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Abstract— This article presents two supervised change detec-
tion algorithms (CDAs) based on convolutional neural networks
(CNNs) that use stacks of coregistered wavelength-resolution
(WR) synthetic aperture radar (SAR) images to detect changes
in an image under monitoring. The additional information of a
scene of interest provided by SAR image stacks can be explored
to enhance the performance of CDAs. In particular, stacks of
images with similar statistics can be obtained for ultrawideband
(UWB) very high-frequency (VHF) SAR systems, as they produce
images highly stable in time. The proposed CDAs can be
summed up into four stages: difference image (DI) formation,
semantic segmentation, clustering, and change classification. The
CNN-GSP algorithm is based on a ground scene prediction (GSP)
image, which is used as a reference to form a DI. A CNN-
based model then analyzes the DI. The CNN-MDI algorithm
feeds multiple DIs with identical monitored images to a CNN-
based model, which will concurrently analyze their features.
Tests with CARABAS-II data show that the proposed CDAs
can outperform other state-of-the-art algorithms that also use
stacks of WR-SAR images. Beyond that, the proposed algorithms
outperformed a CNN-based CDA that does not use image stacks,
which shows that CNN-based algorithms can use the additional
information provided by stacks of SAR images to reduce false
alarm occurrences while increasing the probability of detection
of changes.

Index Terms— CARABAS-II, classification, convolutional
neural network (CNN), deep learning, remote sensing, semantic
segmentation.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) data is an essential tool
in remote sensing applications [1] due to its capability of
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providing suitable visual information acquisition, independent
of weather and illumination conditions, and wide terrain
coverage in a short observation time [2]. Generally, SAR
data analysis and processing include tasks such as: 1) image
modeling [3], [4]; 2) identification and classification of distinct
ground type [5], [6]; and 3) change detection [7], [8].

Especially, the use of statistical models and machine learn-
ing techniques can be applied as venues with accurate results
for the above SAR-related challenges, as presented in [9], [10],
[11], and [12].

In particular, change detection algorithms (CDAs) aim at
identifying changes in the same scene obtained at differ-
ent times, and it is an important research topic of remote
sensing understanding [13]. Furthermore, changes identifica-
tion is commonly applied to civil and military applications,
such as disaster management [14], urban planning [15], and
human-made target detection [16], [17]. Specifically, ultraw-
ideband (UWB) very high-frequency (VHF) SAR systems are
high-resolution systems widely employed for natural disaster
monitoring, foliage-penetrating applications, and detection of
concealed targets [18]. These systems can be denoted as
wavelength-resolution (WR) SAR systems [19], [20], [21],
[22], [23] since they are characterized by a large fractional
bandwidth and a wide antenna bandwidth wavelength of the
transmitted pulses [24].

A critical characteristic of WR-SAR systems is that the
speckle noise does not significantly influence the acquired
images [25]. This characteristic exists since only a single
scatterer is present in the resolution cell. In other words, small
scatterers in the ground area of interest do not contribute to the
backscattering for low-frequency WR radar systems. Conse-
quently, small structures, such as tree branches and leaves, are
not shown in the SAR image [26]. Moreover, large scatterers
are associated with low-frequency components and, therefore,
they tend to be less influenced by environmental effects and are
stable in time. Hence, an image package with similar statistics
can be obtained through multipasses with identical heading
and incidence angle at a given ground area [21]. SAR image
stack is widely studied for SAR systems with high resolution
(see [27], [28], [29]); however, the use of image stacks in
WR-SAR images for change detection applications is a topic
of interest that needs to be more deeply explored.

An example of a low-frequency WR UWB VHF SAR
system is the CARABAS-II. This system has a large frac-
tional bandwidth that operates at 20–86-MHz, horizontal (HH)
polarization [30], [31]. An SAR image dataset was made
public in [32]. The image scene is located in northern Sweden
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and is the same for all 24 available images. It was considered
an incidence angle of 58◦. Each image has 25 military vehicles
placed in the ground scene in four different target deployments
and three imaging geometries [30], [31]. The changes related
to this dataset are related to the target’s location and orientation
for each deployment. Efficient change detection methods of
targets concealed by forests are widely explored in the litera-
ture (see [21], [22], [23], [30], [31], [33], [34], [35]). All these
studies consider as input a difference image (DI), obtained
by a simple subtraction between two images (reference and
monitored image). However, more information can be obtained
using image stacks of the CARABAS-II dataset aiming at
improving CDAs.

Additionally, another possible venue for change detection
in UWB WR-SAR images is the use of a supervised method.
With that, empirical-based knowledge about the sought targets
can be considered as prior information for obtaining the
changes in the evaluated images [17], [23].

Thus, in this article, we propose two supervised convolu-
tional neural network (CNN)-based CDAs, named CNN-MDI
and CNN-ground scene prediction (GSP), that use stacks
of WR-SAR images. The stacks provide additional infor-
mation about the scene that is explored to achieve better
performance indicators. The first approach aims to maximize
the detection performance at the cost of higher numerical
complexity. In contrast, the latter aims to achieve good
performance indicators while maintaining a lower numerical
cost. The proposed CDAs search for positive changes in the
monitored image and can be summarized into four stages:
1) DI formation; 2) semantic segmentation; 3) clustering;
and 4) classification of changes. The CNN-GSP uses a GSP
image, produced by fusing a WR-SAR stack into a single
image, as a reference for change detection, which is then
fed to the CDA presented in [36]. On the other hand, the
CNN-MDI algorithm uses the images contained in a WR-SAR
data stack as references to generate multiple DIs with identical
monitored images. These DIs are then concurrently analyzed
by a CNN-based model to locate relevant changes.

Tests executed with CARABAS-II data suggest that the pro-
posed algorithms can outperform other state-of-the-art CDAs
for WR-SAR images. Also, the algorithms outperformed
the best-performing CNN-based CDA for pairs of WR-SAR
images, showing that the additional information provided by
stacks of WR-SAR images enabled the CNNs to distinguish
false alarms from real changes better. In a direct comparison
between the two proposed CDAs, the CNN-MDI yielded
higher performance indicators. However, the CNN-GSP is less
numerically intensive, considering that it requires fewer neural
network evaluations per prediction.

A. Motivations

The fact that WR-SAR systems operate at much lower
frequencies when compared to more usual SAR bands, like C
and X, brings some challenges for change detection tasks. The
transmitted pulses do not reflect on small scatterers, and thus
the produced images do not show finer details of the textures
and objects present in the scene of interest. Beyond that, the

only available dataset of WR-SAR images, CARABAS-II, has
a small number of images that share multiple similarities,
e.g., the geographical location and the position and shapes
of targets in the scene. For these reasons, using traditional
deep CNN models with hundreds of thousands of parameters
would undoubtedly lead to overfitting and an unnecessary
high numerical complexity. Moreover, such CNN models have
high receptive fields, leading them to learn the peculiarities of
the training dataset, e.g., the gridlike disposition of changes,
leading to more overfitting. To the best of our knowledge,
no other publication addresses deep learning-based CDAs
that use stacks of WR SAR images. Thus, we present two
CDAs that consider all the peculiarities of these systems.
We present the performance evaluation over the only publicly
available dataset for this class of SAR system. Multiple CNN
architectures were not tested since the main objective of this
article is to evaluate how much the use of stacks of WR-SAR
images can improve the performance of a baseline CNN-based
CDA for WR-SAR images, presented in [36].

B. Contributions

The main contributions of this article are as follows.
1) An investigation of whether using stacks of multiple

WR-SAR images to detect changes in a scene of inter-
est with CNN-based algorithm results in performance
improvements compared to when only two images are
used per detection.

2) The proposal of two CNN-based CDAs that use stacks
of WR-SAR images. One aims to reach the highest
performance indicators, at the cost of higher numeri-
cal complexity. In contrast, the other tries to improve
performance while keeping the numerical complexity as
close as possible to when only two images are used per
detection. Both algorithms extend on the structure of the
best-performing CNN-based CDA for WR-SAR images,
presented in [36].

3) Achieve, by an expressive margin, the best-performance
indicator in any scenario where WR-SAR images were
used to detect changes.

4) The execution of a statistical evaluation of the obtained
results to quantify how likely the performance improve-
ments obtained in the executed tests represent real gains
and, thus, how likely are stacks of WR-SAR able to
improve the performance of CNN-based CDAs.

II. RELATED WORKS

An alternative to enhancing CDAs’ performance (CDA)
performance for WR-SAR images is considering more than
two images as input. For example, a study using a small
stack (three images) was employed in a CDA with a noise
canceller approach [21]. In [37], an image stack considering
eight images of the CARABAS-II dataset is applied to obtain
a GSP image. In the same paper, the GSP was used as a
reference image of an ordinary CDA, which was enough to
improve the performance of the algorithm. Both methods were
based on pixel-by-pixel DIs and resulted in a good tradeoff
between detection probability and false alarm rate (FAR).
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More recently, Ramos et al. [38] proposed a CDA based on
robust principal component analysis, using image stacks to
detect changes in WR SAR images. As a result, the FAR was
reduced, keeping the probability of detection high.

A study using a small stack (three images) was employed as
a noise canceller algorithm in a CDA for CARABAS-II dataset
in [21]. In [37], an image stack considering eight images of
the CARABAS-II dataset is applied to obtain a GSP image.
This image was used as a reference image in a CDA based
on subtractions and thresholding operations. The collection
of images was considered to eliminate clutter and noise in
the reference image, improving detection performance. Both
methods were based on pixel-by-pixel DIs and resulted in a
good tradeoff between detection probability and FAR.

CDAs for UWB WR-SAR images based on traditional
signal processing approaches, such as likelihood ratio test [33],
generalized likelihood ratio test [39], Bayes’ theorem [35],
noise-canceling [19], can be benefited from the use of image
stack since more information is available to deal with two main
challenges: 1) noise fluctuations over multitemporal images
and 2) elongated structures reported within the images, which
are the main source of false alarms [19]. On the other hand,
supervised methods can also be an alternative to overcome
this issue. Supervised methods can excel in CDAs since they
explore the prior information for obtaining an exhaustive
description of the changes in the evaluated images [17].
More precisely, such algorithms are trained based on sliding
windows that comprise both each pixel under test and their
neighborhood, acquiring empirical-based knowledge about the
sought targets [23].

In [34], a CDA based on a logistic regression model was
considered to detect the military vehicles in UWB VHF
WR-SAR images, showing that the FAR can be significantly
reduced, even without a stage for threshold selection. Another
approach to improve change detection in VHF WR-SAR
images is the use of CNNs, due to the great potential for
learning complex spatial patterns and its stability. Since its
feature extraction process is based on collecting visual features
from the images, this approach is extensively employed for
object classification in optical images [23]. Furthermore, in
SAR systems using higher frequency bands, CNNs have been
employed for change detection [40] and object classifica-
tion [41].

In [23], [36], and [42], CNNs were used for change
detection in UWB WR-SAR images. In particular, Cam-
pos et al. [23] considers a CNN as a filter to reduce the
occurrence of false alarms, whereas Vint et al. [42] proposes
the creation of a synthetic dataset of targets with a generative
adversarial network (GAN), which are subsequently fed to
a CNN-based classifier. The CDA presented in [36] has
reached high-performance indicators in tests executed over the
CARABAS-II dataset. Given the peculiarities of this dataset
and the small number of available images, popular end-to-end
segmentation models—usually made of hundreds of thousands
of trainable parameters—may be unable to generalize well
enough to reach acceptable performance with data acquired by
different WR-SAR systems. For this reason, the architecture of
this CDA has been custom-made to be robust to such problem.

Both Campos et al. [23] and Vinholi et al. [36] have reached
superior performance in terms of probability of detection and
FAR, when compared with other approaches not based on
CNNs, evidencing how CNNs have the power to distinguish
real changes from false alarms and learn complex patterns
in SAR DIs. In [43], a combination of image stacks and
supervised algorithms is introduced for VHF SAR ground
surveillance. However, to the best of our knowledge, the use
of CNNs for WR-SAR image stacks change detection is not
addressed in the literature and this article aims to propose a
first treatment.

III. PRELIMINARIES

A. CARABAS-II Dataset

The dataset considered in this article was obtained from
CARABAS-II, a Swedish UWB VHF SAR system. The
images are available in [32] and are fully discussed in [30]
and [31]. The dataset is composed of 24 coregistered mag-
nitude single-look SAR images, where each image cover a
scene of size 2 km × 3 km, and have almost no speckle
noise, since the CARABAS-II is a low-frequency WR system.
As reported in [30], the spatial resolution of CARABAS-II is
approximately 2.5 m in azimuth and 2.5 m in range.

The dataset can be split into stacks composed of images
captured with the same flight angle and has backscattering
stable in time; hence, only target changes are expected within
the image stacks. The stacks have images with the same flight
geometry but associated to four different targets’ deployments
(missions 1–4) in the ground scene. Stack 1 has the images
associated with passes 1 and 3; Stack 2 to passes 2 and 4; and
Stack 3 to passes 5 and 6.

Each image corresponds to an area of 6 km2 and is defined
as a matrix of 3000 × 2000 pixels, in which each pixel size
is 1 m × 1 m. The ground scene of the images is mostly
composed of boreal forest with pine trees; fences, power
lines, and roads are also present in the scene. Additionally,
military vehicles were deployed in the SAR scene and placed
uniformly, in a manner to facilitate their identifications in
the tests [31]. Each image shows 25 targets, obscured by
foliage, of three different sizes: 1) ten small vehicles with
a square design, with dimensions 4.4 × 1.9 × 2.2 m;
2) eight truck-sized vehicles with dimensions 6.8 × 2.5 ×
3.0 m; and 3) seven trucks with dimensions 7.8 × 2.5 ×
3.0 m [31]. It was considered an incidence angle of 58◦ for all
acquisitions.

For illustration, four images of the CARABAS-II dataset
are shown in Fig. 1. The regions where the military vehicles
were deployed on the ground scene are highlighted by the blue
circles. In Fig. 1(a)–(d), the military vehicles were oriented
in a south-western, north-western, south-western, and west-
ern headings, respectively. In Fig. 1(a) and (b), the military
vehicles were deployed in the top left of the scene, while in
Fig. 1(c) and (d), they can be found in the bottom right of the
ground scene.

The algorithms proposed in this article are inspired by
two previously published studies [36], [37]. The contributions
presented in these papers are briefly discussed below.
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Fig. 1. Example of images from the CARABAS II dataset for the four target
orientation headings. The blue circles highlight the regions where the military
vehicles were deployed in the ground scenes. (a) South-Western Heading.
(b) North-Western Heading. (c) South-Western Heading. (d) Western Heading.

B. Change Detection Based on Convolutional Neural
Networks

Vinholi et al. [36] proposed a CDA for WR-SAR images
based on CNNs. The presented algorithm consists of a seman-
tic segmentation stage and a classification stage. As illustrated
in Fig. 2, the CDA takes as input a DI—obtained by the
subtraction of a standalone WR-SAR reference image from
a monitored image—and outputs a list containing the central
points of all detected changes. The reasons for the choice of
an architecture containing two custom built neural networks
with a relatively low number of trainable parameters for this
problem, instead of just one classical end-to-end segmentation
network are twofold.

1) To avoid data generalization issues by greatly reducing
the number of trainable parameters of the Segmentation
CNN and limiting its overall receptive field. These
characteristics are important to assure that the model
does not learn from the peculiarities contained in the low
number of available WR-SAR images. As can observed
in Fig. 1, the targets to be detected as changes in the
dataset have many similarities between themselves: they

are all pointlike bright targets, distributed in a 2-D
grid geometry. More traditional semantic segmentation
architectures, like the U-Net [44], could not be adopted
in this scenario without generalization concerns. That
is, it would not be expected that the trained model
would perform similarly with data from other WR-SAR
systems. The high receptive field would lead to learning
the geometrical features of the small dataset, whereas
the much greater number of parameters trained in a
small dataset with similar images would lead to further
generalization problems.

2) To improve performance, by employing a more numeri-
cally complex classification CNN as a false alarm filter.
As shown in [36], this second network has the potential
to reduce significantly the number of false alarms for a
given probability of detection.

A CNN with few parameters, the so-called Segmentation
CNN, searches the DI for pixels that are likely parts of rele-
vant changes, producing a pixelwise semantic segmentation
probability map image. Each pixel of this map is a value
between 0 and 1, corresponding to the probability that the
pixel is part of a relevant change. The map is then binarized by
a thresholding operation, where positive pixels—classified as
potential changes of interest—are mapped to 1, and negative
pixels—classified as clutter—are mapped to 0. In summary,
for a pixel at the position ( j, k) in the monitored image, the
binary segmentation output at position ( j, k) is computed as

ŷ j,k =
{

1, if ỹ j,k > ω1

0, otherwise
(1)

where ỹ j,k ∈ [0, 1] is the corresponding CNN output, and ω1 is
the segmentation threshold. Table I shows the architecture of
the Segmentation CNN.

The produced binary map is fed to the density-based spa-
tial clustering of applications with noise (DBSCAN) algo-
rithm [45] to locate clusters of positive pixels. This algorithm
searches for clusters containing at least nmin neighbor points,
while the distance between these neighbors is at most � meters.
Small patches centralized at the central points of the found
clusters are extracted from the DI and are sent to another
CNN—named Classification CNN. The network outputs a
number between 0 and 1 for each patch analyzed, representing
the probability that a relevant change exists inside the patch.
Finally, each patch is classified as containing or not containing
a change of interest by a thresholding operation. In other
words, the classification decision is defined as

ŷ =
{

1, if ỹ > ω2

0, otherwise
(2)

where ỹ is the CNN output after analyzing a patch, and ω2 is
the classification threshold. Table II shows the architecture of
the Classification CNN. All hidden layers of both networks
are activated by the rectified linear unit (ReLU) function,
with the exception of the last ones, activated by the Sigmoid
function.

The Segmentation CNN is trained with WR-SAR DIs. The
ground truth associated with each DI is composed of binary
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Fig. 2. Summary of the CDA presented in [36]. The inputs are the monitored and the reference images; both are WR-SAR images of the same scene,
captured with the same flight geometry. The outputs are the individual positioning of the changes of interest in the monitored image. Rectangles represent the
data processing steps, tridimensional boxes represent CNNs, and circles represent elementwise mathematical operations.

TABLE I

ARCHITECTURE OF THE SEGMENTATION CNN

masks whose dimensions are identical to the dimensions of the
original WR-SAR images. Nonzero elements in these masks
represent the location of pixels that are parts of relevant
changes. For the CARABAS-II dataset, squares of 1’s were
centered at the central points of appropriate changes—vehicles
concealed under foliage—contained in the DIs. The TGB11
vehicles were marked as 3 × 3 squares, while both the TGB30
and TGB40 vehicles were marked as 5 × 5 squares.

The classification training set consists of small patches
of 34 × 34 pixels extracted from the WR-SAR DIs. These
patches are big enough to cover typical changes present in
WR-SAR DIs. On the one hand, negative patches—those
containing no relevant changes—are extracted by moving a
sliding window over the DIs. On the other hand, positive

patches are extracted as patches centered on the central points
of relevant changes. Values of 0 and 1 are, respectively,
assigned to each negative and positive patch. Classification
data augmentation took place to increase the number of
positive examples and avoid over-fitting the training data. Also,
the addition of Gaussian noise and rotation were performed
over some extracted patches.

The area occupied by targets of interest present in WR-SAR
images is usually small compared to the total size of the
illuminated scene. This result has a severe imbalance in both
networks. To address this issue, both CNNs are trained with
the Balanced Focal Loss cross-entropy function [46], which
has been known for speeding up training and increasing the
performance of deep neural networks trained with imbalanced
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TABLE II

ARCHITECTURE OF THE CLASSIFICATION CNN

datasets. It is defined as

f
(

py
) = −αy

(
1 − py

)γ
log

(
py

)
(3)

where py is the probability of the predicted label being equal to
the ground truth y ∈ {0, 1}, αy ∈ [0, 1] is the class imbalance
weighting factor corresponding to the label equal to y, and γ
is the focusing parameter, used to tune the importance given
to harder to learn examples. The focusing parameter was set to
γ = 2 for both networks, while the weighting factors were set
to α1 = 0.9999 and α0 = 0.0001 for the Segmentation CNN,
and to α1 = 0.9 and α0 = 0.1 for the Classification CNN.
These values were selected by evaluating multiple choices of
hyperparameters over the validation set and choosing those
that yielded the best-performance indicators.

To the best of our knowledge, for the CARABAS-II dataset,
the algorithm presented in [36] outperformed every existing
CDA at the time of publication, achieving a detection prob-
ability of 99% at an FAR of 0.0833/km2. Also, higher per-
formance was obtained for most operating points even when
the Classification CNN was removed, i.e., when the potential
relevant changes localized by the DBSCAN algorithm were
assumed to be correct. The obtained results evince that CNNs
can learn complex patterns and distinguish real changes from
false alarms in WR-SAR DIs.

C. Ground Scene Prediction Based on Image Stacks

Palm et al. [37] considered several different statistical
methods, such as median, trimmed mean, and autoregressive
models, for GSP in WR SAR images. This article evaluated
the performance over the CARABAS-II dataset of a simple
CDA consisting of thresholding and morphological operations
applied to a DI when using GSP images as reference images.
Tests showed how the additional information of the scene
provided by stacks of SAR images could help significantly

Fig. 3. Definition of the median GSP method [37]. A stack of WR-SAR
images S is processed by the median operator, which generates the GSP
image IGSP. This operation is denoted as μ̃(S j,k), for j = 1, 2, . . . , H and
k = 1, 2, . . . , W .

decrease FARs compared to when standalone WR-SAR images
are used as reference images.

The median operation yielded the best-performance indi-
cators in the executed tests. Formally, this GSP method is
defined as follows. Let Ii ∈ R

H×W be the i th image in a stack
of WR-SAR images S = [I(1), I(2), . . . , I(n)] ∈ R

H×W×n. The
pixelwise median operation is then applied to S, producing the
matrix IGSP ∈ R

H×W . The individual elements I GSP
j,k are given

by

I GSP
j,k = μ̃

(
S j,k

)
= μ̃

([
I (1)

j,k , I (2)
j,k , . . . , I (n)

j,k

])
(4)

where μ̃(·) is the median operator. This process is illustrated
in Fig. 3.

IV. METHODOLOGY

Stacks of WR-SAR images provide additional scene infor-
mation that could be explored by a CNN-based CDA to bet-
ter distinguish relevant changes from false alarms. However,
to the best of our knowledge, an investigation of whether this
information improves the performance of CNN-based CDAs
for WR-SAR systems has not been presented in the literature.
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Fig. 4. Illustration of the steps of the CDA proposed in Section IV-B. The input of the algorithm is a stack of WR-SAR DIs with identical monitored images.
The outputs are the individual positioning of the changes of interest in the monitored image. Rectangles represent the data processing steps, tridimensional
boxes represent CNNs, and circles represent elementwise mathematical operations. The symbol μ(.) denotes the median operation over the pixels dimension.

For that, we propose two CNN-based CDAs using WR-SAR
image stacks.1

A. CNN-Based Change Detection Using a Ground Scene
Prediction

In this first algorithm, a GSP image is generated with
the method discussed in Section III-C and is used as a
reference image for the CNN-Based CDA in Section III-B.
The sequential steps of this CDA are as follows.

1) GSP Generation: The pixelwise median operation is
applied to a stack of n coregistered WR-SAR images of
the same scene, with identical flight geometry, to gen-
erate a GSP image.

2) DI Formation: The GSP image is subtracted from a
monitored WR-SAR image, forming a DI. The DI is
normalized to zero mean and unit variance.

3) Change Detection: The CNN-based CDA discussed in
Section III-B analyzes the produced DI and outputs a
list with the location of the detected relevant changes in
the monitored image.

B. CNN-Based Change Detection Using Multiple Difference
Images

As illustrated in Fig. 4, this algorithm does not use a GSP
image as a reference image. Instead, a stack of WR-SAR
images generates MDIs with identical monitored images,
each with a different reference image. These DIs are jointly

1Code will be available upon publication at: https://github.com/jgvinholi/
sar_cd_stacks

analyzed by a CNN-based model with a few distinctions from
the one used in the GSP-based algorithm; this model outputs
a list with the central points of the relevant changes detected
in the monitored image. The sequential steps of this CDA are
as follows.

1) DIs Formation: A stack of n coregistered WR-SAR
images of the same scene, with identical flight geometry,
is used to form n DIs; each of these DIs is defined
by the subtraction of an image contained in the stack
from a fixed monitored WR-SAR image. Consequently,
all the produced DIs have the same monitored image
while the reference image changes. These images are
then normalized to zero mean and unit variance.

2) Fusion of Semantic Segmentation Maps: The CNN
shown in Table I individually analyzes the n normal-
ized DIs, outputting n probability images with the
same dimensions of the DIs. Since each DI uses a
different WR-SAR image as a reference, the generated
probability maps differ from each other. For this rea-
son, they can provide additional information about the
scene.
The n generated images are fused into a single proba-
bility image by applying the median operation over the
pixels dimension. We have chosen the median over other
fusion methods so that outlier pixels do not influence
the resulting fusion image. After, a binary segmentation
mask is formed by thresholding each value of the fused
probability image. The pixels in the monitored image
linked to nonzero elements in the binary mask are
classified as changes.
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TABLE III

SELECTED HYPERPARAMETERS FOR THE PROPOSED CDAs

3) Localization of Regions of Interest: The regions in
the scene that possibly contain relevant changes are
identified; this takes place by applying the DBSCAN
clustering algorithm [45] to the binary mask, which
searches for clusters of nonzero elements. The central
location of the found clusters is assumed to be the central
points of the regions of interest (ROIs) in the scene—
where relevant changes may be present. Then, small
patches centered on the central points of the ROIs are
extracted from each of the n DIs, producing n patches
per ROI.

4) Fusion of Classification Outputs: For each ROI found
in the scene, another CNN, whose architecture is iden-
tical to the network shown in Table II, analyzes the n
extracted patches.

The Segmentation and Classification CNNs of both pro-
posed CDAs share the same architecture and hyperparameters.
Adam optimizer [47] and Glorot weight initialization [48] are
used by both CNNs. For the Segmentation CNN, the learning
rate is adjusted by an exponential decay schedule. That is, the
learning rate is initialized as lr0 and decays exponentially every
epoch by a fixed factor dr . The Classification CNN is trained
with a fixed learning rate. The selected hyperparameters are
presented in Table III. To avoid overfitting to the CARABAS-II
dataset, we performed the hyperparameter search with a subset
of the available data, as explained in Section V-B. Note that
altering the dimensions of the input data delivered to the
Segmentation CNN would not change its intended behavior,
considering that both its input and output have identical dimen-
sions and that it is a fully convolutional network. Meanwhile,
the input shape of the Classification CNN has been chosen to
be big enough to entirely contain typical changes present in
WR-SAR DIs.

V. EXPERIMENTS AND RESULTS

A. Train and Test Data Partitioning

The usual splitting of a dataset into a training set and
a test set may not be a good choice for small datasets
like the CARABAS-II, since it could lead to highly biased
performance indicators [49]. To use all the available data for
both training and testing, k-fold cross-validation is applied to
the evaluated data. This cross-validation procedure consists
of partitioning a dataset into k non-overlapping sets (folds)
so that k different train-test data splits can be defined [49].
In each of the splits, one of the k sets is selected as the
test set, while the other k − 1 sets are used as the train
set. Since the CARABAS-II dataset has four different target
deployments, we set k = 4; this way, the dataset is separated
into folds (subsets) of monitored images of the same flight
mission (target deployment). This splitting criteria guarantees
that, for each fold, the target positioning of the test set is
not seem in any of the images available in the training set;
avoiding, thus, leaking this information to the training data.

Considering that the proposed algorithms have as inputs
DIs produced by different procedures, two distinct datasets
based on the 24 CARABAS-II WR-SAR images need to be
defined. Table IV shows one of the four different train/test
data splits, where Fold 4 (highlighted in gray) is selected
as the test set, and Folds 1–3 are employed as the train set.
The stacks used to produce the GSPs employed as reference
images in the CNN-GSP algorithm are described in the third
and fourth columns. The fifth column shows the reference
images considered in the CNN-MDI algorithm to form the
DIs associated with each one of the monitored images.

1) Dataset I: This dataset is used to train and test the
CNN-GSP algorithm. It consists of 24 DIs created by the
procedure discussed in Section IV-A. As shown in Table IV,
the stacks present in the train set are not generated using
images from the test set. For this reason, each stack defined in
the test set contains seven images, whereas those defined in the
train set contain five images. Therefore, the stacks associated
with the monitored images change for each one of the selected
k-fold train/test split, and the GSPs need to be recreated. This
distinction between folds is necessary to avoid data leakage
between the test sets and the train sets.

2) Dataset II: This dataset is used for training and testing
the CNN-MDI algorithm. It consists of 108 DIs with 24 unique
monitored images. As shown in Table IV, the train/test data
split is similar to the split of Dataset I, except that now MDIs
generated by the steps discussed in Section IV-B are associated
with each monitored image. Due to the constraints imposed
to avoid data leakage, the folds selected for training contain
fewer DIs when compared to the fold selected for testing.
Based on tests executed during the development phase, the
classification training data (patches) is augmented with random
noise addition, random rotation, and random vertical flipping,
aiming at improving the performance of the proposed method.
The possible angles of rotation are {0, π/2, π, 3π/2} radians,
selected equiprobably, whereas flipping is performed along the
vertical axis with a probability of 1/2. Noise matrices, whose
elements are i.i.d. random variables that follow a normal
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TABLE IV

EXAMPLE OF A CROSS-VALIDATION TRAIN/TEST DATA SPLIT. THE TEST SET FOR THIS CASE IS HIGHLIGHTED IN GRAY

distribution with expectation μ = 0 and standard deviation
σ = 5, are generated and added to each patch fed to the
classification CNN. The dimensions of the generated matrices
are identical to those of the training patches. The augmentation
happens simultaneously with training and, as a result of the
addition of random noise, each training patch fed to the
classification CNN is different from patches previously fed.

B. Development and Validation

The development of the proposed CDAs took place by
evaluating multiple possibilities of model architectures and
hyperparameters and selecting those that yielded the best per-
formance over a set of validation data. To avoid overfitting, this
set comprises only the first three flight missions—Mission 2 to
4—leaving out Mission 5 for the final test. Thus, we performed
k-fold cross validation with k = 3 in the development phase.
The folds were defined similar to how they were described in
the final test, except that we did not enforce the constraints
against data leakage between test and train sets. Thus, the
images from the flight mission selected for test in a particular
train/test split are also present in the stacks of the train set.

C. Performance Evaluation

In this section, the results of the performance evaluation of
both proposed algorithms are presented and discussed. We also

compare the obtained results with those of other CDAs that
were also tested with the CARABAS-II dataset [21], [36], [37].
Two common choices of performance metrics for SAR change
detection tasks are the probability of detection Pd and the
FAR [21], [23], [31], [35], [36], [37]. Pd is defined as the
ratio between the number of detected targets and the number
of targets contained in an image, and FAR is defined as the
ratio between the number of false alarms (false positives) and
the area under surveillance.

We present in Fig. 5 the performance of the CNN-GSP
and CNN-MDI CDAs in terms of receiver operating charac-
teristic (ROC) curves. The points of operation contained in
these curves are defined by fixing the segmentation threshold
ω1 while varying the classification threshold ω2. Therefore,
each curve is associated with a fixed ω1. The selection of an
optimal segmentation threshold for both algorithms happened
in the development phase by searching for the thresholds that
produced the ROC curves with the highest areas under the
curve (AUC) values. We calculated the AUCs for FAR ∈
[0, 0.8/km2], and the best-performing segmentation thresholds
were 0.5 and 0.575 for the CNN-GSP and CNN-MDI algo-
rithms, respectively.

To fairly compare the performances of the CNN-GSP and
CNN-MDI algorithms with the CDA [36], we employed a
methodology very similar to the one described in Section V-A.
The exception is that only 24 DIs were used, each one
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Fig. 5. Comparison of the ROC curves of the CNN-GSP and CNN-MDI algorithms with the curves from [21], [36], [37], and [23]. The proposed algorithms
outperform by a good margin the CNN-based methods in [36] and [23], which shows that stacks of WR-SAR images can be explored by CNNs to improve
detection performance. The new CDAs also outperformed the methods in [21] and [37], which are based on classic detection techniques and use stacks of
WR-SAR images.

associated univocally with a monitored image. This distinction
is due to the fact that in [36], only one DI is associated with
each monitored image. The reference images linked with each
monitored image have been equiprobably selected from all
possibilities to form the DIs while assuring that each one
has been paired with a reference image captured with the
same flight angle. Additionally, the hyperparameter selection
is identical to the one shown in Table III. The procedure
for the segmentation threshold selection followed the method-
ology described in Section IV-B, and the optimal ω1 was
set equal to 0.5 aiming at having the highest AUC in the
validation stage. Note that this allows us to be certain that
no advantage is given to either the stacks-based algorithms
or the method introduced in [16]. Beyond that, by doing
a fair comparison, it is expected that both the CNN-GSP
and CNN-MDI stacks-based algorithms outperform [16] since
more information about the scene is available in the proposed
algorithms.

Fig. 5 shows that the algorithms CNN-GSP and CNN-MDI
outperform the methods presented in [37], [21], [23], and [36]
by a considerable margin for the tested points of oper-
ation. This suggests that the additional information pro-
vided by stacks of WR-SAR images can lead to fewer
false alarm occurrences, especially for higher probabilities
of detection (Pd > 0.99). We also can observe that only
the CNN-MDI algorithm reached Pd = 1 with a rela-
tively low FAR of 0.285/km2 and achieved a probability of
detection higher than 0.9 without any false alarms (Pd =
0.96). Despite not showing performance indicators as good as
CNN-MDI, the CNN-GSP algorithm displayed a noticeable
advantage over the CDA in [36], while requiring fewer neural
network evaluations when compared with the CNN-MDI.

At Pd = 0.99, for instance, the CNN-GSP and CNN-MDI
algorithms, respectively, reached FAR values 28% and 69%
smaller than the value reached in [36]. For comparison pur-
poses, we added the ROC curves for two other CDAs based
on stacks of WR-SAR images. One of them was presented
in [37] and discussed in Section III-C, while the other one
is presented in [21]. These two algorithms underperformed
the three CNN-based CDAs—CNN-GSP, CNN-MDI, and the
algorithm in [36]. However, since these are not machine
learning algorithms, they do not need to be trained. Thus, for
them, fewer steps are needed to reach a production-ready state.

In general, change detection methods have good perfor-
mance for most of the CARABAS-II dataset image pairs.
However, for few of them, the performance is degraded
significantly either in terms of high FAR or undetected
rates [19]. One particular example is related to Mission
3 and Pass 5, in which Vu et al. [21] and Palm et al. [37]
achieved 16 and 15 detected targets, respectively, and 6 false
alarms. On the other hand, the proposed CNN-MDI (ω1 =
0.571 and ω2 = 0.42) and CNN-GSP (ω1 = 0.5 and ω2 =
0.772) detected 22 and 18 targets, respectively, and had just
one false alarm in the same image. These results highlight that
the additional information of the scene provided by the image
stacks combined with the complex patterns learned by the
CNNs can help to significantly decrease FARs, distinguishing
real changes from false alarms.

Table V shows the performance per fold of the pro-
posed algorithms for two particular points of operation. The
CNN-GSP algorithm is evaluated at ω1 = 0.500, ω2 = 0.775,
and the CNN-MDI at ω1 = 0.575, ω2 = 0.425. We can see that
fold 4, which is not used in the development phase, reached
higher than average performance for both algorithms. This
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Fig. 6. Heat maps generated with the Grad-CAM [50] technique in nine
target-containing patches extracted from CARABAS-II DIs. The algorithm
has been executed using the trained classification CNN. The hottest the color
of a region, the higher is the influence of that region to the classification CNN
prediction.

TABLE V

PERFORMANCE PER FOLD OF THE PROPOSED CDAs. FOLD 4,
HIGHLIGHTED IN GRAY, WAS NOT USED TO DEVELOP THE

PROPOSED ALGORITHMS AND HAS BEEN RESERVED
FOR THE FINAL TEST

suggests that the neural networks did not overfit to Folds 1–3,
used to develop the algorithms and search for hyperparameters.

Fig. 6 shows heat maps over nine patches centralized at
different targets contained in CARABAS-II DIs. These maps
were generated using the Grad-CAM algorithm [50], which
quantifies how much each region of an image influences
the prediction of a neural network-based classifier. This is
achieved by measuring the gradients of a particular convolu-
tional layer—usually the last one before the output layer—with
respect to the loss function when a particular input is given
to the network. Then, the gradients are processed and resized
to the dimensions of the input, to generate a heat map. The

Fig. 7. Box-plot charts of the probability of detection values and FARs of
the data extracted from the ROC curves presented in Fig. 5. (a) Probability
of Detection. (b) FAR [1/km2].

samples displayed in Fig. 6 show that the classification CNN
is usually more influenced by the regions that surround the
targets but not so much by the targets themselves. This implies
that this network is not heavily influenced by the peculiarities
and forms of each target but instead by their surroundings in
the image.

D. Statistical Evaluation

To further evaluate the performance of the proposed meth-
ods, we considered the Kruskal–Wallis test and the posthoc
Dunn’s test to identify if the derived methods present signif-
icantly different mean behavior in terms of the probability
of detection and FAR in comparison with the approaches
described in [21], [36], and [37]. Both tests are widely
employed for comparisons purposes of machine learning
schemes in different signal processing applications (see [51],
[52], [53], [54], [55]). We also considered a visual inspection
of the data through box-plots.

To perform the tests and create the charts, we extracted the
data from the ROC curves presented in Fig. 5 for FAR ∈
[0/km2, 0.285/km2], observing that the CNN-MDI algorithm
reaches Pd = 1 at FAR = 0.285/km2. We performed a linear
interpolation with the ROC curves to increase the available
point numbers of operation used in the calculations. The
significance level was set to 0.05, a convenient cutoff level
to reject the null hypothesis [56].
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TABLE VI

KRUSKAL–WALLIS AND DUNN’S TEST RESULTS, WHERE
p-VALUES < α = 0.05, BEING α THE SIGNIFICANCE

LEVEL, ARE HIGHLIGHTED IN GRAY

Fig. 7 displays the box-plot charts of the probability of
detection values and FAR of the data extracted from the ROC
curves presented in Fig. 5. Visually, we can verify that [21]
and [37] show a similar mean behavior for both probability
of detection and FAR. Additionally, we can visually highlight
that: 1) CNN-MDI and CNN-GSP and 2) CNN-GSP and [36]
have a similar mean behavior.

Table VI displays the p-values of the Kruskal–Wallis and
Dunn’s tests—p-values < α = 0.05, α being the significance
level, are highlighted in gray. The results presented in Table VI
corroborate with the visual inspection insights. For example,
in terms of probability of detection, CNN-MDI and CNN-GSP
presented similar mean behavior. On the other hand, both
proposed methods significantly excelled all the other tested
tools. The CNN-MDI performed better in terms of FAR com-
pared to all the tested methods, and the CNN-GSP improved
the performance compared to [21] and [37]. The statistical
tests highlight that the derived schemes presented competitive
performance when compared with recently published results.

E. Time Evaluation

To better visualize the differences in numerical cost between
the proposed algorithms, Table VII shows the average running
time for both methods. The standard deviation of the running
time is also presented. The results were obtained by measuring
the time it took for each of the 24 possible stack combinations,
described in Table V, to be analyzed by both algorithms. The
longer average running time of the CNN-MDI can be linked
to the fact that it takes as inputs N −1 DIs, N being the size of
the stack, whereas CNN-GSP only takes one, meaning that the
Segmentation CNN has to analyze N − 1 times more images.

TABLE VII

TIME EVALUATION RESULTS, CALCULATED WITH MEASUREMENTS
OF THE RUNNING TIME FOR THE CNN-GSP AND

CNN-MDI ALGORITHMS OVER THE 24 STACKS

PRESENTED IN TABLE V

Also, the Classification CNN has to analyze N −1 patches for
each possible change/target location. On the other hand, this
added numerical complexity resulted in higher performance
indicators in the executed tests.

VI. CONCLUSION

In this article, two CNN-based CDAs using stacks of WR
SAR images were proposed. Their purpose is to look for new
elements in a particular scene by analyzing DIs. They can be
divided into four main steps: 1) DI formation; 2) semantic
segmentation; 3) clustering; and 4) classification of changes.
The CNN-GSP algorithm forms a DI using a GSP image sent
to a CNN-based CDA to locate relevant changes. On the other
hand, the CNN-MDI algorithm employs MDIs of the same
scene in a CNN-based CDA. Both methods were tested in
the CARABAS-II data yielding higher detection probabilities
and lower FARs compared to other state-of-the-art algorithms.
By applying the Kruskal–Wallis and Dunn’s tests, it is shown
that the performance improvements are statistically significant.
Moreover, when the two algorithms were compared, CNN-
MDI showed better performance indicators, at the cost of a
higher computational complexity.
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