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Abstract— Phase decorrelation, caused by changes in the
surface scattering properties between two radar acquisitions, is a
major limiting factor for interferometric synthetic aperture radar
(InSAR) surface deformation analysis over vegetated terrain. Per-
sistent Scatterer (PS) techniques have been developed to identify
high-quality radar pixels suffering from minimal decorrelation
artifacts. However, existing PS selection algorithms are often
based on the statistics of InSAR amplitude and phase mea-
surements at each individual radar pixel, and scattering signal
models that take into account the phase correlation of nearby PS
pixels have not been fully developed. Here, we present a new PS
selection algorithm based on the similarity of phase observations
between nearby radar pixels. We used this algorithm to ana-
lyze 25 C-band Envisat SAR scenes acquired over the San Luis
Valley, Colorado, and 93 C-band Sentinel-1 SAR scenes acquired
over the Greater Houston area, Texas. At both the test sites, the
presence of dense vegetation leads to severe phase decorrelation
artifacts even in some interferograms with short temporal base-
lines. Our algorithm can reduce the number of false positive and
false negative PS pixels identified from an existing PS identifica-
tion algorithm. The improved PS identification accuracy allows
us to substantially increase the total number of high-quality inter-
ferograms that are suitable for time series analysis. We recon-
structed spatially coherent InSAR phase observations through an
interpolation between PS pixels, and recovered subtle deforma-
tion signals that are otherwise undetectable. In both the cases, the
superior performance of our PS processing strategy was demon-
strated using a large number of independent ground-truth data.

Index Terms— Decorrelation, Interferometric Synthetic Aper-
ture Radar (InSAR), Persistent Scatterer (PS), phase similarity,
surface deformation.

I. INTRODUCTION

RECENT satellite missions have been collecting interfero-
metric synthetic aperture radar (InSAR) [1], [2] data over

the entire world on very short revisit cycles (e.g., six days for
Sentinel-1 with a two-satellite constellation). However, map-
ping centimeter-to-millimeter surface deformation (e.g., [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12]) on a global scale is
challenging. One major limitation is that a substantial portion
of the world’s land surface is covered by vegetation, and veg-
etation growth between consecutive radar acquisitions leads to
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changes in surface scattering properties and decorrelation in
InSAR phase measurements [13]. InSAR phase measurements
at decorrelated radar pixels can be considered as random
wrapped phase values between 0 and 2π , and they cannot
be used to reconstruct spatially coherent phase components
such as surface deformation signals and tropospheric noise
signatures. To overcome this limitation, persistent scatterer
(PS) techniques (e.g., [14], [15], [16]) have been developed to
identify radar pixels with stable surface scattering properties
(e.g., man-made structures, rocks, and barren lands). In areas
with dense vegetation, only phase measurements at PS pixels
have a high quality that is suitable for time series analysis.

The first generation of PS algorithms [17], [18], [19]
modeled radar echoes as the sum of a constant real signal and a
complex circular Gaussian random noise. Based on this model,
the returns from a radar pixel with a high signal-to-noise ratio
(SNR) have relatively small amplitude variations. A pixel with
high amplitude stability is identified as a PS pixel if its phase
observations fit a given deformation model. One limitation
of such approaches is that there are typically very few radar
pixels with sufficient SNRs to be selected in natural terrain.
To overcome this limitation, [15], [20], [21], [22] select PS
pixels based on the statistics of InSAR phase measurements.
Using a complex circular Gaussian model for both the
signal and noise terms, Shanker and Zebker [21] estimated
the signal-to-clutter ratio (SCR) of each radar pixel using
phase measurements of interferograms that share a common
reference SAR image. A PS pixel is expected to have relatively
a high SCR and a narrow phase distribution. The capability
of PS interferometry was further advanced by the SqueeSAR
method [16], [23], [24]. Ferretti et al. [16] jointly analyzed
the nearby pixels with homogeneous amplitude distributions
(these pixels are referred to as Statistically Homogeneous
Pixels or SHP in [16]). InSAR phase observations from each
SHP group are averaged to improve the SNR, and a covariance
matrix model [25] is used to filter phase measurements and
select PS pixels. The SqueeSAR-based approach is one of
the very few existing methods that take into account the
amplitude statistics of nearby distributed scatterers (DSs).
Alternatively, Costantini et al. [26], [27] modeled the phase
difference between two adjacent radar pixels as a function of
the deformation rate difference and elevation difference. For
each neighboring pixel pair, an optimized deformation rate
difference and elevation difference are solved to minimize
the residual phase difference. The pixel pair is selected as PS
if the residual phase difference is small.

Because scattering signal models that take into account
the phase correlation of nearby PS pixels have not been
fully developed [28], existing PS selection algorithms are
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mainly based on the statistics of InSAR phase measurements
at each individual radar pixel. In many cases, a deformation
model (e.g., constant velocity) is used in the selection process.
However, surface deformation characteristics over an area of
interest are often unknown. To overcome these limitations,
here we present a new PS selection method that analyzes the
phase correlation of nearby radar pixels based on a similarity
measure (the cosine similarity). Our algorithm can be used
alone for PS identification, or it can be integrated with any
existing PS selection algorithm to reduce the false positive
and false negative PS selections at a very low computational
cost. By taking into account the varying decorrelation noise
in different interferograms, our algorithm selects a unique PS
set for each interferogram, which maximizes the number of
high-quality radar measurements that can be used for surface
deformation analysis. We applied this algorithm to analyze:
1) 25 C-band Envisat SAR scenes acquired over the San
Luis Valley (SLV), Colorado, where confined aquifer pumping
and recharge causes seasonal deformation over the agricultural
basin and 2) 93 C-band Sentinel-1 SAR scenes acquired over
the Greater Houston area, Texas, where long-term coastal
subsidence increases the flooding risk in both the densely
populated city center and the rural communities. We recon-
structed the spatial coherent phase measurements associated
with deformation signals and tropospheric noise signatures in
areas with very low PS density (<10%) through a PS-based
phase interpolation. Following this new PS processing strategy,
the number of interferograms with quality suitable for time
series analysis is substantially increased. Using this new algo-
rithm, it is now feasible to achieve similar surface deformation
mapping accuracy in densely vegetated terrain as in urban
areas with very high PS density.

II. METHODOLOGY

A. Algorithm

Given K single-look complex (SLC) radar images
S1, . . . , SK , we can form K − 1 wrapped interferograms that
share a common reference SLC image. The phase values of
these K − 1 interferograms at a pixel m can be written as a
phase vector ϕm = [ϕm,1, ϕm,2, . . . , ϕm,K−1]. We define the
phase similarity between two radar pixels m and n as the
cosine similarity between the phase vectors ϕm and ϕn

smn = 1

K − 1

K−1�
k=1

cos
�
ϕm,k − ϕn,k

�
. (1)

Here, the phase similarity score smn ranges from −1 to 1.
A similarity score of 1 means ϕm and ϕn are identical, 0 means
ϕm and ϕn are not correlated, and −1 means ϕm,k and ϕn,k

differ by π rad for all ks. We choose to use the cosine
similarity rather than the temporal coherence [15]

ρmn = 1

K − 1
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k=1
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ϕm,k − ϕn,k

������� (2)

as the similarity measure of two phase vectors, which allows us
to better capture phase errors in the reference SLC image. For
example, consider a case that: 1) the SAR phase measurements

at pixel m and n differ by π/2 rad in the reference SAR
image Sk because of a random decorrelation error and 2) the
SAR phase measurements at these two pixels are identical in
the rest of the SAR images without any phase errors. Such
phase error in the reference image can cause a constant phase
offset of π/2 rad between the two InSAR phase vectors ϕm

and ϕn. In this case, the cosine similarity (1) can detect the
inconsistency between ϕm and ϕn by returning a similarity
score of 0, while the temporal coherence (2) overestimates
their similarity by returning 1.

Our algorithm is designed to retrieve accurate deformation
signals over low PS density natural terrains. In this scenario,
the deformation signal of interest is often caused by
geophysical processes, including but not limited to coastal
processes, aquifer pumping and recharge, volcanism, or fault
activities. Because the Earth’s crust can be modeled as a solid
continuum, such surface displacements typically vary slowly
in space [29]. Given that the deformation signal of interest and
tropospheric noise are both spatially coherent, phase vectors
of two nearby PS pixels are expected to be similar (e.g., with
phase similarity >0.5). In contrast, the similarity score of a
decorrelated pixel (a non-PS pixel) and a nearby pixel is ∼0
when the total number of SAR acquisitions K is sufficiently
large. This is because the phase of a decorrelated pixel can
be considered as a random value between 0 and 2π [13].

It is computationally expensive to calculate the phase sim-
ilarity between all the radar pixel pairs. To improve compu-
tational efficiency, we first select a set of PS candidate pixels
using the maximum likelihood estimation (MLE) selection
technique described in [21]. Following [21], the received echo
from a radar pixel can be modeled as a coherent sum of returns
from a dominant scatterer and clutter scatterers, and both
the components are considered as circular complex Gaussian
random variables. The relative power of the dominant scatterer
signal to the background clutter noise is defined as the SCR
(γ ). Based on this model, the probability density function
(PDF) of the observed InSAR phase ϕ for a given SCR γ
can be written as

p(ϕ|γ ) = 1 − ρ2

2π

1

1 − ρ2 cos2 ϕ

×
�

1 + ρ cos ϕ arccos(−ρ cos ϕ)	
1 − ρ2 cos2 ϕ



(3)

where ρ is defined as ρ = 1/(1 + γ −1). A PS pixel has a
high SCR and a relatively narrow phase distribution, while
a non-PS pixel has a low SCR and a relatively wide phase
distribution. We estimate the SCR value γ̂ML,m at a given pixel
m by comparing the observed InSAR phase vector ϕm to (3)
in a maximum likelihood sense

γ̂ML,m = arg max
γ

K−1�
k=1

p
�
ϕ̃m,k |γ

�
(4)

where ϕ̃m,k is the residual phase at pixel m in the kth
interferogram after removing the spatially correlated phase
component through filtering. We classified PS candidates as
the pixels with γ̂ML,m > 2. This threshold value was suggested
by previous SCR-based PS selection studies [21], [22], [30],
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Fig. 1. PS selection algorithm based on the similarity of phase vectors.
(a) Remove false positive detections from preliminary PS candidates. For
each PS candidate (green pixels), we calculate its median phase similarity
with its N nearest neighbor PS candidates. PS candidates with a median
phase similarity score lower than 0.3 are removed. (b) Identify false negative
detections and expand the PS set. For each non-PS pixel (white pixels),
we calculate its maximum phase similarity with the N nearest neighbor PS
candidates. Pixels with a maximum phase similarity score greater than a
predetermined threshold (0.5 in this example) are selected as new PS pixels.

[31] as a reasonable trade-off between the false positive and
false negative rates. A higher γ̂ML,m value leads to a lower
false positive rate and a higher false negative rate.

During preliminary PS candidate selection, the SCR value
at each pixel is estimated independently. The spatial phase
consistency between PS pixels is not taken into account, which
may lead to inaccurate PS selections [31]. To overcome this
limitation, we next identify and remove false positive PS pixels
based on the phase similarity between PS candidate pixels
as follows. Given a PS candidate pixel m, we calculate its
phase similarity with its N nearest neighbor PS candidates
[Fig. 1(a)]. We define the median value of these N phase
similarity measurements smed,m as

smed,m = median
n∈NN(m,N)

smn (5)

where NN(m, N) represents the N nearest neighbor PS can-
didates of pixel m. The value of N needs to be sufficiently
large to be statistically meaningful, while pixels in NN(m, N)
need to be adequately close to each other so that they contain
a similar phase signal. In this study, we set N = 20 as a
trade-off between these two considerations, and we remove
PS candidates with median phase similarity values less than
smed,thr = 0.3.

To further recover false negatives in the preliminary PS
candidate selection, we calculate the phase similarity of
every non-PS pixel m with its N nearest neighbor PS pixels
[Fig. 1(b)] as

smax,m = max
n∈NN(m,N)

smn (6)

where NN(m, N) represents the N nearest neighbor PS pixels
of pixel m. The pixel m is selected as a new PS if the maximum
phase similarity is greater than a predefined threshold smax,thr .
The search of false negative PS pixels is performed iteratively
to expand the PS set, and the number of PS pixels increases
monotonically through iterations. Because the number of
detected PS pixels is upper bounded by the total number of
radar pixels, our algorithm is guaranteed to terminate when no
more PS pixels can be identified through additional iterations.
Because the phase vectors of two non-PS pixels are unlikely to
be similar when the number of SAR acquisitions is sufficiently
large (e.g., K > 50), the search for false negatives typically
introduces very few false positive PS pixels.

To determine the similarity threshold smax,thr , we compute
the phase correlation of each interferogram [13], and we use
pixels with the lowest 1% average InSAR phase correlation
as calibration pixels (e.g., decorrelated non-PS pixels such as
water, cultivated land, or forest pixels). Alternatively, water
pixels from a land-cover classification map [32], [33] can be
used as calibration pixels. For each calibration pixel m, we cal-
culate its maximum phase similarity with the nearby pixels as

s̃max,m = max
n∈B(m,r)

smn (7)

where B(m, r) represents the set of pixels in a circle centered
at pixel m (with pixel m itself excluded). The radius of
the circle needs to be sufficiently large to be statistically
meaningful, while all the pixels need to be adequately close
to each other so that the phase vectors at PS pixels are similar.
In this study, the circle radius r is set to 50 pixels. The
similarity threshold smax,thr is chosen so that the probability
of selecting a calibration pixel as PS (false positive) is below
1% (defined as the probability threshold α = 1%).

Our PS selection algorithm is illustrated as a flowchart
(Fig. 2). We emphasize that the choice of reference SLC
images influences PS pixel selection. For example, if a radar
pixel contains substantial phase noise in the reference SLC
image, it is likely marked as a non-PS pixel because all the
interferograms that share this reference SLC are corrupted by
this phase noise. As a result, given K SLC images, we choose
each of them as a unique reference SLC image and derive K
corresponding PS sets �1, . . . , �K . We use the intersection of
two PS sets �k ∩ �l as the valid PS set for the interferogram
formed between SAR image Sk and Sl . Our algorithm takes
into account that the quality of an interferogram is determined
by two SAR scenes, and the number of high-quality PS pixels
can vary substantially among different interferograms. This
allows us to improve the overall efficiency and accuracy of
our detections (see Section V-A).

B. Validate PS Selection Through PS Interpolation

Our algorithm identifies high-quality InSAR phase mea-
surements at a set of isolated PS pixels. To reconstruct
spatially coherent phase observations (including deformation
signals and tropospheric noise), we use an adaptive spatial
interpolation between PS pixels as proposed in [34]. Given a
wrapped interferogram, the phase value at pixel m is replaced
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Fig. 2. Flowchart of the phase similarity PS identification algorithm.
We consider �k ∩ �l as the valid PS set for the interferogram formed using
SLCs Sk and Sl . We recommend 0.3 as the default value for the median phase
similarity threshold smed,thr . The maximum phase similarity threshold smax,thr
can be calculated based on the maximum acceptable probability of selecting
pixels with random phases (see Section II-A). Users can also specify these
two thresholds if necessary to improve the PS selection accuracy.

by the weighted average phase value of its N nearest neighbor
PS pixels as

ϕ interp
m = arg

⎛
⎝ �

n∈NN(m,N)

wneiϕn

⎞
⎠ (8)

where arg(z) is the argument of the complex number z,
NN(m, N) represents the N nearest neighbor PS pixels of
pixel m, and ϕn is the wrapped phase value at pixel n.
wn = e−r2

n /2R , where rn is the distance between the center
pixel m and the pixel n and R = max

n
rn .

Using the PS interpolation method, we can fill the spatial
gaps in high-quality InSAR phase measurements. Also, it is
much easier to unwrap a PS-interpolated interferogram than a
decorrelated interferogram. For example, it takes on average
1 min to interpolate a 2000-by-2000 pixel interferogram and
another 10 s to unwrap the interpolated interferogram using the
statistical-cost, network-flow algorithm for phase unwrapping
(SNAPHU) algorithm [35]. Without PS interpolation, unwrap-
ping a severely decorrelated interferogram of the same size
can take more than 2 h on the same machine. Therefore,
interpolating interferograms before phase unwrapping can

Fig. 3. Examples of PS-interpolated wrapped Sentinel-1 interferograms with
(a) few interpolation artifacts and (b) severe interpolation artifacts. (c) Phase
unwrapping result of Panel (a). (d) Phase unwrapping results of Panel (b).
Following (9), the phase unwrapping error is 0 and 17134.3 rad for (c) and
(d), respectively.

greatly improve the computational efficiency of InSAR data
processing at large scales.

In addition, we use PS interpolation to evaluate the accuracy
of PS selection (e.g., Fig. 3). While accurate PS selection
usually results in spatially smooth phase reconstruction, inter-
polation from inaccurate PS sets can cause abrupt phase
changes near false positive PS pixels. Such phase artifacts
can be easily identified through visual inspection, which gives
a qualitative measure of PS selection accuracy. Alternatively,
we can unwrap the interpolated interferogram and quantify
the interpolation artifacts as phase unwrapping errors. Given
an unwrapped interpolated interferogram, we define the phase
unwrapping error at a radar pixel m as

ϕerr
m =

�
n

|�ϕmn| fπ (|�ϕmn|) (9)

where �ϕmn is the unwrapped phase difference between pixel
m and pixel n (or ϕunwrap

m − ϕunwrap
n ), fπ being an indicator

function such that fπ (x) = 1 if x > π , and fπ (x) = 0
otherwise. The summation is performed on four adjacent
pixels of the center pixel m. We calculate the total phase
unwrapping error of an interferogram by summing up the
phase unwrapping error over all the radar pixels. If the phase
difference between any pair of adjacent pixels is less than π
rad, the total phase unwrapping error is 0. Interferograms with
total phase unwrapping errors above a threshold are excluded
from InSAR time series analysis.

III. TEST SITES AND INSAR ANALYSIS

A. San Luis Valley (SLV)

The SLV is an agricultural basin in southern Colorado,
where confined aquifer pumping has caused surface defor-
mation detectable by InSAR [31], [36], [37], [38]. InSAR
analysis is challenging over vegetated terrain, where defor-
mation signals can be easily obscured by decorrelation noise.
Chen et al. [31] applied a PS selection algorithm (known as the
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Fig. 4. (a) SLV, Colorado. The Envisat spatial coverage over the study site is outlined in light green. Yellow dots represent the locations of the 23 long-term
confined aquifer monitoring wells. The cyan triangle represents the reference point of all the interferograms. (b) Greater Houston area, Texas. The Sentinel-1
spatial coverage over the study site is outlined in light green. Yellow dots represent the locations of the 93 GPS stations that were jointly analyzed with
Sentinel-1 data. The cyan triangle represents the reference point of the interferograms, which is colocated with the GPS station UHL1.

MLE algorithm) described in [21], and processed 25 C-band
Envisat SLC images (Path 98 and Frame 2853) acquired
between November 20, 2006 and July 12, 2010 [Fig. 4(a)].
They estimated the SCR value at each pixel using interfero-
grams that share a common reference Envisat scene acquired
on November 09, 2009. The reference scene was chosen to
maximize the average InSAR phase correlation of the common
reference interferograms as suggested in [21].

We also identified PS pixels using the new phase similarity
algorithm. We denote �k as the PS set associated with the
kth reference SLC scene. Because the phase noise level of the
reference SLC image greatly influences the phase similarity
score, the selected 25 PS sets from different reference SLCs
are typically not identical (Fig. 5). The common PS pixels
in �k and �l (or �k ∩ �l) were considered as the valid PS
pixels for the interferogram formed using the kth and the lth
SLCs. We note that the MLE algorithm identifies a pixel as
PS if its SCR value is greater than a certain threshold. While a
higher SCR threshold reduces false positives, it increases false
negatives and underestimates the PS density. Similarly, a lower
SCR threshold increases false positives, but reduces false
negatives. To ensure a fair comparison between the two algo-
rithms, we set the SCR threshold so that both the algorithms
select approximately the same number of PS pixels for each
interferogram. We consider a PS selection algorithm is better if
it can reconstruct spatially coherent interferograms with fewer
PS interpolation artifacts and smaller unwrapping errors (9).

To perform the InSAR time series analysis, we interpolated
all 300 interferograms based on the PS pixels identified from
the phase similarity algorithm. We excluded 78 interferograms
(typically with large spatial or temporal baselines) containing
obvious interpolation or unwrapping artifacts. The remaining
222 interferograms were unwrapped and referenced to a point
northeast of Alamosa, CO, which is far away from the primary
confined aquifer pumping region. We removed an empirical
linear phase ramp in each unwrapped interferogram to account

for potential atmospheric noise or orbital error. We solved
for the line-of-sight (LOS) deformation rate between con-
secutive Envisat SAR acquisition at each radar pixel using
the unconstrained least-squares small baseline subset (SBAS)
algorithm [39]. We integrated the deformation rate to recon-
struct the LOS deformation time series. Under the assumption
that there were no substantial horizontal deformation signals,
we converted the LOS deformation into vertical deformation.
We jointly analyzed InSAR vertical deformation series and
head levels recorded at 22 out of 23 long-term confined
aquifer monitoring wells [Fig. 4(a)]. We excluded well ALA12
from the analysis, because the head records were too noisy
to capture the seasonal variation in water levels. Using the
algorithm proposed in [38], we estimated the skeleton storage
coefficient Sk and the time delay τ of the deformation with
respect to the head changes at each well station and converted
the vertical surface deformation �dup into head changes �h
as �h(t) = �dup(t + τ )/Sk . We compared our results with
the previously published results [31].

B. Greater Houston Area

The Greater Houston area, located on the Gulf Coastal plain,
has experienced extensive land subsidence due to excessive
groundwater pumping [40], [41]. A substantial proportion
of this area is covered by dense vegetation, and InSAR
phase measurements typically suffer severe decorrelation.
We processed 93 C-band Sentinel-1A scenes (Path 143 and
Frame 192) acquired between February 01, 2017 and February
22, 2020 [Fig. 4(b)]. We formed all 4278 multilooked inter-
ferograms (100 m-by-100 m pixel spacing), and we chose
the Global Positioning System (GPS) station UHL1, where
little vertical deformation was observed (<1 mm/year), as the
reference location for all the interferograms. Similar to the
SLV case, we selected PS pixels based on the phase similarity
algorithm. We defined �k as the PS set associated with
the kth reference SLC scene. The common PS pixels in
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Fig. 5. Example of how the maximum phase similarity at a radar pixel (6)
varies based on the choice of the reference SLC image. The horizontal axis
represents the chronological indices (1–25) of the 25 Envisat SLC images used
in the SLV test case. As our PS selection algorithm identifies a radar pixel as
PS only if its maximum phase similarity is greater than a certain threshold
(0.6 in this example), this pixel is not selected as PS when the Envisat SAR
images acquired on November 20, 2006, January 29, 2007, January 14, 2008,
and February 22, 2010 are used as the reference image (highlighted as red
plus signs).

�k and �l (or �k ∩ �l) were considered as the valid PS
pixels for the interferogram formed using the kth and the lth
SLCs. We also compared the phase similarity algorithm and
the MLE algorithm based on the quality of the interpolated
interferograms. To implement the MLE algorithm, we used
the Sentinel-1 scene acquired on December 17, 2018 as the
reference scene to maximize the total InSAR phase correlation
of the common reference interferograms.

We interpolated and unwrapped all 4278 interferograms
using PS pixels selected by the phase similarity algorithm.
We calculated the phase unwrapping error of each interpolated
interferogram using (9), which ranges from 0 for coherent
interferograms to more than 150 000 rad for severely decorre-
lated interferograms. We excluded 2969 interferograms with
phase unwrapping errors larger than 10 000 rad. We removed
a linear phase ramp from each of the remaining 1309 inter-
ferograms, and we excluded InSAR phase measurements
corrupted by extreme tropospheric noise using an outlier
removal algorithm [42]. We used a linear deformation model
and solved for the average LOS surface deformation rate
between 2017 and 2020 at each radar pixel [39]. As a control
experiment, we estimated the LOS surface deformation rate
from the original 1309 multilooked interferograms using phase
measurements at both PS and non-PS pixels without PS inter-
polation. To evaluate the algorithm performance, we compared
the surface deformation time series recorded at 93 permanent
GPS stations [43] with our InSAR results. We projected GPS
east, north, and up deformation time series to the radar LOS
direction and estimated the average LOS surface deformation
rate over the study period using the median interannual dif-
ference adjusted for skewness (MIDAS) algorithm [44].

IV. RESULTS

A. PS Identification and Phase Reconstruction

Fig. 6(a) shows a 12-day Sentinel-1 interferogram (January
03, 2018–January 15, 2018) over the Greater Houston area.
We identified PS pixels using the phase similarity algorithm

Fig. 6. (a) 12-day Sentinel-1 interferogram (January 03, 2018–January 15,
2018) over the Greater Houston area. Water bodies were masked out. (b) PS
pixels (marked in yellow) identified using the phase similarity algorithm.
(c) PS-interpolated interferogram. InSAR phase measurements at non-PS
pixels can be reconstructed using phase measurements at PS pixels. (d) PS
density calculated as the percentage of PS pixels within a 51 × 51 window
centered at each pixel. (Gray) Low PS density (0%–10%). (Green) Medium
PS density (10%–50%). (Yellow) High PS density (50%–100%).

[Fig. 6(b)]. Because the temporal baseline of the January
03, 2018–January 15, 2018 interferogram is short, there are
very few phase decorrelation artifacts at both PS and non-
PS pixels. We calculated the PS density as the percentage
of PS pixels within a 51 pixel × 51 pixel window centered
at each pixel [Fig. 6(d)]. Overall, the estimated PS density
ranges from less than 1% over densely vegetated areas to
more than 95% over urban areas near Downtown Houston.
The PS-interpolated interferogram [Fig. 6(c)] and the original
interferogram [Fig. 6(a)] show very few differences. This
suggests that it is feasible to accurately reconstruct coherent
InSAR phase measurements at non-PS pixels through an
interpolation between PS pixels even in areas with very low PS
density. This is because surface deformation and tropospheric
noise signatures often vary slowly in space, which can be
reconstructed using a small number of high-quality radar
pixels based on the Nyquist sampling theorem.

To further demonstrate this finding, we processed a decor-
related 672-day Sentinel-1 interferogram (January 03, 2018–
November 06, 2019) over the same area [Fig. 7(a)]. Because
the temporal baseline of this interferogram is long, InSAR
phase measurements are completely decorrelated at non-
PS pixels. We compared the PS-interpolated interferogram
[Fig. 7(c)] and the original interferogram with additional ten
looks in both the dimensions [Fig. 7(b)]. While the addi-
tional looks can restore phase fringe patterns similar to PS
interpolation, the multilooked phase measurements are much
noisier over areas with low PS density (<10%). This is because
multilooking averages the phase measurements at both PS
and non-PS pixels to reduce the spatially incoherent phase
noise. The phase noise reduction is less effective when non-PS
pixels constitute the majority of local pixels. In contrast, our
interpolation algorithm computes the weighted average phase
of high-quality PS pixels identified by the phase similarity
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Fig. 7. (a) 672-day Sentinel-1 interferogram (January 03, 2018–November
06, 2019) over the Greater Houston area (100-m pixel spacing). (b) Same
interferogram with additional 10 looks in both dimensions (1000-m pixel
spacing). (c) Interpolated interferogram using PS pixels identified by the phase
similarity algorithm. (d) Interpolated interferogram using PS pixels identified
by the MLE algorithm. Here, we set the PS threshold as SCR >1, so that
both the algorithms detect a similar number of PS pixels. The coastal region
outlined in red is magnified in Fig. 8.

algorithm, which can substantially reduce the spatially inco-
herent noise.

We compared the PS identification accuracy of our phase
similarity algorithm and the MLE algorithm. Fig. 7(c) and (d)
shows the interpolated interferograms based on PS pixels
identified from these two algorithms. While both the inter-
ferograms show similar phase patterns, the phase similar-
ity algorithm generates fewer interpolation artifacts (see the
zoomed-in area in Fig. 8) and a smaller phase unwrapping
error (1556.7 rad versus 9791.8 rad). Note that we set the SCR
threshold so that the MLE algorithm selects approximately the
same number of PS pixels as the phase similarity algorithm.
While a higher SCR threshold reduces the false positive rate
and interpolation artifacts, it also reduces the number of iden-
tified PS pixels and PS density. Our algorithm performs better
because it can detect more PS pixels without compromising
the detection accuracy.

B. InSAR Deformation Results Over the SLV

To mitigate vegetation decorrelation artifacts,
Chen et al. [31] used the MLE algorithm to identify
PS pixels. One limitation of the MLE algorithm is that
it produced false positive PS pixels that display very
different phases from nearby true PS pixels. These false
positive PS pixels caused visible interpolation artifacts
and phase unwrapping errors, especially in interferograms
with longer temporal or perpendicular spatial baselines.
For this reason, Chen et al. [31] only interpolated 186 out
of 300 Envisat interferograms based on a maximum temporal
and perpendicular spatial baselines of 600 days and 1000-m
threshold. They further excluded 51 interferograms that
contain visible interpolation artifacts from the InSAR
time series analysis. Because none of the remaining
135 interferograms was generated using SLC scenes acquired

Fig. 8. (a) InSAR phase measurements of the original multilooked interfer-
ogram (100-m pixel spacing) over a coastal region outlined in red in Fig. 7.
(b) InSAR phase measurements of the same interferogram with additional
ten looks in both the dimensions (1000 m pixel spacing). (c) Interpolated
InSAR phase measurements based on phase similarity PS identification.
(d) Interpolated InSAR phase measurements based on MLE PS identification.
The phase similarity algorithm results in fewer discontinuous artifacts in the
reconstructed InSAR phase than the MLE algorithm.

on January 29, 2007 or January 14, 2008, there were
two missing estimates in the InSAR-derived head time
series.

In this study, we used the phase similarity algorithm to
select PS pixels. This algorithm was designed to exclude the
MLE false positive PS pixels without visual inspection and
manual intervention. For example, Fig. 9(a) and (b) shows
an Envisat interferogram (November 20, 2006–September 15,
2008) over U.S. Route 285, a highway across the SLV.
The MLE algorithm selected these highway pixels as PS
pixels, because their phases are stable over time. However,
there are visible phase differences between these highway PS
pixels and barren land PS pixels, which are mainly due to
scattering property variations rather than actual deformation
signals [Fig. 9(e)]. These highway pixels are considered as
false positives, because they can lead to interpolation artifacts
and phase unwrapping errors [Fig. 9(f)]. These artifacts are
not observed in the interferograms reconstructed by the phase
similarity algorithm [Fig.9 (c) and (d)]. The superiority of
the phase similarity algorithm made it possible to repair 87
(∼65% more) interferograms that were previously excluded
in [31]. For example, Fig. 10(a) shows a severely decorrelated
Envisat interferogram (November 20, 2006–March 24, 2008)
over SLV. The phase unwrapping error of the MLE results is
5932.0 rad [Fig. 10(d)], and the interferogram was not used in
the previous study. In contrast, the phase unwrapping error of
the phase similarity results is ten times smaller (511.1 rad), and
the reconstructed interferogram meets the quality requirement
for time series analysis.

To further validate that our algorithm produces high-quality
interferograms, we estimated the seasonal deformation signals
by averaging the interferograms that span the groundwater
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Fig. 9. (a) Envisat interferogram (November 20, 2006–September 15, 2008)
over the SLV, Colorado. InSAR amplitude measurements are overlaid with
InSAR phase measurements. The bright line in the white box corresponds to
U.S. Route 285, a highway across the state of Colorado. (b) InSAR phase
measurements of the interferogram shown in (a) without the amplitude layer.
(c) PS pixels (colored by their InSAR phases) identified by the phase similarity
PS selection algorithm. (d) Interpolated interferogram using PS pixels shown
in (c). (e) PS pixels (colored by their InSAR phases) identified by the MLE
algorithm with SCR >1.5. False positive pixels along U.S. Route 285 are
circled in red. InSAR phase values at these highway pixels differ from nearby
PS pixels in natural terrains by ∼ π rad. These phase differences are due to the
differences in scattering mechanisms between concrete and natural surfaces
rather than surface deformation. (f) Interpolated interferogram using PS pixels
shown in (e). False positive PS pixels along US. Route 285 caused phase
artifacts as circled in red.

pumping and recharge seasons (listed in Table I). The resulting
seasonal subsidence and uplift maps [Fig. 12(a) and (b)]
are consistent with the previous study. In regions where the
seasonal deformation signal is greater than 1 cm, the Root-
Mean-Square (RMS) differences between the InSAR head
time series and the well head measurements range from
0.61 to 0.92 m (Fig. 12), which is comparable to [31]. The
additional 87 repaired interferograms allowed us to recover
deformation signals at two missing SAR dates. Many of these
interferograms have long temporal baselines and thus larger
long-term deformation signals, which are key for constraining
the long-term deformation rate. For the case of SLV, the
improved InSAR-estimated head time series suggest that head

Fig. 10. (a) Envisat interferogram (November 20, 2006–March 24, 2008)
over the SLV, Colorado. The pixel size of this multilooked interferogram is
90 m. The area in the red box corresponds to highly decorrelated agricultural
fields with low PS density. (b) Spatial phase correlation is improved in the
interferogram with additional ten looks (900-m pixel spacing), but InSAR
phases are still noisy over low PS density areas. (c) Interpolated InSAR
phase based on the PS pixels identified by the phase similarity PS selection
algorithm, which are coherent within the red box. (d) Interpolated InSAR
phase based on MLE PS identification (with SCR >3), which shows visible
phase artifacts.

Fig. 11. Average seasonal (a) subsidence and (b) uplift due to groundwater
pumping and recharge over the SLV between November 2006 and July 2010.
Yellow circles mark the locations of eight confined aquifer wells with either
seasonal subsidence or uplift greater than 1 cm.

levels were stable and little long-term water storage loss
occurred over the study period. These results are especially
important for the management of groundwater in the SLV,
where the Confined Aquifer Rules decision requires that the
head in confined aquifers be maintained within the range of
levels measured between 1978 and 2000 [45].

C. InSAR Deformation Results Over the Greater Houston
Area

Fig. 13(a) and (b) shows the average InSAR LOS defor-
mation velocity estimates (February 2017 to February 2020)
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Fig. 12. Hydraulic head time series between November 2006 and July 2010 at eight confined aquifer wells shown in Fig. 11 as derived from InSAR (red and
green) and in situ data (blue). The two previous missing dates (January 29, 2007 and January 14, 2008) [31] are highlighted in green. We were able to recover
these two time samples by repairing 87 decorrelated interferograms that were excluded in the previous study. Here, RMS represents the root-mean-square
difference between the InSAR head estimates and well head measurements. The RMS differences for ALA6, ALA7, and ALA8 were not calculated because
there are not enough well samples to perform interpolation.

TABLE I

INTERFEROGRAMS USED FOR ESTIMATING AVERAGE

SEASONAL DEFORMATION

over the high PS density area (>50%) as derived from the
original and PS-improved interferograms. Overall, the two
deformation maps show consistent InSAR deformation pat-
terns. Using 44 GPS time series as ground truth, the root-
mean-square error (RMSE) of the InSAR LOS deformation
rate estimates is 0.15 and 0.13 cm/yr before and after PS
processing, respectively [Fig. 14(a)]. Because there are 70.7%
PS pixels in this region on average, phase decorrelation
artifacts and unwrapping errors are minimal. It is not necessary
to perform PS analysis in this case, given that the two solutions
were derived from two similar sets of high-quality pixels.

In contrast, the average InSAR LOS deformation velocity
map derived from the PS-improved interferograms reveals
widespread subsidence patterns over the low PS density area
(<50%) that are otherwise undetectable [Fig. 13(c) and (d)].
For example, the subsidence patterns (up to 0.5 cm/yr) within
a region outlined in red are only present in the PS-improved
solution [Fig. 13(e) and (f)]. Because the phase vector of
a decorrelated pixel is random, fitting a linear deformation
model to decorrelated InSAR observations tends to yield a
near-zero deformation rate estimate when the vector size is

sufficiently large. This means that decorrelation noise can lead
to a systematic underestimation of surface deformation rate.
As shown in Fig. 14(b), while a majority of GPS stations
suggest that LOS deformation of a few millimeters per year is
present, decorrelated InSAR observations incorrectly indicate
that LOS deformation rates at these locations are near zero.
Our PS processing algorithm only uses high-quality InSAR
measurements with minimal decorrelation noise, and thus can
reconstruct the true surface deformation rate without this
systematic bias. In the Houston case, the systematic under-
estimation is on the order of a few millimeters per year and
relatively small. This is because coastal processes along the
Gulf Coast typically only lead to millimeter-level deformation
signals. We emphasize that it is important to capture these
subtle deformation signals to evaluate future flooding risks
along coastal regions, because the current projected sea-level
rise estimates are in the order of a few millimeters per year
as well [46]. In case that a large deformation signal (e.g.,
10 cm/yr) is present, decorrelated InSAR observations still
tend to yield a near-zero deformation rate estimate. Therefore,
the magnitude of the systematic underestimation is on the
same order as the signal of interest over severely decorrelated
regions. We conclude that it is critical to use PS techniques
to select high-quality InSAR measurements for time series
analysis over areas with low or very low PS density.

V. DISCUSSIONS

A. Interferogram-Specific PS Selection

One important design of our algorithm is that a pixel can
be marked as a PS pixel in one interferogram, while the same
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Fig. 13. (a) and (b) Average Sentinel-1 LOS deformation velocity map (between February 2017 and February 2020) over the high PS density area (>50%)
as derived from the original and PS-improved interferograms. Circles represent the locations of 44 independent GPS validation stations. The GPS stations are
color-coded to show the absolute differences between the InSAR- and GPS-derived LOS deformation rates. White circles indicate differences within 0.2 cm/yr.
(c) and (d) Average Sentinel-1 LOS deformation velocity map (between February 2017 and February 2020) over the low PS density area (<50%) as derived
from the original and PS-improved interferograms. Triangles represent the locations of 49 GPS stations, which are color-coded based on the same rule as in
(a) and (b). Red boxes outline the regions where the original and PS-improved deformation maps exhibit substantial differences. The red boxes on the bottom
right corner of (c) and (d) were magnified in (e) and (f), respectively.

Fig. 14. Scatter plots of colocated GPS and InSAR LOS deformation rate
over (a) high PS density area (circles) and (b) low PS density area (triangles)
shown in Fig. 13. Circles and triangles are color-coded to show the absolute
differences (�v) between the InSAR- and GPS-derived LOS deformation
rates.

pixel can be marked as a non-PS in another interferogram.
This is a reasonable design, because: 1) our goal is to select
as many high-quality InSAR phase measurements as possible
for surface deformation time series analysis and 2) the quality
of SAR images and their corresponding interferograms can
vary significantly. As described in Section II-A, given K SLC
images S1, . . . , Sk , we use each of them as the reference

image and select K different PS sets �1, . . . , �K . If we
form an interferogram using Sk and Sl , the quality of this
interferogram is determined by the noise level of Sk and
Sl , and not the noise level of the remaining K − 2 SAR
images. Based on this fact, we use the intersection of �k

and �l (�k ∩ �l) as the valid PS set for this interferogram.
As an example, Fig. 15(a)–(d) shows the identified PS pixels
for two Envisat interferograms over the SLV. The number
of detected PS pixels in the interferogram April 28, 2008–
June 02, 2008 is approximately three times more than in the
interferogram January 29, 2007–April 28, 2008. As shown in
Fig. 15(e)–(j), the PS set size differences are mainly due to
the relatively high phase decorrelation noise in the SAR scene
January 29, 2007. In contrast, previous PS algorithms [15],
[20], [21] usually select a single PS set based on an optimized
set of common reference interferograms that maximizes PS
detections. This can lead to substantially higher false positive
rates for decorrelated interferograms and larger uncertainties in
surface deformation estimates. We conclude that it is necessary
to select a unique PS set for each interferogram in low PS
density nature terrains to keep both the false positive and false
negative detection rates low.

B. Choice of Phase Similarity Thresholds

In our algorithm, we use a median phase similarity threshold
smed,thr to remove false positive PS candidates and a probability
threshold α to determine the maximum phase similarity thresh-
old smax,thr and recover false negative PS pixels. In this section,
we demonstrate how the choices of smed,thr and α affect the
PS selection results using 92 Sentinel-1 interferograms formed



WANG AND CHEN: ACCURATE PS IDENTIFICATION BASED ON PHASE SIMILARITY 5118513

TABLE II

NUMBER OF SELECTED PS PIXELS AS A FUNCTION OF smed,thr

Fig. 15. Two Envisat interferograms (a) April 28, 2008–June 02, 2008
(b) January 29, 2007–April 28, 2008 over an agricultural area in the SLV,
Colorado. (c) 48 065 identified PS pixels for the interferogram in panel (a).
(d) 16 888 identified PS pixels for the interferogram in panel (b). (e), (g), and
(i) Preliminary PS candidate pixels for three SAR acquisitions April 28, 2008,
June 02, 2008, and January 29, 2007. False positive pixels detected by the
phase similarity algorithm are shown in red. (f), (h), and (j) Final selected PS
pixels for the same three SAR acquisitions. False negative PS pixels detected
by the phase similarity algorithm are shown in green. Here, the PS set of an
interferogram is defined as the intersection of PS sets of two corresponding
SAR scenes.

with a common reference Sentinel-1 SAR image acquired on
January 03, 2018 over the Houston area.

We first fixed α to 1% and performed PS selection using dif-
ferent smed,thr ranging from 0 to 0.5 with an increment of 0.1.

Fig. 16. (a) Phase unwrapping errors as a function of the median phase
similarity threshold smed,thr . (b) Phase unwrapping errors as a function of the
probability threshold α. The box extends from the first quartile to the third
quartile of the phase unwrapping errors, with a red line showing the median.
The whiskers extend from the box by 1.5 times the range of the interquartile
range. Diamonds show the flier points that are past the end of the whiskers.
Here, the analysis is based on the phase unwrapping errors of 92 interfero-
grams formed with respect to the Sentinel-1 scene acquired on January 03,
2018 over the Greater Houston area.

Table II shows the numbers of detected false positive, false
negative, and final PS pixels as a function of smed,thr . While
the number of false positive PS pixels increases as smed,thr

increases, the total number of selected PS pixels does not
vary much. This indicates that using a high smed,thr caused
an excessive removal of false positive PS pixels, and these
removed PS pixels were recovered during the identification
of false negative PS pixels. By excluding these pixels that
were counted as both false positives and false negatives,
we computed a set of net false positive PS pixels. The number
of net false positive PS pixels increases from 125 to 539 as
smed,thr increases from 0 to 0.3, and remains stable as we
further increase smed,thr (Table II). Therefore, a median phase
similarity threshold greater or equal to 0.3 is necessary for
removing false positive PS pixels in this case. To further
evaluate the quality of PS selection as a function of smed,thr ,
we used the PS set corresponding to smed,thr = 0 to interpolate
all the 92 common reference interferograms and calculated
their unwrapping errors. We then repeated the same inter-
polation and calculation using the PS sets corresponding to
smed,thr equal 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. We found
that the distribution of unwrapping errors is very similar for
different smed,thr [Fig. 16(a)]. The PS selection quality is not
sensitive to smed,thr due to the small number of false positive
PS pixels in the preliminary PS candidate set. We finally set
smed,thr = 0.3 in our studies because it is large enough to
remove false positive PS pixels and small enough to limit the
excessive removal of PS candidates.
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TABLE III

NUMBER OF SELECTED PS PIXELS AS A FUNCTION OF α

Next, we fixed the median phase similarity threshold smed,thr

to 0.3 and selected PS pixels using different probability
thresholds α. The corresponding maximum phase similarity
threshold smax,thr and the number of selected PS pixels are
summarized in Table III. Similar to the test on the median
phase similarity threshold, we used the PS sets calculated
from different probability thresholds to interpolate the 92 com-
mon reference interferograms and calculated their unwrap-
ping errors [Fig. 16(b)]. The median of phase unwrapping
errors decreases by 84% from 23104.9 to 3674.3 rad as the
probability threshold α changes from 10% to 1%. A further
decrease in α only slightly mitigates the phase unwrapping
errors but substantially reduces the number of detected PS
pixels (Table III). As a result, we chose 1% as the probability
threshold in our test cases.

While the thresholds smed,thr and α were selected based
on the analysis of 92 common reference Sentinel-1 interfer-
ograms, we were able to use the same threshold values to
process the remaining C-band Sentinel-1 Houston interfero-
grams and C-band Envisat SLV interferograms and achieve
similar performance. We found that it is not necessary to adjust
these thresholds if sufficient PS pixels were identified. In the
case that additional PS pixels are needed to reconstruct the
spatial coherent phase patterns, a similar analysis as described
in this section can be performed to determine the optimized
thresholds.

VI. CONCLUSION

In this study, we developed a new PS identification algo-
rithm based on the phase similarity between nearby radar
pixels. Our algorithm is based on the assumption that the spa-
tially coherent phase terms (e.g., deformation and atmospheric
phases) vary smoothly and slowly in space. In this scenario,
the spatially incoherent decorrelation noise is the major factor
that reduces the phase similarity between nearby radar pixels.
While this assumption is valid in most InSAR case studies,
deformation or tropospheric noise signatures that vary rapidly
in space may present in some interferograms. This can also
lead to a phase similarity reduction between nearby radar
pixels, and thus increase the false negative PS identification
rate. In addition, when the PS density is too low to adequately
sample the high-frequency tropospheric noise or deformation
signal signatures, PS interpolation may suffer from spatial
aliasing artifacts. Future work will focus on improving the
robustness of both PS selection and phase interpolation in
the presence of spatially coherent phase components that vary
rapidly in space.
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