the group
of pixels = of the averaging window into F indepen-
dent subgroups, representing the relevant scatterers’ popula-
tions, with every single set Z; with L, looks. We remark
that wyp; exp[](A¢ML defo Ay ML f)] is the true, expected
signal component related to the fth population, with p;
being the corresponding coherence value of the scatterer’s

family. Moreover, n,  is a multiplicative noise com-
ponent, N.y = 1 — 1/(8Lys), and Z,, is defined in
[48], where E[nu ;— NeysZr,] = 0 and var|n, | =

N2 [(1 4 1ps1?)/2L ). Note that E[-] is the statistical expec-
tation operator. Finally, ng. s + jng, s is a complex-valued
additive noise term with E[ng,. ] = E[ng, s] = 0 and vari-
ance var{ng,. ;] = var[ng, ;] = (1/2L)(1 — |ps|?)32EN",
Of course, in order to describe the characteristics of the scatter-
ers’ families involved in the ML window, other speckle noise
models, such as the one proposed in [38], might be applied.

Accordingly, considering the speckle noise model described
by (5), the ML (expected) phase related to the (%, k) interfer-
ometric SAR data pair can be expressed as

A(/’%kL = 4<ShSl>:>L
F

- .y ML.f
W A(ﬂ}l:/’lllg,deto_,r_i ZWfPfejA¢”’k
=1

+ Cnk

(6)

where ¢, x is a resulting zero-mean additive noise phase term.
As a first approximation, we can assume that the model
in (6) depends only on the temporal baseline of the
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considered (#;, ) SAR data pair Aty = |tx —t;|. Under

this simplified hypothesis, py = pr(ty, %) = pr(tx — tal),
ML, ML,

Ay @t 1 —1l) = Agyy! (1t — 1)), and yy =

wi(tn, tes [t — 1) = wy(|tx — ty]). Concerning the temporal
decorrelation models that describe how the coherence depends
on the interferometric temporal baseline, interested readers are
referred to the literature, see, for instance, [49], [50], and [51].

In Section III, we then relax these hypotheses to consider
a more general time-variant case. Space—time, physical and
statistical properties of local, inherent 51gnals that contrlbute
to the systematic phase biased signal A[Z o1 VP rel agy” ]
can be found in the literature. For instance, readers are
referred to [9], [11], [12], [14], [15], [16], [52], and [53]
to have a comprehensive analysis of the models adopted for
the characterization of soil moisture content variations and its
impact on InSAR investigations. We would like to remark that,
in our work, we do not want to discriminate one another the
different inherent, local signals Ag,, ML.f , V f that contribute to
the phase biased signal nor the time series of the inherent phase
contributions. Conversely, we want to estimate and mitigate
the effect of the “comp051te global systematlc phase biased
components Agob“s = KZ o1V pfe/ 00" on the ground
deformation products as obtained using Mt-InSAR algorithms
(e.g., [18], [19], [39], [47], [54)).

Experimental results have evidenced that the systematic
phase bias Agpi® = KZ?ZI wfpfejA‘?ﬁ;{[kL'f is a short-lived
signal that rapidly decays as the temporal baseline increases
[34], [36], [37], [38], [55]. For small values of At,; =
|tx — 1], we can locally expand the (full) phase bias related
to the (i, k) interferogram A@p4® as

A(f)bIaQ(Afh,k) x~ [1) + Az)(Athjk)} Aty i @)

where o is a constant decay phase velocity factor and
Av(Aty ) is a temporal-baseline-dependent phase velocity
difference term. Using (6) and (7), the nth phase triplet Agp¥
can be expressed as follows:

WAG + AdYy + AdYL]
= WA + Agbb“s AGP] + i
=W [Av(Ath ) Aty g+ Av (Atrg) Atg — Ao (At g) Aty ]
+ (kg (8)

where (5,1, is the zero-mean random noise phase term
related to the (¢4, %, ;) interferometric triplet. From (8), the
(wrapped) triplet systematic phase bias can be expressed as
A¢b1as = Al)(Alh,k)Alh,k'f‘Al)(Atk,q)Atk,q—AD(A[h,q)Alh,q,
which solely depends on the velocity difference terms
Av(At ;) i, j = h, k, q and is insensitive to the mean constant
decay velocity factor v. Because the phase bias is a short-
lived signal, with significant phase rates only at very small
temporal baselines and negligible rates at medium-to-long
baselines, it is reasonably assumed that [A¢Y| < 7 (see [9]).
On the other hand, using polygons of interferograms (see
[37], [38]), the probability that the absolute value of the
nonclosure phases could exceed z increases as the number
of polygon sides increases. This probability is assumed low
in [37], and however, in the case that these long phase loops

A¢tr
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exceed 7 in moduli, there would be a corrupt estimate and
compensation of the bias. On the contrary, in [38], the phase-
unwrapping operations are performed on the nonclosure phase
loops. In this case, some (unavoidable) PhU errors committed
could potentially degrade, to some extent, the reliability of the
estimation and compensation of the phase bias.

B. Statistical Properties of the Phase Triplets

Given a set of N SAR images, the selected M SB SAR
interferograms can be arranged to form A triplets. For every
radar pixel, the vector of the (wrapped) phase triplet A®"™ =
[Agd, Apl, ..., Ap% 1" is a multisample random circular
data vector whose elements have different statistics, depending
on the geometrical characteristics of the different families
of triplets that could be formed. For instance, if we con-
sider the family of interferometric triplets made by three
Sentinel-1 SAR interferograms with temporal baselines of 6,
6, and 12 days, the corresponding systematic phase bias
signal Aqﬁgi;'ik,mk Aty = = Av(Atp ) Aty + Ao (At g) Aty g —
Ao(Aty ) Aty equals Aqﬁglg*]z [Av(6) — Av(12)]12.
In general, when the family of interferometric triplets with
temporal baselines of Aty = An, and Ay, = 2At
is concerned, the relevant systematic phase bias equals:
Aqﬁ‘&lj‘ik,mh»k’zmhvk = 2[Av(Atp i) — Av(2At, 1)1 Aty i There-
fore, under the simplified hypothesis that the model in (6)
is invariant with time, the set of A triplets, namely, Tr
{Tr,,}n |» can be partitioned as Tr = U;(:l Tr,, where X is
the number of different homogeneous families of interfero-
metric triplets.” Let us now consider the generic family Tr,,
composed of A, elements, and the phase vector A<I>tr
[AgoX 0 Agoy e Agoy A, 07 It can be demonstrated ‘that
the elements of the vector A<I>‘r are Von Mises-distributed
VM(u,, k,), with an averaged phase value z, and a concen-
tration parameter x, [56]

A A sin(Ap" ;)
f, = AP = atanl =0 L ] 9
L ity cos(Agf)
1
~ - 1
T a0-T,) (10)

where I'), is the (sample) mean resultant length of the yth
family of phase triplets

A, -1

Z exp[jAg} ]|

21 i=0

Iy =~ (11)

Equations (9)—(11) show that the systematic bias of the
considered family of triplets is the mean direction of the
phase ftriplets’ distribution u,, whereas the mean resul-
tant length I', gives us a measure of the spread of
the phase triplets with respect to u,, accounting for the
zero-mean random noise contribution (3 4. The first-order
statistics of the amphtude and phase of the directional ran-
dom dataz exp[] Agox ;1 = R, exp[j A®, ] are derived in

ZNote that the hypothesis on the homogeneity of the phase triplet families
is subsequently relaxed in Section III.
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Appendix I. It can be demonstrated that the standard deviation

of the yth phase triplet family is given by

2(0-1,)(2-1))
Ay

The mean resultant length of the combined multisample data

vector A®" = [Apl, Apl, ..., Ap% |17 is eventually given

by

Var(CDX) = (12)

X

-l

l—‘lriang = exp .]/u)( € [09 1]

=
— exp[j Aoy
K2

13)

which is referred in this work to as the triangular coherence of
the identified network of SB ML interferograms. We remark
that I'yjang can be seen as an equivalent coherence [57] and
gets a direct measure of the nonclosure (overall) phase triplets’
dispersion to its mean value.

The triangular coherence can be used to select a group
of reliable, coherent SAR pixels at the ML scale. Indeed,
the triangular coherence gets a measure of the noise level
that affects the selected set of ML interferograms. In par-
ticular, the mean resultant length of the phase triplets
A" = [A(p Agl, ..., Ap% |17 is asymptotically nor-
mal with amang = (1- mang)/A (see Mardia and Jupp’s
book [56]). Accordingly, the variance of this estimator drasti-
cally decreases as the number of triplets A and the triangular
coherence value I'yiang increase. The group of coherent SAR
pixels is thus straightforwardly identified by simply imposing
a threshold yyjang on the minimum triangular coherence value
of the analyzed pixel, as ® = {P : I'vjang (P) > Viriang}-

III. PHASE BIAS ESTIMATION AND MITIGATION

This section presents a method to estimate the phase bias
affecting a sequence of SB ML interferograms characterized
by the maximum temporal baseline Af,x.

A. Time-Invariant Case

Let us first assume that the model of (6) is time-invariant,
ie., A(/ﬁblas(th, ) = Aqﬁb‘as(Ath ) Yh, k. Under this hypothe-
sis, the expansion given by (7) is suitable. We remark that
the temporal baseline of an interferogram is a multiple of
the sampled temporal revisit time of the used SAR sensor,
namely, ¢, which, for instance, is equal to six days for the
twin constellations of Sentinel-1 A/B sensors. Accordingly,
if we consider two generic interferometric SAR data pairs
with temporal baselines (4 — 1)d and Ad, with 1 € Z, (7)
particularizes as

AP (20) = [0 + Av(L)]Ad
AP — 1)3] = {o + Ao[(2 — DI — 1)d.

(14)
5)

Comparing (14) and (15), the following iterative relation is
derived:

AGPS[(4 = 1)]
= :Aw“(m +{Av[(A — 1)d] —

Av(A9)}() — 1)d.
(16)
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Equation (8) defines a system of A linear equations with
respect to the (unknown) phase bias velocity differences
AV = [Av(5), Av(25), ..., Av(kd), ..., Av(Atmax)]T

AT =Z. AV (17)

that can be solved in the least-squares (LS) sense as AV =
Z" . A®", where Z' is the pseudoinverse of the matrix
Z; the symbol - stands for the matrix multiplication (rows
by columns) operator. Then, the estimates AV are used to
iteratively compute the phase biases at the different temporal
baselines Aty = Ad, VA = 1,2,..., Aty /0 through (16)
using the initial condition A(/ﬁbias(Atmax) = 0. As claimed in
several independent investigations [34], [36], [37], [38], the
phase bias is a signal that rapidly decays as the temporal
baseline increases. However, it is not guaranteed that the
maximum temporal baseline Afy,, of the selected set of SB
interferograms is large enough to assume that A@*® (At =
0. A strategy to understand whether the maximum temporal
baseline Afn.,x is adequate for the phase bias correction is
to compute, and for every single SAR pixel of the scene,
the term Y = |Av(Afmax — 0) — Av(Atyax)|- If Y is larger
than a given tolerance Yy, (e.g., ¥ > 10~%), some additional
interferograms with longer baselines must then be added.
It is worth remarking that the additional long-baseline ML
interferograms are exclusively used to compute the phase
bias. However, they are not exploited to generate the ground
deformation time series using an SB-oriented algorithm [18],
[19], [39], [47], [54].

B. Time-Variant Case

Let us now assume that the model of (6) is time-variant,
ie., AgpE = Agy' (i, ). In this case, the strategy described
in Section III-A can be specialized by locally applying it to
single time windows, by dynamically selecting and using only

Phase-Unwrapping

SB Multi-Temporal
InSAR Processors

M
Bias corrected
multi-look (ML)
Wrapped
Interferograms

NO

Bias mitigated
InSAR products

YES

Flow diagram of the proposed bias estimation and mitigation algorithm.

subgroups of triplets’ families that encompass the selected
time window to estimate the phase bias. To describe the
developed method, let us focus on the generic ith ML SAR
interferogram that spans the time window between the times
t, and #, of duration my, ;6. The phase bias estimate related to
this ith interferogram is carried out by using (17) considering
only the triplets {a, f, y} (see Fig. 2) that satisfy both the
following conditions.

1) Atleast one of the three arcs {a, S, y } of the given triplet
must wholly be included or include the reference time
window [#, t].

2) For all the three arcs: the generic arc of the triplet is the
reference time window [#,, ;] or its duration is different
from the reference time window duration.

Fig. 2 shows some pictorial examples of allowed and not
allowed (discarded) triplets, considering as a reference a
time window of 6 days [see Fig. 2(a)] and 48 days [see
Fig. 2(b)]. Then, the phase bias estimates Agb}ffis are used to
exclusively correct the ith ML SB interferogram as: AgM- =
W(APM- — A@p). The block diagram of the proposed phase
bias correction method is shown in Fig. 3.

C. Compensation of the Random Phase Signal Components
Once the systematic phase bias components are estimated
and compensated for, however, some uncompensated time-
inconsistent random phase noise contributions, which lead
to phase nonclosures, can persist. They can effectively be
compensated for using the methods described in [1], [3],
[4], [46], [58], [59], [60], and [61]. In particular, the appli-
cation of the first step of the extended minimum cost flow
(EMCF)-based processing chain [3], which is fully detailed
in [57] and here referred to as enhanced multitemporal noise-
filtering (E-Mt-InSAR) algorithm, allows one to obtain a set
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of optimized, fully time-consistent set of ML SAR interfer-
ograms. More specifically, for every SAR pixel of the ML
grid, the E-Mt-InSAR method is based on searching for the
(unknown) phase vector of the wrapped phases related to the
available N SAR acquisitions that minimize the (weighted)
circular variance of the random phase vector representative
of the difference between the original and the optimized
interferograms reconstructed from the computed (wrapped)
phases associated with every SAR acquisition (i.e., the residual
phases). It is worth remarking that the (weighted) circular
variance gets a measure of the dispersion of the residual phases
about their (weighted) mean direction. However, no constraint
is imposed about the mean (weighted) direction of the residual
phases, and the estimator is not able to adequately discriminate
between the short-lived systematic phase contributions and the
zero-mean random phases associated with the ML SB inter-
ferograms, see also the experimental results shown in Appen-
dix II. An effective strategy that could be adopted is, first,
to compensate/mitigate the systematic phase bias components
using the algorithms described in Sections III-A and III-B and
then apply the E-Mt-InSAR noise-filtering algorithm to the set
of compensated ML interferograms {A@M-}M . Accordingly,
using this strategy, both the systematic and random noise phase
contributions can be adjusted.

D. Role of PhU Errors

The presented analyses do not consider the effects of biased
time-inconsistent PhU errors. As a matter of fact, once the
ML interferograms are unwrapped, some of the observed
discrepancies in the generated InSAR products can also be due
to time-polarized PhU errors, e.g., 2z -multiples PhU errors
that are superimposed on phase triplets and are responsible for
time incongruences that can propagate through the selected
network of SB interferograms. These effects arise when the
SB interferograms are unwrapped independently [62], [63],
[64], [65] and/or using some hybrid 2-D + 2-D space—time
PhU methods [22], [26], [28] that do not ensure that the PhU
solution is time-irrotational. These effects are appropriately
considered by the temporal coherence factor, which is com-
puted after the SB inversion of the unwrapped interferograms,
as detailed in Section V. Hence, the temporal coherence value
is used to detect those pixels that are more affected by
time-inconsistent phase artifacts and exclude them from the
subsequent analyses.

IV. SIMULATION

The developed phase bias correction method was first tested
in a controlled environment by running some simulations.
Specifically, we have considered the following cases: 1) the
model (6) is time-invariant (see Section III-A) and 2) the
model (6) is time-variant where the nonstationary phase cor-
rection method described in Section III-B is applied. For both
cases, we have also considered the effects of the decorrelation
noise that has been introduced in the test environment.

A. Time-Invariant Case
In this first case, the assumption is retained that the phase
bias depends only on the time span of the considered InSAR
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Fig. 4. Simulated values for the InNSAR phase model (6), referred to the
second family of scatterers. The inherent (independent) phase terms Aqﬁ%}("z
for ¢ = 1 and 4, respectively, are plotted in blue with solid and dashed lines,
while in orange, the coherence temporal decay p; is plotted. The plots are
functions of the InSAR temporal baselines.

data pair, i.e., Agb}'iff = A(/ﬁgf%s(th, ) = Aqﬁfﬁs(Ath,k), where
t, and f;, are the two generic time acquisitions. The simu-
lation has been carried out considering the time distribution
and the SB interferometric network settings related to the
Nevada case-study area (see Section V). We considered N =
65 SAR acquisitions and M = 895 SB InSAR data pairs
selected by imposing a maximum temporal baseline Aty =
96 days. The interferograms’ temporal baselines are sam-
pled as: At = {Atnax/ds, Atmax/ds—1, - .., Atmax/d1}, Where
{ds = (Atmax/6) = 16,ds_1 =15, ...,d» =2,d, = 1}. Con-
sidering the selected network of M SB ML interferograms,
A = 6305 InSAR triplets have been identified. By refer-
ring to the phase model described by (6), we assumed the
presence of F 2 independent populations of scatterers

in the averaging ML spatial window and for the sake of

simplicity that Ago,TkL’defo 0 Vh,k. First, a free-noise
scenario was assumed, i.e., (& = 0 Vh, k. In this case, the

adopted InSAR phase model (6) particularizes as: Agpy =
WLy pre/ 85" 1+ ynprel 4571}, For the first family of
scatterers, we set Aqﬁ%kL’l =0, p; = 1, and y; = 1. Differ-
ently, for the second family of scatterers, the following values
are set: A(f)gka’z =& Atpg, p2 = e 2k and yy = 1, where
o= (11/2)(1/Atmax) and & = gz (1/ Atax)- Fig. 4 shows the
plots of simulated inherent (independent) phase term for the
second family of scatterers versus the interferograms temporal
baseline, considering the two cases with ¢ = 1 and 4. In this
round of simulations, we have assumed that the average phase
of the second family varies linearly with time and p,
e~* Ak in accordance with the temporal decorrelation models
proposed in the literature (see [50]). In such a way, the made
hypothesis that model (6) is time-invariant is valid. Based on
the parameters listed above, the adopted InSAR phase model
becomes: App = W{L[1 4 e~ kgl Alni]},

The simulated phases, which are plotted versus the temporal
baseline (blue lines) in Fig. 5(a) and (b), correspond to a
maximum (simulated) phase bias velocity of roughly 2.1 and
8.7 cm/year, related to InSAR data pairs with a temporal
baseline of At 6 days and assuming a wavelength of
5.546 cm (i.e., that of Sentinel-1 A/B), for the simulations
with ¢ = 1 and 4, respectively. We have applied the phase
bias estimation method described in Section III-A to simulated
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Simulated and estimated InSAR biased phases for the time-invariant baseline case. (a) and (b) Noise-free simulations, where the blue lines represent

the simulated phases Aqﬁ}:’l};, whereas the red triangles represent the estimated phases by applying the method in Section III-A. The plots are functions of
the InNSAR temporal baselines. (c) and (d) Same as (a) and (b) but with noise. The plots are functions of the simulated 895 interferograms, which have been
grouped and ordered by temporal baselines. (a) and (c) Simulation with ¢ = 1. (b) and (d) Simulation with ¢ = 4.

phases. We want to remark that, even with ¢ = 4, the
simulated phases do not lead to phase triplet ambiguities, that
is, A¢" € [—=x,r]. For instance, if we consider a triplet
with side lengths of 6, 6, and 12 days, the excess phase
2Apsdays — Adiadays is of about 0.1787 rad. The same does
not happen if we use for phase estimation, instead of triplets,
closed loops forming polygons in the temporal/perpendicular
baseline plane with several SB arcs. Indeed, if we consider a
polygon formed by A = 10 arcs of side length 6 days and one
arc of side 6A days, the excess phase AApgdays — APsodays
is of about 3.1909 rad, which is outside the range [—=, «].
In this case, the polygons must first be unwrapped, and this
operation could introduce some undesired artifacts in the phase
bias estimates.

The estimated phases are shown with red triangles in
Fig. 5(a) and (b). The results show that when the model in (6)
is time-invariant, and in the absence of noise, the method
perfectly reconstructs the InSAR biased phases, also when they
exhibit a sign change [see Fig. 5(b)]. Fig. 5(c) and (d) shows
the results of the simulations obtained by adding to simulated
phases the phase noise components (5 x # 0, for the two cases
with ¢ 1 and 4. ML noise signals have been simulated
(e.g., see the statistics shown in [48]) considering a coherence
value of 0.35 and an equivalent look number (ELN) of 80.
The results demonstrate that the proposed method is robust to
decorrelation noise artifacts.

B. Time-Variant Case

At this stage, we study what happens in the more gen-
eral case that the model (6) is time-variant, i.e., A@ps
A@pa (i, ). To this aim, we have considered that the
second family of scatterers has the following inherent

phase signal A(/ﬁ,lz[kL’z E Atyx + nnk. Specifically, we

TABLE I
DETAILS OF THE TEMPORAL WINDOWS USED FOR SIMULATIONS

Tomporal - Sgart time (1,) Endtime (7,)  cmboral
[#] [date] [date] [days]
001 January 6%, 2020 January 12, 2020 6
137 March 6%, 2020 March 18™, 2020 12
170 March 18", 2020 April 5™, 2020 18
251 April 17%, 2020 May 11™, 2020 24
316 May 11", 2020 June 10", 2020 30
397 May 29", 2020 August 3™, 2020 36

have added to the simulated signal of Section IV-A a sea-
sonal component for the average phase of the second fam-
ily, considering a sinusoidal signal with a period of one
year, t© 365days, namely, ny = sin[2x(tx —to)/7] —
sin[27 (t;, — to)/7] Yh, k. As a result, the simulated phase sig-
nal is: AgME = W{L[1 + ¢~ Mol € Anitm0 ]} The phase
estimation method described in Section III-B is applied in this
case.

Fig. 6(a) [Fig. 6(b)] shows the plots of the estimated
interferograms biased phases (biased phase velocity) versus the
InSAR temporal baseline for six selected temporal windows
(dashed lines), which corresponds to the InSAR data pairs
listed in Table I. In this first case, we have considered
¢ = qn(1/Atyax) with ¢ = 1. The same has been repeated
considering ¢ = 4. The plots of the estimated biased phases
(biased velocity phases) versus the InNSAR temporal baselines
are shown in Fig. 6(c) [Fig. 6(d)]. Black solid lines in the
plots of Fig. 6 represent the estimated phases retrieved using
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Fig. 7. Simulated and estimated InSAR biased phases for the time-variant baseline case. The blue squares represent the simulated InSAR biased phases,
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the time-invariant algorithm of Section III-A. We can observe
that the time-invariant method cannot follow the time-variant
fluctuations of the adopted model. Fig. 7(a) and (b) shows the
comparison between the simulated and the estimated biased
phases for both the scenarios with & = gx (1/Atyax) Using g =
1 and 4. Simulated biased phases (blue squares) accounting
for the time-variant 7, terms have been shown as well as
the relevant estimates (red triangles) obtained by applying

the method described in Section III-B. The achieved results
evidence that the biased phases have correctly been estimated
using the developed method, which can track the different
fluctuations of the phase bias in the interferograms that belong
to every group of temporal baselines, especially for those with
small and very small baselines. Also, in this case, we have
evaluated the effects of the noise on the phase estimates. The
results are shown in Fig. 7(c) and (d).
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V. SB MT-INSAR METHODS

In this work, we refer to a unified representation of the SB
algorithms. Indeed, the different implementations of the SB
methods proposed in the literature have individual peculiari-
ties; however, they can almost be unified [47], [66] considering
that they solve a linear optimization problem that relates the
vector of the (known) unwrapped ML SB interferograms,
namely, A® = [A¢y, A, ..., Adp_1]17, to a model of
O unknown parameters of the ground deformation M, =
(Mgo, Mg, ..., Md,Q,l]T. The adopted unified representa-
tion of the SB linear transformation is given as follows:

B-M,=A® (18)

where B € RM*2 s the design matrix of the considered linear
transformation. Precisely, for the implementation of the Small-
BAseline Subset (SBAS) algorithm [18], the model parameters
represent the velocities between time-consecutive SAR acqui-
sitions, namely, My = v = [0g = ((¢1 — p0)/(t1 — 10)), 01 =
(2 — 1) /(2 — 11), ..., on—2 = ((Pn—1 — dN—2)/(In—1 —
tv—2))]7, and the mathematical expression of the design
matrix B is that detailed in [18] and [66]. Once (18) is
solved, the obtained model vector V is time-conservative, that
is to say, there exists a unique vector ® that satisfies the
following relation B - ¥ = A - & and the Euclidean two-
norm ||A - ® — A®||, is minimal, where A is the incidence
matrix of the SB network nonplanar graph (which is equivalent
to the discrete gradient operator) and @ is the vector of the
(unwrapped) phases associated with every single SAR image
[66]. Here, we explicitly address some critical properties of the
vector A®. First, we observe that the mth (wrapped) phase
A@,, can be decomposed into the sum of a time-consistent
Agp, and a time-inconsistent Ag, phase component [67].
Therefore,

Agw = Ag, + Ag! +27U,, m=0,1,...,M—1 (19)

where U, is the correct (unknown) ambiguity number asso-
ciated with the mth ML interferogram, which also considers
the ambiguity number that could arise from the sum of the
wrapped phase terms Ag, + Ag/ . Of great relevance for the
generation of the ground displacement products through SB
methods are the time-inconsistent phase terms A¢,,, which
(as said) are responsible for nonclosure phase triplets (see
Section III). This section shows how the residuals of the LS
solution of (18), namely, A®™ = B- M, — A®, are related to
the nonclosure phase triplets. Moreover, we summarize some
basic properties of the temporal coherence quality factor [22]
to provide a quantitative estimate of the PhU errors committed
after the SBAS inversion [3], [18], [22], [68]. We can express
it as

M—1
Temp = 27| > exp[jAG]7]| € [0, 1] (20)
m=0

where A¢;e is the mth element of the residual vector A @™ =
(B-M,; — A®) € RM. Accordingly, the temporal coherence
Iiemp is the mean resultant length of the circular phase data
vector A®™. We can observe that

sz.Aq>feS=sz.(A.<i>—Aq>) 1)
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where e ZMM s the discrete curl operator related to
the SB network graph, which is a sparse matrix composed
of A (number of triplets) rows and M (number of interfero-
grams) columns. Considering (19), (21) can be manipulated
as follows:

Q.A(I)reS:SZ-A'é_Q'[A¢/+A¢N+2ﬂi\]] (22)

where U # U 1is the vector of ambiguity numbers estimated
through PhU operations, which could generally differ from
the correct (unknown) vector U. Note also that - A - d=0
and € - A® = 0 being the former the discrete counterpart
of the V x V@ operator and A®’ a time-conservative vector.
Furthermore, if the estimated ambiguity number vector is not
correct, namely, U=U+AU +AU", where AU’ and AU",
respectively, are the time-correlated and time-uncorrelated
ambiguity number errors, the following relation holds:

Q210 =92 2z(U+ AU + AU") =2z (2 - AU")
(23)

because the (true) phase ambiguity cycles and the time
correlated ambiguity number errors are time-conservative,
namely, 27 (- U) = 0 and 27 (R - AU’) = 0. If we assume
that no PhU errors were committed, i.e., AU” = 0, (22)
particularizes as

—A®"

Q- AP = (24)

where A®" = W(R - A®”) € R is the vector of temporal
nonclosure phase triplets, see (3). In (24), we have also
assumed that phase triplets are within [—z, 7 ]. Equation (24)
relates the LS residuals after SB inversion A®™ and the
nonclosure phase triplets A ®", making it evident that noncom-
pensated phase triplets correspond to errors after the SB inver-
sion and have an impact on the temporal coherence. Finally,
if we relax the hypothesis that no PhU errors were committed,
we have -A®™ = —AP"—27Q-AU". Therefore, the phase
residuals increase due to PhU errors and the corresponding
values of the temporal coherence decrease. Note that even
with a perfect compensation of the systematic and random
(wrapped) nonclosure phases, some significant phase residuals
could still arise after applying the SB inversion to unwrapped
interferograms if substantial PhU errors are present.

VI. EXPERIMENTAL RESULTS

The experiments have been carried out by independently
analyzing two sets of SAR acquisitions collected over the
Monte Cristo Range area, Nevada, USA, and Sicily, Italy,
respectively, composed of 65 descending Sentinel-1 A/B
(C-Band) SAR images acquired with terrain observation by
progressive scan (TOPSAR) mode (Path 71, vertical-vertical
(VV) polarization) from 6 January 2020 to 30 January 2021,
and 71 descending Sentinel-1A/B TOPSAR images (Path
124, VV polarization) acquired from 16 March 2020 to
10 May 2021.

A. Nevada, USA

The area is located in the Monte Cristo Range, approxi-
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