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A New Polarization-Based Vegetation Index to
Improve the Accuracy of Vegetation Health

Detection by Eliminating Specular
Reflection of Vegetation

Siyuan Li , Jiannan Jiao, Jinbo Chen, and Chi Wang

Abstract— Monitoring the chlorophyll content changes in the
plant via remote sensing is of great significance for understanding
plant growth and monitoring vegetation pests and diseases, which
is an important method to study the global climate change.
However, the monitored information is often interfered by leaf
specular reflection, resulting in reduced accuracy of chlorophyll
content inversion. In this article, to eliminate the interference
of specular reflection in vegetation remote sensing, a polarized
multispectral imaging system (PMSIS) used in the different-
light-level situation to observe vegetation was developed, and
a new specular reflection removal vegetation index (NSRVI)
was proposed to better detect the vegetation health condition
under specular reflection interference. Based on previous studies,
several vegetation indices (simple ratio (SR) index, normal-
ized difference vegetation index (NDVI); modified simple ratio
index (mSR), modified normalized difference vegetation index
(mNDVI); polarization based simple ratio index (pSR), polariza-
tion based normalized difference vegetation index (pNDVI); and
NSRVI) were established, and the impact of specular reflection on
vegetation health detection was evaluated. Correlation analysis
was done on relative chlorophyll content [soil and plant analyzer
development (SPAD)], SR, NDVI, mSR, mNDVI, pSR, pNDVI,
and NSRVI to understand their potential ability to eliminate
specular interference. The results show that SR and NDVI have
the highest sensitivity to specular reflection, and the other three
methods can alleviate the adverse effects of specular reflection to
varying degrees. It was observed that NSRVI was well-correlated
with SPAD (coefficient of determination (R2) = 0.899 and root-
mean-square error (RMSE) = 6.16), highlighting the potential
of NSRVI in eliminating specular reflection interference and
identifying vegetation health condition. In summary, this method
can effectively eliminate specular interference and improve the
detection accuracy of vegetation health condition.

Index Terms— Polarization, remote sensing, soil and plant
analyzer development (SPAD), specular reflection, vegetation
health monitoring, vegetation index.

I. INTRODUCTION

THE physiological status of plants depends on their bio-
chemical parameters, such as various pigments, nitrogen,

and water [1], [2]. Therefore, the quantification of vegetation
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biochemical parameters can provide direct and effective infor-
mation for the study of ecological processes, and remote
sensing provides a good chance to monitor global ecological
change [3], [4], [5]. As one of the main pigments of green
plants, it is generally considered that the chlorophyll content
is higher in healthy plants than that in unhealthy plants [6].
The level of chlorophyll in plant leaves can be used as an
important indicator for the health condition of vegetation
and its adaptation to surrounding environmental stress [7].
Therefore, monitoring chlorophyll content changes in the plant
is of great significance for understanding plant growth and
monitoring vegetation diseases and insect pests [8], [9], [10],
[11], [12], [13].

The wet chemical method is adopted in the traditional mea-
surement of chlorophyll content [14]. As a time-consuming
and labor-intensive method, it has also drawbacks to destroy
the plant and it is impossible to perform large-scale monitoring
in real time [15]. Therefore, how to obtain plant physiological
parameters in a timely, rapid, efficient, and reliable manner
has become an important issue. With the development of
multispectral and hyper-spectral remote sensing technology,
it provides a fast, effective, and nondestructive data collection
method and can quantitatively analyze the vegetation biochem-
ical parameters based on the vegetation indices, especially
plant chlorophyll content [16], [17], [18].

Using the red and near-infrared wavelengths of plants,
many scholars have developed various vegetation indices to
detect the growth and condition of vegetation [19]. Vegetation
indices can be mainly classified into ratio form [simple ratio
(SR)] [20], normalized form [normalized difference vegetation
index (NDVI)] [21], and other forms of chlorophyll sensitivity
indices [22], [23], [24], [25], [26], [27], [28], [29], [30], [31].
Lichtenthaler et al. [32] found that the reflectance around
550 and 700 nm is most sensitive to the chlorophyll content of
plants, and they introduced two ratio vegetation indices, which
can be used for accurate estimation of chlorophyll content.
However, when the reflectivity of the red wavelength is very
small, the ratio vegetation index will be very large. Therefore,
Rouse et al. [21] proposed the normalized vegetation index
NDVI for this phenomenon, which is widely used in vegetation
remote sensing. Yagci et al. [33] used a vegetation condition
index (VCI) derived from NDVI to verify the effects of
corn and soybean rotation. Liu et al. [34] used three NDVI
indicators to detect the growth status (greening and browning)
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of alpine vegetation (2001–2015). In addition, there are some
other forms of vegetation indices that can also be applied
to estimate plant chlorophyll content well under different
situations. For instance, Datt [35] developed a three-band
differential ratio vegetation index (R850–R710)/(R850–R680),
and it is believed that the index can help eliminate the effect
of leaf surface scattering and thus have a higher sensitivity to
chlorophyll content.

The main advantage of the above vegetation indices is their
sensitivity to changes in the chlorophyll content. However,
these vegetation indices may be affected by the specular
reflection of leaf, affecting the inversion accuracy of chloro-
phyll content based on them. In remote sensing methods,
reflectivity data often play an essential role and the reflection
information of leaves includes two components [36]: one is the
single scattering (i.e., specular reflection) that occurs on the
leaf surface, and the other is multiple scattering (i.e., diffuse
reflection) that passes through the interior of leaves [37], [38].
The specular reflection does not enter the interior of leaves and
is related to cytochrome, cell wall, or water, so it has nothing to
do with the biochemical characteristics of leaves [39]; hence,
the specular reflection is considered to be a factor that reduces
the estimation accuracy of leaf biochemical parameters.

To overcome the drawbacks of the specular reflection, Sims
and Gamon [40] subtracted the leaves reflectance value at
R445 nm from the original reflectance and developed improved
SR [modified simple ratio index (mSR)] and ND (mND)
indices, achieving better accuracy in chlorophyll estimation.
Féret et al. [41] performed poor simulations of eucalyptus leaf
reflectance with the PROSPECT-D model and recommended
that specular reflection be specifically considered in future
studies. Barry and Newnham [42] noticed interference caused
by specular reflection of leaves when using PROSPECT-5
to extract carotenoid content from eucalyptus leaves. Xie
et al. [43] measured the scattering distribution of maize leaves
and found that the surface reflection of leaves was non-
Lambertian, and the specular reflection of maize leaves could
reach 50% in the visible light band. Some scholars proposed
that the waxy layer on leaves would affect the simulation
accuracy of the PROSECT 5 model and believed that the
presence of the waxy layer was the main source of error
in the estimation of pigment content in eucalyptus leaves
[44]. Li et al. [45] carried out experiments on mucuna, paper
mulberry, and ginkgo, proving that leaves with a different
surface roughness has a certain degree of specular reflection.
And they believe that the existence of specular reflection will
affect the chlorophyll inversion accuracy. When the specular
reflection is eliminated, the chlorophyll inversion accuracy is
improved. Wang et al. [46] removed the specular reflection
by identifying the highlight area, removing the highlight area
and complementing it with surrounding information. Some
scholars proposed to use wavelet transform to remove specular
reflection components in remote sensing images, and it has
been proven that wavelet transform is indeed effective for
removing specular reflection [47], [48]. Although many of the
above studies have attempted to directly remove or mitigate
the specular interference of leaves, none of them explicitly
evaluate the specular interference of leaves and introduce a

Fig. 1. Plant materials. A spotted laurel: (a)–(f) are the healthy leaf area,
specular reflection leaf area, stressed grade-1 leaf area, stressed grade-2 leaf
area, stressed grade-3 leaf area, and the withered leaf area, respectively.

TABLE I

STRESS GRADE CLASSIFICATION OF SPOTTED LAUREL

vegetation index that removes the specular interference of
leaves.

This study mainly aims to eliminate specular reflection
interference and adopt remote sensing to detect the vegetation
condition based on previous studies. Therefore, to get images
of plants at R445 nm, R680 nm, and R760 nm, we developed a
polarized multispectral imaging system (PMSIS), polarized
images at angles of 0, 60, 120, and introduced new specular
reflection removal vegetation index (NSRVI) to eliminate the
specular reflection interference of plants and improve the
detection accuracy of vegetation health condition. Correlation
analysis was performed between SR, NDVI, mSR, modified
normalized difference vegetation index (mNDVI), polarization
based simple ratio index (pSR), polarization based normal-
ized difference vegetation index (pNDVI), and NSRVI with
plant chlorophyll content [soil and plant analyzer development
(SPAD)] to ascertain their potential to eliminate specular
reflection interference, and the corresponding test results were
given. Furthermore, with our innovative research in ground-
based remote sensing, it is expected that the platform will be
transformed into an air- and space-based one in the future for
large-scale applications.

II. PLANT MATERIALS AND METHODS

A. Plant Materials

In this study, the polarization and spectral image for analysis
came from a plant at Shanghai University, Shanghai, China—
spotted laurel (Aucuba japonica). As shown in Fig. 1, the
spotted laurel had different healthy situations. Fig. 1(a)–(f)
are defined as healthy leaf area, leaf specular reflection area
(healthy leaf), stressed grade-1 leaf area, stressed grade-2 leaf
area, stressed grade-3 leaf area, and withered leaf area. The
classification of stress grades is shown in Table I.

In this study, we developed a PMSIS, collecting polarization
and spectral image data of spotted laurel. In order to verify
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Fig. 2. (a) Polarized multispectral low-light-level imaging system.
(b) Measurement direction.

the ability to specular reflection, SPAD values of leaves
under different health conditions were measured and fit with
vegetation index. Finally, experiments were carried out on a
pot of spotted laurel under different illuminations, namely,
0.27, 1.19, 5.13, 10.29, and 102.1 lx in the dark room of the
laboratory to verify the stability of the system.

B. Design of Imaging System

Our previous work studied the application of detecting
the vegetation condition through remote sensing during the
nighttime outdoors [49]. Based on PMSIS, a new method of
night plant status detection was proposed to detect vegetation
to better monitoring of plant health in the nighttime environ-
ment. In this article, the PMSIS was developed based on the
hardware of previous studies, including a scientific sCMOS
camera (PCO. Edge 4.2) with 2048 pixels ×2048 pixels,
filters installed on a rotary filter mount, and a linear polarizer
installed on a rotary polarizer mount. To be specific, we use
blue light band filters from Semrock (FF01-445/20-25) and
band filters from Thorlabs [(FB680-10, red) and (FB760-10,
near-infrared)].

The PMSIS is shown in Fig. 2(a). In order to simulate
different illumination environments, the system is placed in

a dark room made of optical shading materials, with a shading
rate greater than 99%. During the experiment, the illumi-
nance of the darkroom was controlled to be 0.27, 1.19, 5.13,
10.29, and 102.1 lx, respectively. We carried out the exper-
iment at Shanghai University in winter (longitude, latitude:
121◦24′ 1.95′′, 31◦19′ 10.57′′). As shown in Fig. 2(b), to verify
the feasibility of the new method, a randomly selected incident
zenith angle (30◦) was applied. The measurement is carried out
in the direction of the nadir because the direction of the nadir
is the conventional observation direction in remote sensing.

C. Measurement of SPAD Content

A hand-held chlorophyll meter (Medium Kelvin, TYS-4N)
was used to measure SPAD of different health conditions. Fifty
readings were recorded on leaves of each stress grade, and
the average value was taken as the reference value for SPAD.
During the test, light was emitted in two bands from two LED
light sources: one is red (center wavelength: 650 nm), and
the other is infrared (center wavelength: 940 nm). The two
bands of light got through the leaves and were received and
calculated.

D. Data Acquisition and Analysis

The sCMOS camera and filters with bands of R445 nm,
R680 nm, and R760 nm were used to collect the spectral image
of plants, and a polarizer was used to collect the polarization
image of plants at 0◦, 60◦, and 120◦, with the linear polariza-
tion of vegetation being calculated. In this study, the spectral
analysis focused on chlorophyll absorption characteristics near
680 nm and chlorophyll reflection characteristics near 760 nm
in the central band, and seven vegetation indices, including
SR, NDVI, mSR, mNDVI, pSR, pNDVI, and NSRVI, were
developed to invert vegetation health condition.

1) Measurement of DoLP of Vegetation: Light scattered by
surfaces of the vegetation is partly polarized [50], [51], [52],
which is a combination of randomly polarized radiation and
polarized radiation. To check the polarization information,
the Stokes vector-based method can be realized via a simple
set of measurements of the irradiance transmitted through a
conceptual set of polarized filters [53], [54], and the Stokes
parameters are defined as
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The parameters (commonly denoted by I , Q, U , V ) can
be fully describe the polarization information related with a
beam. For a beam, the S0 term describes the total energy, the
S1 term describes the linear horizontal or vertical polarization
information, the S2 term describes linear ±45◦ polarization
information, and the S3 term describes right- or left-handed
circular polarization information.

For the passive remote sensing in nature, the circularly
polarized information is usually so small that polarization
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Fig. 3. Characterization of Stokes vectors based on the Fessenkovs method.
E stands for the detected energy through polarizers of a certain angle.

Fig. 4. (a) Image of I component of stokes. (b) General intensity.

state of a beam can be characterized by linear degree of
polarization (DoLP), which has a relationship with polarized
reflectance (Rp) and bidirectional reflectance factor (BRF),
expressed as [55]

DoLP = RP

BRF
. (2)

The DoLP can be calculated based on the Stokes parameters

DoLP =
√

S2
1 + S2

2

S0
. (3)

As shown in Fig. 3, the Fessenkovs method was used to filter
the incident radiation to measure the linear Stokes parameters
and obtain DoLP.

The relative accuracy of PMSIS was checked based on the
first parameter S0 (denoted by I ) of Stokes, which should be
the general detected energy without the polarization filter and
obtained by

S0 = 2

3
(E0 + E60 + E120). (4)

Fig. 4 shows the comparison between the direct mea-
surement without a polarization filter and the I component
measurement: Fig. 4(a) is the image of I component of stokes
and Fig. 4(b) is the general intensity. The dashed lines are the
randomly selected interest regions for comparison, as shown
in Fig. 5. It shows that the I component is linear to the general
intensity of direct measurement and the relative accuracy of

Fig. 5. Comparison between general intensity of direct measurement and
I component: (a) Intensities of interest regions and (b) comparison of
intensities from direct measurement and I component.

the polarization measurement is reliable. Pearson’s r was
calculated to check the correlation between direct measured
intensity and I component of stokes, with a value of 0.95.

2) Selection and Construction of Vegetation Index: Of the
vegetation indices for estimating chlorophyll content that have
been used in the literature, many are variations of SR or nor-
malized difference (NDVI) indices. We screened and classified
the vegetation indices appropriately, focusing on their potential
to be insensitive to leaf specular reflectance. SR and NDVI
indicators are widely used as they are simple to calculate and
involve not many bands. The calculation formula is as follows.
The wavelengths of λ1 and λ2 in this article are R760 nm and
R680 nm, respectively,

SR = Rλ1

Rλ2
(5)

NDVI = (Rλ1 − Rλ2)

(Rλ1 + Rλ2)
(6)

where Rλ1 and Rλ2, respectively, represent the reflectance
values at the wavelengths of λ1 and λ2. In (5), a constant b is
added to Rλ1 and Rλ2. When Rλ1 �= Rλ2, then Rλ1/Rλ2 is not
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equal to (Rλ1 + b)/(Rλ2 + b). This shows that the SR index is
more sensitive to the specular reflectance. Similarly, the NDVI
index is also sensitive to specular reflection reflectance. The
correction strategy proposed by Sims and Gamon [40] can be
applied to reduce the sensitivity to specular reflectivity of the
SR and NDVI indices, and the formulas are as follows:

mSR = (Rλ1 − R445 nm)

(Rλ2 − R445 nm)
(7)

mNDVI = (Rλ1 − Rλ2)

(Rλ1 + Rλ2 − 2R445 nm)
. (8)

As assumed by Sims and Gamon [40], R445 nm is the
specular reflectance. Specular reflectance (R445 nm) is removed
from Rλ1 and Rλ2, so mSR and mNDVI are not sensitive to
specular reflectance.

In addition, the inversion accuracy of leaf chlorophyll can be
improved with the polarization measurement method proposed
by Li et al. [45] to remove specular reflection on the leaf
surface, described as follows.

First, the total reflectance (R) of a blade is the sum of the
specular (Rs) and diffuse reflectance (Rdiff ) components

R = Rs + Rdiff. (9)

According to the Fresnel equation, when the angle of
incidence is not 0◦ or 90◦

Rs = Rp × c (10)

where Rp is the leaf polarized reflectance. Equation (10) is
established on the premise that specular reflection is the main
source of polarized reflection, where c is the constant, and
Rs can be regarded as the amplification of Rp in quantity.
To get Rp, DoLP needs to be calculated first, and it is
calculated by (3)

Rp = R × DoLP. (11)

Since the infrared band is not sensitive to specular reflection,
polarization removal is performed only on Rλ2, where C is 1.2.
The equation is as follows:

pSR = Rλ1

(Rλ2 − 1.2Rλ2 × DoLP)
(12)

pNDVI = [Rλ1 − (Rλ2 − 1.2Rλ2 × DoLP)]

[Rλ1 + (Rλ2 − 1.2Rλ2 × DoLP)]
. (13)

3) New Specular Reflection Removal Vegetation Index: For
the spectral data, since the infrared band is not sensitive to
specular reflection, we found that the spectral image of R760 nm

is insensitive to specular reflection, while those of R680 nm

and R445 nm are more sensitive to specular reflection in the
experiment. Therefore, according to the correction strategy put
forward by Sims and Gamon [40], we only need R680 nm minus
R445 nm. In addition, the polarization measurement method
proposed by Li et al. [45] to remove the specular reflection
on the leaf surface indicates that the specular reflection of
leaf can be calculated from the polarized reflectance, which
is calculated by DoLP. Therefore, this article combines the

advantages of both and proposes the NSRVI. The equation is
as follows:
NSRVI

= R760 nm − (N × R680 nm − a × R445 nm − b × DoLP)

R760 nm + (N × R680 nm − a × R445 nm − b × DoLP)
.

(14)

In NSRVI, it is considered that the specular reflection
interference can be determined by R445 nm and DoLP. The
reflection at R445 nm is mainly from specular reflection and can
be used to remove the specular reflection effects. To further
improve the accuracy, the DoLP is considered. As DoLP is
a relative ratio (2), a constant b is used to modify DoLP to
has the same unit as the reflectance (R), and b works as the
reflectance multiplied by a coefficient (same as a × R445 nm).
Subtracting R445 nm from R680 nm can remove part of the
specular reflection, and DoLP can be applied to further remove
the specular reflection.

Based on the equation, R445 nm is regarded as specular
reflection, which is subtracted from the reflectance at R680 nm

to remove the specular reflection for that band. Since the
image intensities of R680 nm and R445 nm are different, the
specular reflection can be well-eliminated when the reflectance
intensities of R680 nm and R445 nm are equal. In the experiment,
the intensity of the image for R445 nm is about 1.5 times
that of the R680 nm, so N = 1.5 and a = −1 are used.
To further eliminate the specular reflection, DoLP is used and
the constant coefficient of b is determined as −1. The N value
(1.5) is determined by the experiment and should be modified
when observation situations are different, which has a direct
impact on the removal of specular reflection.

E. Accuracy Evaluation and Verification

In this article, the coefficient of determination (R2),
bias (Bias), and root-mean-square error (RMSE) are applied
to check the correlation level between vegetation index and
chlorophyll. Among them, R2 represents the closeness of
the correlation. When R2 is closer to 1, it indicates that
the reference value of the related equation is higher; on the
contrary, when it is closer to 0, it indicates that the reference
value is lower. Bias reflects the error between the output of
the model on the sample and the real value. The smaller the
value is, the higher the accuracy of the model is. RMSE can
reflect the degree of dispersion of the dataset. The smaller the
value is, the higher the accuracy of the model is

R2 = 1 −
∑

i

(
yi − y ′

i

)2∑
i (yi − ȳ)2 (15)

RMSE =
√∑

i

(
yi − y ′

i

)2

n
(16)

Bias =
∑

i

(
yi − y ′

i

)
n

. (17)

F. Organization of This Study

In order to verify the effect of each vegetation index on
removing specular reflection and the stability of the system
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Fig. 6. Flowchart of this study.

Fig. 7. Scatterplot of SPAD content.

under different illumination levels, in Section III-A, we mea-
sured the SPAD contents of spotted laurel of different health
conditions. Section III-B introduces vegetation health detec-
tion of each vegetation indices and fitting with SPAD content.
Section III-C presents the experimental results under differ-
ent illumination to demonstrate the stability of the system.
Section III-D introduces multiangle experimental check.

The flowchart of typical steps for predicting the SPAD
content of spotted laurel in this study is shown in Fig. 6.

III. RESULTS

A. Statistics of SPAD Content

The SPAD of spotted laurel in different health conditions
was measured, and Fig. 7 shows a scatterplot of the average
SPAD content of leaves in different health conditions of the
plant. As the health of leaves declines, their pigments degrade
gradually, and the value of chlorophyll reduces gradually.
The SPAD content of healthy leaf and specular reflective

leaf is above 40.59, the SPAD content of stressed grade-1
leaf is 25.64–40.59, the SPAD content of stressed grade-2 leaf
is 15.5–25.22, the SPAD content of stressed grade-3 leaf is
5.3–15.5, and the SPAD content of withered leaf is below
5.3. The sensitivity (Se) and specificity (Sp) of different plant
status and their respective positive predictive value (PPV)
and negative predictive value (NPV) were calculated using
the misclassification rate of the SPAD scatterplot, as shown
in Table II.

B. Monitoring of Vegetation Health Condition

The experimental illuminance was measured as 102.1 lx
with an illuminometer.

1) SR and NDVI Measurements: Fig. 8(a) shows the SR
image calculated by (5), and Fig. 8(b) shows the pseudo-
color image of Fig. 8(a). Fig. 8(c) shows the NDVI image
calculated by (6), and Fig. 8(d) shows the pseudo-color image
of Fig. 8(c). The black-box area in Fig. 8 is lower than the
surrounding values due to specular reflection on the blade
surface (see Section IV-A). The red-box area in Fig. 8 is
withered leaf, and the values of withered leaf and stressed
grade-3 leaf are not much different, so withered leaf and
stressed grade-3 leaf are confused.

Scatterplots of discriminant functions were drawn for six
health condition areas. Fig. 9(a) shows a 2-D scatter diagram
of SR image, where x-axis represents the number of groups
and y-axis represents the SR value. The classification lines
are drawn at the mean of the health condition grades of
plants. For example, classification lines drawn at 0.571, 0.199,
0.085, and 0.041 distinguish healthy leaf, stressed grade-
1 leaf, stressed grade-2 leaf, stressed grade-3 leaf, and withered
leaf, respectively. Fig. 9(b) shows a 2-D scatterplot of the
NDVI image. The classification lines drawn at 0.818, 0.529,
0.287, and 0.193 distinguish healthy leaf, stressed grade-1 leaf,
stressed grade-2 leaf, stressed grade-3 leaf, and withered leaf,
respectively. It can be seen that the values of healthy leaf and
stressed grade-1 leaf are quite different in the scatterplot, and
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Fig. 8. Images recorded from spotted laurel: (a) SR image; (b) SR pseudo-
color image; (c) NDVI image; and (d) NDVI pseudo-color image.

the specular reflected leaf is mistakenly regarded as stressed
grade-2 leaf, while stressed grade-3 leaf and withered leaf
are not clearly distinguished, which is the reason for the
error of chlorophyll inversion using SR and NDVI. Based on
the misclassification rate of the health condition of adjacent
plants, we can determine the sensitivity and specificity of
different vegetation condition and the PPV and NPV of the
classification (Table II).

The linear correlation between SR and NDVI and SPAD
was analyzed. As shown in Fig. 10(a) and (b), the correlation
coefficient R2 between SR and SPAD is 0.456, and that
between NDVI and SPAD is 0.625. The correlation coefficient
(R2), RMSE, Bias, and P values are shown in Table III.
All regression analyses were statistically significant
(p < 0.001). The regression coefficients of all spectral
features are rounded to three decimal places to avoid large
rounding errors.

2) mSR and mNDVI Measurements: Fig. 11(a) shows the
mSR image calculated by (7), and Fig. 11(b) shows the
pseudo-color image of Fig. 11(a). Fig. 11(c) shows mNDVI
image calculated by (8), and Fig. 11(d) shows a pseudo-color
image of Fig. 11(c). The black-box area in Fig. 11 is higher
than its surrounding values because the specular reflection of
the blade is improved to high values with the correction strat-
egy proposed by Sims and Gamon [40] (see Section IV-B).
The specular reflection area is for the healthy leaf, so the
accuracy of mSR and mNDVI for chlorophyll inversion is
improved. In Fig. 11(a), the red-box area is withered leaf,
and the value of the withered leaf is higher than that of the
stressed grade-3 leaf, which is abnormal.

Fig. 12(a) shows a 2-D scatter diagram of mSR image,
where x-axis represents the number of groups and y-axis
represents the mSR value. The classification lines are drawn
at the mean of the health condition grades of plants. For
example, classification lines drawn at 0.656, 0.641, 0.464,
and 0.253 distinguish healthy leaf, stressed grade-1 leaf,
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TABLE III

CORRELATION COEFFICIENT (R2), RMSE, BIAS, AND P VALUE

Fig. 9. Scatterplot: (a) SR scatterplot and (b) NDVI scatterplot. The
classification lines are drawn at the mean of the health condition grades of
plants of the adjoining groups.

stressed grade-2 leaf, stressed grade-3 leaf, and withered leaf,
respectively. Fig. 12(b) shows a 2-D scatterplot of the mNDVI.
The classification lines drawn at 0.464, 0.305, 0.223, and

0.114 distinguish healthy leaf, stressed grade-1 leaf, stressed
grade-2 leaf, stressed grade-3 leaf, and withered leaf, respec-
tively. It can be seen that the value of the specular reflection
leaf is greater than that of the healthy leaf in the scatterplot
(which should be equal in fact), while the value of the
withered leaf is greater than that of stressed grade-3 leaf,
which is a disadvantage of using mSR and mNDVI. Based on
the misclassification rate of the health condition of adjacent
plants, we can determine the sensitivity and specificity of
different vegetation condition and the PPV and NPV of the
classification (Table II).

The linear correlation between mSR and mNDVI and SPAD
was analyzed. As shown in Fig. 13(a) and (b), the correla-
tion coefficient R2 between mSR and SPAD is 0.726, and
that between mNDVI and SPAD is 0.705, with significantly
improved accuracy. The correlation coefficient (R2), RMSE,
Bias, and P values are shown in Table III.

3) pSR and pNDVI Measurements: Fig. 14(a) shows the
pSR image calculated by (12), and Fig. 14(b) shows the
pseudo-color image of Fig. 14(a). Fig. 14(c) shows the pNDVI
image calculated by (13), and Fig. 14(d) shows the pseudo-
color image of Fig. 14(c). The pixel values of the black-
box area in Fig. 14 and the surrounding area are of little
difference because the specular reflection of the blade is
improved to a higher value with the method proposed by
Li et al. (2018). The specular reflection area is for the healthy
leaf, so the chlorophyll inversion accuracy with improved
mSR and mNDVI is improved. The withered leaf value in
the red box is lower than the stressed grade-3 leaf, which is
an improvement of this method.

Fig. 15(a) shows a 2-D scatter diagram of pSR image, where
x-axis signifies the number of groups and y-axis signifies the
pSR value. The classification lines are drawn at the mean of
the health condition grades of plants. For example, the clas-
sification line drawn at 0.339 distinguishes healthy leaf from
stressed grade-1 leaf, that drawn at 0.297 distinguishes specu-
lar reflection leaf from stressed grade-1 leaf, and those drawn
at 0.226, 0.142, and 0.069 distinguish stressed grade-1 leaf,
stressed grade-2 leaf, stressed grade-3 leaf, and withered leaf,
respectively. Fig. 15(b) shows a 2-D scatterplot of the pNDVI
image. The classification line drawn at 0.658 distinguishes
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Fig. 10. (a) Correlation of SPAD with SR. (b) Correlation of SPAD with
NDVI. Spotted laurel under varying degrees of health condition from healthy
leaf and specular reflection leaf to grades 1–3 (N = 51).

the healthy leaf and the stressed grade-1 leaf, that drawn
at 0.565 distinguishes the specular reflection leaf and the
stressed grade-1 leaf, and those drawn at 0.483, 0.298, and
0.155 distinguish stressed grade-1 leaf, stressed grade-2 leaf,
stressed grade-3 leaf, and withered leaf, respectively. It can
be seen that the values of specular reflection leaf in the
scatterplot fluctuate greatly, but most of them are equal to the
values of healthy leaf, which is an advantage of using pSR
and pNDVI. Based on the misclassification rate of the health
condition of adjacent plants, we can determine the sensitivity
and specificity of different vegetation conditions and the PPV
and NPV of the classification (Table II).

The linear correlation between pSR and pNDVI and SPAD
was analyzed. As shown in Fig. 16(a) and (b), the correlation
coefficient R2 between pSR and SPAD is 0.717, and that
between pNDVI and SPAD is 0.751. The inversion accuracy

Fig. 11. Images recorded from spotted laurel: (a) mSR image; (b) mSR
pseudo-color image; (c) mNDVI image; and (d) mNDVI pseudo-color image.

Fig. 12. (a) mSR scatterplot. (b) mNDVI scatterplot.

of pSR and pNDVI is significantly improved, and it is similar
to that of mSR and mNDVI, which is also consistent with
the results of previous studies [46]. The correlation coeffi-
cient (R2), RMSE, Bias, and P values are shown in Table III.
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Fig. 13. (a) Correlation of SPAD with mSR. (b) Correlation of SPAD with
mNDVI.

4) NSRVI Measurement: Fig. 17(a) shows the NSRVI image
calculated by (14), and Fig. 17(b) shows the pseudo-color
image of Fig. 17(a). In Fig. 17, the pixel values of the
black-box area and the surrounding area are completely equal,
and the value of the withered leaf in the red-box area is
also lower than that of the stressed grade-3 area. Therefore,
the accuracy of chlorophyll inversion by NSRVI has been
improved significantly.

Fig. 18 shows a 2-D scatter diagram of NSRVI image, where
x-axis signifies the number of groups, and y-axis signifies
the NSRVI value. The classification lines are drawn at the
mean of the health condition grades of plants. For example,
the classification line drawn at 0.585 distinguishes healthy leaf
from stressed grade-1 leaf, that drawn at 0.582 distinguishes
specular reflection leaf from stressed grade-1 leaf, and those

Fig. 14. Images recorded from spotted laurel: (a) pSR image; (b) pSR
pseudo-color image; (c) pNDVI image; and (d) pNDVI pseudo-color image.

Fig. 15. (a) pSR scatterplot. (b) pNDVI scatterplot.

drawn at 0.401, 0.234, and 0.095 distinguish stressed grade-1
leaf, stressed grade-2 leaf, stressed grade-3 leaf, and withered
leaf, respectively. In addition, the values of specular reflection
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Fig. 16. (a) Correlation of SPAD with pSR. (b) Correlation of SPAD with
pNDVI.

Fig. 17. Images recorded from spotted laurel: (a) NSRVI image and
(b) NSRVI pseudo-color image.

leaf in the scatterplot are equal to those of healthy leaf, and the
health condition grades of other plants are classified obviously.
NSRVI greatly eliminates the interference caused by specular
reflection and improves the accuracy of chlorophyll retrieval.

Fig. 18. NSRVI scatterplot.

Fig. 19. Correlation of SPAD with NSRVI.

Based on the misclassification rate of the health condition
of adjacent plants, we can determine the sensitivity and
specificity of different vegetation conditions and the PPV and
NPV of the classification (Table II).

The linear correlation between NSRVI and SPAD was
analyzed. As shown in Fig. 19, the correlation coefficient
R2 between NSRVI and SPAD is 0.899. The chlorophyll
inversion accuracy of NSRVI is greatly improved to a level
better than those of mSR, mNDVI, pSR, and pNDVI. The
correlation coefficient (R2), RMSE, Bias, and P values are
shown in Table III.

C. Experiments With Different Illuminance

A pot of spotted laurel was placed in the dark room, and the
illuminance meter was used to measure the illuminance. In the
experiment, there are five groups of illumination: 0.27, 1.19,
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Fig. 20. NSRVI images of different illuminances: (a) NSRVI pseudo-color image of 0.27 lx; (b) NSRVI pseudo-color image of 1.19 lx; (c) NSRVI pseudo-color
image of 5.13 lx; (d) NSRVI pseudo-color image of 10.29 lx; and (e) NSRVI pseudo-color image of 102.1 lx.

5.13, 10.29, and 102.1 lx. Fig. 20 shows the NSRVI images
under different illumination, and the illumination corresponds
to Fig. 20(a): 0.27 lx, Fig. 20(b): 1.19 lx, Fig. 20(c): 5.13 lx,
Fig. 20(d): 10.29 lx, and Fig. 20(e): 102.1 lx. In Fig. 20, the
specular reflection in the black box has been eliminated, and
the value of the withered leaf in the red box is also smaller
than that of the stressed grade-3 leaf.

Fig. 21 shows a 2-D scatter diagram of NSRVI image, where
x-axis represents the number of groups and y-axis represents
the NSRVI value. The illumination corresponds to Fig. 21(a):
0.27 lx, Fig. 21(b): 1.19 lx, Fig. 21(c): 5.13 lx, Fig. 21(d):
10.29 lx, and Fig. 21(e): 102.1 lx. The classification lines are
drawn at the mean of the health condition grades of plants.
As can be seen from Fig. 21, the two classification lines of
healthy leaf and specular reflection leaf under 102.1 lx are
almost equal, but the difference between the two classifica-
tion lines of healthy leaf and specular reflection leaf under
0.27 illuminance is the largest, indicating the best classification
results under 102.1 lx and the poorest classification results
under 0.27 lx.

The linear correlation between NSRVI and SPAD was
analyzed. As shown in Fig. 22, the correlation coefficients
between NSRVI and SPAD are 0.27 lx (R2 = 0.8), 1.19 lx
(R2 = 0.827), 5.13 lx (R2 = 0.861), 10.29 lx (R2 = 0.855),
and 102.1 lx (R2 = 0.899), respectively. With the decrease
of illumination, the inversion accuracy of chlorophyll con-
tent decreases because the decrease of illumination leads to
imaging noise. In addition, our system can still work in a

low-light environment, providing a solution for remote sensing
monitoring of vegetation health in such an environment. The
correlation coefficient (R2), RMSE, Bias, and P values are
shown in Table III.

D. Multiangle Experimental Check

Experiments on NSRVI under two angles are carried out
to verify the performance of NSRVI for different angles.
As shown in Fig. 23, we chose 30◦ as the incident zenith
angle. Measurements were taken first in the nadir direction
and then at forward 30◦.

As shown in Fig. 24, the data image obtained from the
nadir direction; Fig. 24(a) shows the NDVI image, Fig. 24(b)
shows the NDVI pseudo-color image, Fig. 24(c) shows the
NSRVI image, and Fig. 24(d) shows the NSRVI pseudo-color
image. As shown in Fig. 25, it is the data image obtained in
the forward 30◦ direction; Fig. 25(a) shows the NDVI image,
Fig. 25(b) shows the NDVI pseudo-color image, Fig. 25(c)
shows the NSRVI image, and Fig. 25(d) shows the NSRVI
pseudo-color image. The black box is the selected leaf of
interest (healthy leaf). It can be seen that the NDVI value
at the position where specular reflection occurs in the black
box in Figs. 24(b) and 25(b) is low. The specular reflection
interference in Figs. 24(d) and 25(d) has been eliminated.

Three-hundred samples were obtained from the healthy area
and the specular area, and then, the two sets of data were
averaged and divided, respectively. As shown in Fig. 26, the
closer the ratio is to 1, the better the effect of eliminating
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Fig. 21. NSRVI scatterplot: (a) 0.27 lx; (b) 1.19 lx; (c) 5.13 lx; (d) 10.29 lx; and (e) 102.1 lx.

Fig. 22. Correlation of SPAD with NSRVI: (a) 0.27 lx; (b) 1.19 lx; (c) 5.13 lx; (d) 10.29 lx; and (e) 102.1 lx.

specular reflection. It can be seen that the specular reflection
cancellation effect of the NSRVI in the nadir direction and
forward 30◦ is very good.

IV. DISCUSSION

Specular reflection is an important source of error for remote
tracing of chlorophyll content. An NSRVI was introduced to
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Fig. 23. Schematic of the measurement. The xoy plane is the horizontal
plane to which the leaf is fixed. The first observation is nadir direction, and
the second observation is 30◦ forward.

Fig. 24. Nadir direction data image: (a) NDVI image; (b) NDVI pseudo-color
image; (c) NSRVI image; and (d) NSRVI pseudo-color image.

eliminate the effect of leaf specular reflection on plant health
detection, and a PMSIS was developed to detect the vegetation
health condition and evaluate the effect of removing specular
reflection from leaves.

A. Interference Mechanism of Leaf Specular Reflection on
the Inversion of Vegetation Index Chlorophyll Content

As shown in Fig. 7, the SPAD values of specular and healthy
leaf are above 40.59. The specular reflection area is located in
the healthy leaf area, which also means that the more specular
(visually smoother) the leaf surface, the stronger is the specular
reflection. The surface smoothness of leaves is related to their

Fig. 25. Forward 30◦ data image: (a) NDVI image; (b) NDVI pseudo-color
image; (c) NSRVI image; and (d) NSRVI pseudo-color image.

Fig. 26. Histogram of the ratio of specular to healthy leaf for NDVI and
NSRVI in the nadir and forward 30◦ direction.

Fig. 27. Images recorded from spotted laurel: (a) 680-nm image; (b) DoLP
image; and (c) 760-nm image.

health status, that is, the healthier the leaf, the smoother is the
surface. It can be seen from the red boxes in Fig. 27(a) and (c)
that the specular reflection of leaf was found in the 680-nm
spectral measurement, and such brightness overwhelms their
natural color. The reflectance image at 760 nm is not sensitive
to the specular reflection. This is why the values of the specular
reflection area are very low in SR images and NDVI images.
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However, the value of the specular reflection area in the red
box in Fig. 27(b) is very low, which indicates that DoLP and
R680 nm change in a trend opposite to each other, which is also
consistent with previous studies [56], [57].

In remote sensing monitoring, the reflectance of leaves
is composed of two parts: specular reflectance and diffuse
reflectance [58]. Specular reflection originates from direct
reflection from the leaves surface, and incident light does not
penetrate the interior of the leaves to interact with pigments
and mesophyll structures within the leaves [37]. Therefore,
the specular component does not carry leaf biochemical infor-
mation [59]. Diffuse reflection comes from the interior of
leaf, and the spectral variation of diffuse reflection depends
on the biochemical composition. Therefore, the existence of
leaf specular reflection may lead to interference in the remote
detection of chlorophyll content. The black frame area in
Fig. 8 shows the interference caused by the specular reflection,
which makes the healthy leaf mistaken for the stressed leaf
[Fig. 9(a) and (b)]. In addition, the specular reflection interfer-
ence of leaf greatly reduced the chlorophyll inversion accuracy,
and the correlation between SPAD and SR was only 0.456, and
that between SPAD and NDVI was 0.625. This detrimental
effect can also be seen in Table II, with a sensitivity of 0% and
a specificity of 0% for the classification of specular reflection
leaf from stressed grade-1 leaf.

B. Differences in Sensitivity to Specular Reflections
Between Vegetation Indices

Due to the sensitivity of SR and NDVI to specular reflec-
tions, Sims and Gamon [40] introduced mSR and mNDVI to
mitigate the effects of specular reflections [see (7) and (8)].
This study also confirmed that mSR and mNDVI indices
had a better performance than SR and NDVI indices, and
Fig. 13 illustrates the effectiveness of this strategy. However,
since R445 nm contains both diffuse and specular reflections,
the value of R445 nm is higher than the specular reflectance.
In mSR and mNDVI, the R445 nm reflectance is taken as a
measure of the specular reflection of leaf and is subtracted to
remove specular reflection interference. Therefore, the values
of the specular reflections of mSR and mNDVI are larger
than those of healthy leaf (the black-frame area in Fig. 11).
In addition, this method makes the value of the withered leaf
higher than the stressed grade-3 leaf (the red-frame area in
Fig. 11), which leads to a decrease in the chlorophyll retrieval
accuracy. Therefore, mSR and mNDVI are not particularly
ideal in eliminating specular reflection effects.

Studies have shown that the main source of the polarized
reflectivity of leaves is the specular reflectance of leaves [60].
Therefore, Li et al. [45] simply obtains the specular component
of the leaves by multiplying the polarized reflectance (Rp) by
the constant c, which is a simplification of the actual situation,
without considering the influence of leaves’ roughness, such
as shadows [61]. However, this method does not completely
eliminate the specular reflection when the light from the
specular reflection of the leaf overwhelms their natural color
(see the black-frame area in Fig. 14).

However, we developed an NSRVI [see (14)] that
almost completely eliminates the specular reflection of leaf

Fig. 28. Histograms of different health conditions for SR, NDVI, mSR,
mNDVI, pSR, pNDVI, NSRVI, and DoLP.

(the black-frame area in Fig. 17). It can be seen from
Fig. 18 that the specular reflection area is located in the healthy
leaf area, and the various health grades of the vegetation are
well-classified. The correlation coefficient between SPAD and
NSRVI is 0.899, indicating the effectiveness of our method
in eliminating specular reflection of leaf. The NSRVI data
were used to draw a scatterplot (Fig. 18) to classify different
grades of vegetation health condition. The accuracy of clas-
sification is shown in Table II, from which we can see that
the sensitivity and specificity of NSRVI for the classification
of vegetation with different conditions are generally higher
than those of mSR, mNDVI, pSR, and pNDVI. Furthermore,
in applying NSRVI in distinguishing specular reflection leaf
from the stressed grade-1 leaf, the sensitivity was 92% and the
specificity was 96%, which is significant as they demonstrate
the potential of NSRVI in removing specular reflections from
leaves. It can be seen from Table III that when the illuminance
is 102.1 lx, the RMSE and Bias of NSRVI are the smallest,
6.1603 and 0.0011, respectively. This also indicates that the
use of NSRVI for plant health monitoring has the smallest
error and the highest accuracy.

C. Interference of Withered Leaf on Vegetation
Health Monitoring

The portable chlorophyll detector penetrates the leaves
through two kinds of light, and finally calculates the SPAD
value and indicates it on the display screen. Because the
light transmittance of withered leaf is almost 0, the portable
chlorophyll detector cannot detect their SPAD. In addition, the
withered leaf in this article is completely withered leaf, so we
set their SPAD value to 0.

As shown in Fig. 28, withered leaf and stressed grade-3 leaf
in SR and NDVI were confused with each other, which can
also be seen in the SR and NDVI scatterplots (Fig. 9). This
is because withered leaf has no biochemical characteristics,
so SR and NDVI cannot detect withered leaf. However, the
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values of withered leaf in mSR and mNDVI were larger
than those of stressed grade-3 leaf (the red-frame area in
Fig. 11; Fig. 12), which was abnormal. Because withered
leaf no longer has biochemical characteristics, their values
are the same as the background values in all bands. Under
stress, the reduction of mSR and mNDVI values was related
to the reduction of SPAD content, and the optical properties
of leaves can help decipher this proportional relationship.
Compared with healthy ones, leaves of stressed plants had
lower SPAD content [62], and decreased chlorophyll content
resulted in decreased chlorophyll absorption at R680 nm and
R445 nm (R680 nm decreased more than R445 nm), enhanced
reflectance, and decreased reflectance at R760 nm. According
to (7) and (8), it can be known that the value of stressed grade-
3 leaf must be lower than the background value. Therefore,
the values of withered leaf in mSR and mNDVI were greater
than those of stressed grade-3 leaf.

As shown in Figs. 14, 17, and 28, the values of withered leaf
in pSR, pNDVI, and NSRVI are lower than those of stressed
grade-3 leaf, which is correct. The higher DoLP value of the
withered leaf is because their surface roughness has lower
reflectance, and their DOLP is higher because of the inverse
proportional relationship between the DoLP of the target and
the surface reflectance [63]. Therefore, DoLP facilitates the
detection of withered leaf. It can be seen from (12)–(14) that
after adding DoLP to the formula, the values of withered leaf
calculated by pSR, pNDVI, and NSRVI are lower than those
of stressed grade-3 leaf, so that withered leaf and stressed
grade-3 leaf are correctly distinguished.

D. Influence of Illumination on NSRVI

Li et al. [49] came up with the night plant status detection
index (NPSDI), a new index for characterizing the status
of plants at night, to detect the physiological condition of
vegetation at night. At present, most of the remote sensing
research is carried out in the light environment, and there are
few related researches on the monitoring of vegetation health
status at night. Therefore, based on the previous research
results, we conducted experiments on NSRVI under different
illumination to verify that NSRVI can be used in different
illumination environments. It can be clearly seen in Fig. 22 that
with the increase of illuminance, the correlation R2 between
SPAD and NSRVI gradually increases (Table III). In a low-
light-level environment, the system imaging generates noise
under the impact of illumination, so the chlorophyll inversion
accuracy is reduced. However, even if the environmental
illuminance is 0.27 lx, the chlorophyll inversion accuracy
was still high (R2 = 0.8 and RMSE = 8.678), showing
the potential of applying the NSRVI determined by PMSIS
imaging to understand the condition of vegetation at night
from a proximal sensing platform.

E. Potential Applications of Our Method to Canopy
Chlorophyll Inversion

At present, the system can only monitor the vegetation
health condition statically because we choose to rotate the
polarization measurement manually. Of course, this also

increases the error of polarization measurement. The PMSIS
imaging is a passive technique, so it does not require a laser to
excite fluorescence like fluorescence lidar. In addition, only a
compact instrument is required, which is less expensive. In the
future, we will develop devices for dynamic measurement that
can be deployed on platforms (such as cars, unmanned aerial
vehicle (UAV), and satellites) to eliminate specular reflections
while sensing the effects of various types of biological and abi-
otic pressures on farmland and forests from a distance. When
measuring in the field, the specular reflection interference may
be more serious, which is also an area our efforts will be put
in in the future.

V. CONCLUSION

In this article, a polarization-based system of PMSIS is
developed and a NSRVI is proposed to eliminate the specular
reflection interference of vegetation and improve the accuracy
in detecting plant health condition. To check the ability to
eliminate specular reflection interference and monitor plant
health condition via NSRVI, the spotted laurel leaves in dif-
ferent conditions were measured and analyzed. The changes of
SPAD, SR, NDVI, mSR, mNDVI, pSR, pNDVI, and NSRVI at
different grades of plant health condition were measured, and
spotted laurel leaves were also classified based on their health
condition. The NSRVI value decreases as the plant health
status declines, and it is positively correlated with the SPAD of
spotted laurel. The correlation coefficient between NSRVI and
SPAD is 0.889. A preliminary study on the classification of
different grades of vegetation condition by using the scatterplot
of NSRVI shows that the sensitivity and specificity of the
classification of specular reflection leaf from stressed grade-1
leaf are 92% and 96%, respectively, indicating that this method
is very effective in eliminating the interference of specular
reflection of plants.

The results show the following.

1) SR and NDVI monitoring of plant health condition are
most disturbed by the specular reflection of leaf.

2) The improved mSR and mNDVI can eliminate part of
the specular reflection interference, but the interference
by withered leaf tends to be larger than that by the
stressed grade-3 leaf, resulting in errors.

3) pSR and pNDVI can eliminate some specular reflection
interference and correct the error between withered leaf
and stressed grade-3 leaf.

4) NSRVI has the best performance in eliminating specular
reflection interference, and the correlation coefficient
between NPSDI and SPAD is 0.889. NSRVI can almost
completely eliminate specular reflection interference and
correct the error between withered leaf and stressed
grade-3 leaf.

5) Different illumination experiments of NSRVI show that
with the decrease of illumination, the inversion accuracy
of chlorophyll content decreases, and the reason lies in
that the decrease of illumination leads to the generation
of imaging noise. Even if the environment illuminance
is 0.27 lx, the chlorophyll inversion accuracy is still
high (R2 = 0.8), showing the potential to apply the
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NSRVI determined by PMSIS imaging in detecting the
pant health condition amid a low-light-level environment
from a near-end sensing platform.

In summary, the NSRVI proposed in this article can effectively
eliminate the specular reflection interference and improve
the accuracy in monitoring vegetation health condition. The
method is reliable even under adversely low-light-level condi-
tions. It provides a good idea for biochemical retrieval at the
canopy scale and deserves further study.
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