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Abstract—The Earth’s surface is continually changing, and
identifying changes plays an important role in urban planning
and sustainability. Although change detection techniques have
been successfully developed for many years, these techniques
are still limited to experts and facilitators in related fields.
In order to provide every user with flexible access to change
information and help them better understand land-cover changes,
we introduce a novel task: change detection-based visual question
answering (CDVQA) on multitemporal aerial images. In par-
ticular, multitemporal images can be queried to obtain high-
level change-based information according to content changes
between two input images. We first build a CDVQA dataset,
including multitemporal image—question—answer triplets using an
automatic question-answer generation method. Then, a baseline
CDVQA framework is devised in this work, and it contains four
parts: multitemporal feature encoding, multitemporal fusion,
multimodal fusion, and answer prediction. In addition, we also
introduce a change enhancing module to multitemporal fea-
ture encoding, aiming at incorporating more change-related
information. Finally, the effects of different backbones and
multitemporal fusion strategies are studied on the performance
of CDVQA task. The experimental results provide useful insights
for developing better CDVQA models, which are important for
future research on this task. The dataset will be available at
https://github.com/YZH Jessica/CDVQA.

Index Terms— Change detection, deep learning, multitemporal
aerial images, visual question answering (VQA).

I. INTRODUCTION

HE Earth’s surface is continually changing by man-
made and natural influences. These changes are closely
involved in human and social development and also guide
urban planning and sustainability [1]. Change detection,
aiming at detecting differences of the same region at dif-
ferent times, has become a research priority in recent
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decades [2], [3], [4]. Timely and effective change information
can be used for many practical applications, such as envi-
ronmental management [5], [6], [7], natural disasters mon-
itoring [8], [9], urban land use [10], [11], and agriculture
production [12].

Nowadays, change detection technology has been devel-
oped significantly, and there are various algorithms with
great performance improvement for remote sensing data
[13], [14], [15]. Change detection methods can be divided
into two main categories, depending on whether or not the
types of changes are detected. One is binary change detection
that only detects changed regions but ignores the type of
changes, e.g., the object-oriented key point vector distance
for detecting binary land-cover changes [16] and the end-to-
end 2-D convolutional neural network (CNN) for hyperspectral
image change detection [17]. Change maps obtained by such
methods are visualized by binary values to depict change
information at the pixel level. The other is semantic change
detection, for instance, using an asymmetric Siamese network
for identifying changes via feature pairs [18] and reasoning
bitemporal semantic correlations [19]. These methods not only
detect changed regions but also identify change types.

Although change detection has great application value, the
specialized nature of this task makes change information
limited to researchers. It is still difficult for end users to
access and understand much of important change information.
For instance, ordinary users are interested in a certain change
type in a certain region, but it is inconvenient and ineffective
for them to find it on change maps in practical applications.
Considering this problem, efficient and effective change infor-
mation interaction with end users becomes important. In this
context, natural language processing (NLP) enables computers
to understand the text in almost the same way as humans. It is
user-friendly and can greatly improve the interactivity between
image analysis systems and end users. Therefore, in order
to alleviate the interaction issue, the integration of computer
vision and NLP [20] has gradually become a hot research topic
in the machine learning community. In particular, tasks, such
as visual description generation [21], visual storytelling [22],
visual question answering (VQA) [23], [24], and visual dia-
log [25], have been fully and successfully conducted in
computer vision. Similarly, tasks of integrating remote sensing
imagery and NLP, such as image captioning and VQA, have
also become an active research topic in the field of remote
sensing [26], [27]. Captioning for remote sensing images was
first proposed in [28], and Lu et al. [29] further explored
captioning methods using both handcrafted and convolutional
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What does the sign say? How much of the area has changed?
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Natural Image

What color is the hydrant? Have the areas of non-vegetated ground surface decreased?

Fig. 1.  Examples of questions for natural imagery, aerial imagery, and
multitemporal aerial images in VQA tasks.

features and proposed a new dataset. Recently, a multilayer
aggregated Transformer was utilized to extract information for
caption generation [30]. Regarding VQA for remote sensing
data (RSVQA), Lobry et al. [31] first introduced this task,
built two datasets, and used a hybrid CNN-recurrent neural
network (RNN) model to extract features, and Yuan et al. [32]
proposed a self-paced curriculum learning-based model trained
from easy to hard questions gradually.

Compared to natural images, aerial images are more spe-
cialized due to the top-view perspective and complicated back-
ground. As shown in Fig. 1, answers to questions about natural
images [23] are more obvious than answers to questions about
aerial images [31] in many cases in VQA tasks. Besides,
Fig. 1 shows that answers to questions about the comparison
of multitemporal aerial images require careful observation
and even calculation, which is unfriendly to ordinary users.
Though VQA for natural images has been studied for many
years and VQA for remote sensing data has also gradually
become a research focus, VQA for change detection based
on multitemporal images is underexplored. Considering the
significance of change detection task and its values in practical
applications, it is vital to investigate how to improve the
friendliness and accessibility of change detection systems to
end users. Hence, there is also a greater need to develop end
user accessible VQA algorithms for multitemporal remotely
sensed data.

In this article, we introduce the task of change detection-
based visual question answering (CDVQA) on multitemporal
aerial images. Specifically, given two aerial images captured
at different times and a natural language question about
them, the CDVQA task aims to provide an answer in natural
language by comparing the content of two images. To this
end, we create a CDVQA dataset by an automatic generation
method, which contains 2968 pairs of multitemporal images
and more than 122000 question—answer pairs. The questions
are carefully designed to cover various types of changes.
Moreover, we propose a baseline method for the CDVQA task,
as shown in Fig. 2. To sum up, the main contributions of this
work are summarized as follows.

1) We design an automatic question—answer generation
method and create a new CDVQA dataset. Specifically,
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the proposed dataset contains 2968 pairs of aerial images
and more than 122000 corresponding question—answer
pairs.

A baseline framework for CDVQA task is proposed, and
it includes four parts: multitemporal feature encoding,
multitemporal fusion, multimodal fusion, and answer
prediction. In addition, a change enhancing module is
proposed to incorporate more change-related informa-
tion into visual features.

Extensive experiments have been conducted to study
the effects of different network parts on the CDVQA
performance. In particular, different backbones and mul-
titemporal fusion strategies are investigated. The results
provide useful insights on the CDVQA task.

The rest of this article is organized as follows. The detailed
information for the construction of CDVQA dataset is intro-
duced in Section II. Section III presents the methodology.
Experimental results and discussion are shown in Section IV.
Finally, this article is concluded in Section V.

2)

3)

II. DATASET

Different from the traditional VQA task, CDVQA involves
multitemporal aerial images and requires time series analysis.
Taking this into account, we choose the existing semantic
change detection dataset SECOND [18] as the basic data
to automatically generate a CDVQA dataset. The SECOND
dataset collects bitemporal high-resolution optical (RGB)
images by several different aerial platforms and sensors, with
spatial resolution varying from 0.5 to 3 m [19]. Geographical
positions include several cities in China, such as Shanghai,
Hangzhou, and Chengdu. It has 4662 pairs of aerial images
with the size of 512 x 512 pixels, and 2968 pairs are publicly
available. Each pair consists of a preevent aerial image and
a postevent image of the same location at different times.
Besides, each pair has two labeled semantic change maps at
the pixel level, before and after the change. In each semantic
change map, nonchange region and six land-cover classes
related to changes, including nonvegetated ground (NVG)
surface, buildings, playgrounds, water, low vegetation, and
trees, are annotated. The authors of the SECOND dataset
declare in their paper that semantic change maps in this dataset
are labeled by a team of experts in Earth vision applications
and high accuracy is guaranteed. Therefore, the generated
question—answer pairs in this work are highly relevant to
the content of image pairs. Overall, this dataset has critical
semantic change information of main land-cover classes at
the pixel level, which provides sufficient information for
generating question—answer pairs for the CDVQA task. In this
case, we use the 2968 openly available pairs as our basic data
for further dataset construction.

A. Multitemporal Image—Question—-Answer
Triplets Construction

Formally, in each pair of multitemporal aerial images, let
x;, € RV be the image at time 7; and x,, € R3>*H>W
be the image at time T». s, € R¥*" and 5, € RH*W
denote semantic change maps of x,, and x,,, respectively, and
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Fig. 2. Main architecture of the proposed CDVQA framework. It contains four main parts: multitemporal feature encoding, multitemporal fusion, multimodal

fusion, and answer prediction.

each pixel in s, and s,, indicates one semantic class, ranging
from O to 6. Semantic change maps show changed regions
and provide their change types at the pixel level. Background
pixels mean nonchange regions, which are the same in both s,
and s,, for an image pair. Foreground pixels indicate changed
regions of different land-cover types. Specifically, the value
of the pixel in s, indicates the semantic class at 77 and the
value of the pixel in s,, indicates the semantic class at T>.
The main advantage of introducing semantic change maps is
that we can access more details about changes, i.e., we are
able to know not only where changes happen but also what
types they are. In this work, our motivation is to use natural
language as queries to obtain these two types of information.
Given semantic change information of s,, and s,,, the following
five types of questions are designed in the proposed dataset:
change or not, increase/decrease or not, change to what,
largest/smallest change, and change ratio. In our case, the
smallest/largest change refers to the land-cover class that
has the least/most pixels changing. These questions are of
great interest to end users in real-world applications. In what
follows, a detailed description of the automatic generation
of multitemporal image—question—answer triplets for different
question types is given.
1) Change or Not:

a) Change or Not for an Image Pair: The most
fundamental yet important information in change
detection is about whether a certain land cover
has changed. Note that a change occurs regardless
of whether the area of a land cover increases
or decreases. For each pair of aerial images, the
set of changed land-cover classes £, and L,, are
extracted from s, and s,, respectively. Let /; be a
land-cover class, [; € L, orl; € L,,, indicating that
the corresponding land-cover type has changed.
In this case, the answer should be yes. On the
contrary, if /; ¢ £, and[; ¢ L,,, it indicates that the

corresponding land cover does not change. Then,
the answer should be no. All land-cover types
are traversed to generate multiple question—answer
pairs.

b) Change or Not for a Single Image: For change
detection tasks, sometimes one want to focus
not only on whether a certain land-cover class
has changed but also on whether changes have
occurred in the preevent image or postevent image.
Therefore, we extract semantic change information
solely from the first or second image to generate
relevant questions and answers. Please note that in
this work, the first image in the image pair refers
to the preevent/prechange, and the second image
means the postevent/postchange. In particular, for
the land-cover class /;, if [; € £, it indicates that
the corresponding land cover has changed on the
preevent image. The answer under this situation
should be yes. Similarly, if /; € £,,, it means that
the area of /; has changed on the postevent image.
The answer will also be yes. In other cases, i.e.,
li ¢ Ly and [; ¢ L,,, the corresponding answer
to the question about whether it has changed on a
single image should be no.

2) Increase/Decrease or Not: Change detection in real-

world applications often requires more specific change
information, for instance, whether the area of a land
cover has increased or decreased. In this context,
we denqte the area of /; in s, as Aﬁl and the area in
Si, as AL For increasing-related question—answer pairs,
if A;Z — A;] > 0, the area of [; increases. Then, the
answer to this question should be yes. For decreasing-
related pairs, the generation process 1is similar.
If A} — A <0, the area of /; decreases. Note that the
area of /; is defined as all pixels with label /; in the whole
imagery.
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3) Change to What: This type of question involves more
detailed information about changes, i.e., what the land
cover at time 77 mainly becomes at time 75. Such ques-
tions require analyzing the same region in multitemporal
images to obtain the change of land-cover types in this
region. Although one class may change to more than one
class over time, it is more meaningful to focus on the
major change. In particular, for a semantic class, we first
find its pixel indices in s,,. Then, the indices are used to
select the corresponding pixels in §,,. Finally, we count
the number of the selected pixels for each land-cover
type and choose the type with the largest number as the
major change. In this case, the answer to the question
what the regions of /; at time 77 mainly change to should
be the major change type.

4) Largest/Smallest Change:

a) Largest/Smallest Change for an Image Pair: Such
questions focus on the largest or smallest changes
in multitemporal images. For each land-cover type,
all changes in the two images should be considered.
Therefore, the changed area for the land-cover
class [; is Aﬁl +A§2. By traversing all change types,
the maximum and minimum changed regions can
be obtained, and the corresponding land-cover
classes are answers to this type of question. In this
dataset, the smallest change is which has the small-
est changed area, and the unchanged type is not
considered.

b) Largest/Smallest Change for a Single Image:
To extract more detailed information about
changes, we also analyze the maximum and min-
imum changed regions for the preevent and
postevent images, respectively. The maximum and
minimum changed regions at time 77 can be easily
obtained by arg max;, (Aﬁl) and arg miny; (Aﬁl), and
the selected land cover /; is the corresponding
answer. For time 7T, the generation process is the
same. This type of question requires a model to
not only identify land-cover changes in bitemporal
images but also understand which image (7} or 73)
is queried by users. In this context, the question
“What is the smallest change in the first image?” is
actually asking about the land cover of the smallest
changed region in the image captured at an earlier
date.

5) Change Ratio:

a) Change Ratio for All Land Covers: The percent-
ages of changed regions are also very important
information in practical applications. The change
ratio can be calculated via dividing the changed
area by the total area of the whole map and the
same for nonchange ratio. Since proportions are
continuous numbers, they cannot be compatible
with the classification task. Thus, we discretize
ratios into bins. To be more specific, numer-
ical answers are quantized into 11 categories:
0%, 0%—10%, 10%—-20%, 20%-30%, 30%—40%,
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40%—-50%, 50%—-60%, 60%—70%, 70%—80%,
80%—-90%, and 90%—-100%. Notice that in this con-
text, A%-B% means (A, B]. In this way, we calcu-
late the change percentage for each image pair and
gain answers to the change ratio-related questions.
Change Ratio for Each Land Cover: In addition
to the ratio of all changed regions, we also want
to analyze the change ratio for each land-cover
class on the preevent or postevent image. Similarly,
numerical answers are also quantized as above.
For each land-cover class /;, we first calculate its
changed regions Aﬁl and Aiz at T; and 7». Then,
the change ratio for /; on the preevent image is
calculated via dividing Aﬁl by the total area of the
whole image. In the same way, change ratios for
different land covers on the postevent image can
be obtained.

b)

In practice, we have defined multiple synonymous templates
for each type of questions. During the question—answer gen-
eration process, for each image pair, question—answer pairs
are generated separately for each question type. As more than
one template is designed for each question type, we randomly
select one of them to generate a sample. To balance the number
of samples in each question type, we set different probabilities
for generating samples of different question types. Specifically,
we set a low probability value for the “yes/no” type and a high
probability value for other question types. For each image pair,
we generate 16 samples in average.

B. Question and Answer Distributions

As 2968 pairs of images are publicly available, we use these
images as the basic data to generate the CDVQA dataset.
The whole dataset is split into the training set, validation set,
and test set. To better evaluate the robustness and reliability
of CDVQA models, we generate two test sets with different
distributions of answers. The class distributions of answers
in the generated CDVQA dataset are shown in Fig. 3. From
this figure, we can see that the training set, validation set,
and test set 1 share the same class distribution. The answer
distributions of test sets 1 and 2 are different.

As we can see from Fig. 3, answer types in all subsets
obey the long-tail distribution. Concretely, answer class no
dominates answer distributions in all subsets. For example,
in the training set, samples with answer no occupy 30.9% of
all instances. In test set 1, answers no account for 31.15%
of total answers. In contrast, answers 50%—-60% only occupy
0.22% of all answers. The reason for the class imbalance is
that there are more questions asking for yes or no. The answers
to questions such as change or not and increase/decrease or
not are yes or no.

The question type distributions of all four subsets are
presented in Fig. 4. For simplicity, change ratio for each
land-cover is denoted as class change ratio. We can see that
distributions of question types are also long-tailed. In addition,
question type change or not has the highest frequencies in all
subsets. This is the reason why the two most frequent answer
types are yes and no. Similar to answer distributions, the
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distributions of question types for the training set, validation
set, and test set 1 are the same, while they are different from
the distribution of test set 2. Specifically, the proportions of
questions about “change to what,” “change ratio,” and “class
change ratio” increase in test set 2 compared to test set I.
Since questions of these types are more difficult, test set 2 is
more difficult than test set 1. Visualization examples of the
generated CDVQA dataset are shown in Fig. 5.

III. METHODOLOGY

In this work, the CDVQA task is deemed as a classifi-
cation task. Note that semantic change maps are only used
to generate question—answer pairs in the dataset preparation
phase, and in CDVQA, only image pairs, questions, and the
corresponding answers are used for training and evaluating
a model. As shown in Fig. 2, our CDVQA model takes as
input two aerial images and a question. The output of the
model is an answer predicted by the network. In particular,
the whole network architecture consists of four parts. The first
component is a multitemporal visual feature learning module,
which is used to encode the input images into deep features.
The second part, named multitemporal fusion, is responsible
for fusing the features of the two images. The third one is
a multimodal fusion module that aims at fusing the image
and question features. The fourth is an answer prediction part,
which takes the fused multimodal feature as input to predict
the answer. In addition, for the CDVQA task, we design a
change enhancing module to encourage the model to focus on

2000 1000

Visualization of answer distributions of different subsets. From left to right: training set, validation set, test set 1, and test set 2.

changed pixels of the input images. The proposed modules
in our CDVQA framework will be described in detail in the
following.

A. Multitemporal Encoder

Different from tasks such as image classification, object
detection, and semantic segmentation, change analysis
involves two input images of the same location but at different
times. Similarly, a CDVQA system takes as input multitempo-
ral inputs. In order to identify changes between two images,
temporal differences should be extracted and analyzed.

In respect of multiple inputs, Siamese networks are com-
monly used in many vision tasks. We denote the feature of
the image of time 7} as F; = fi(x,). Likewise, f>(-) is used
to obtain the encoded representation for the image of time 7.
For Siamese networks, we set the network architecture and
parameters of f; and f, to be the same.

In this work, we explore the effects of different encoder
networks on CDVQA. For visual feature extraction, CNNs are
usually used to learn feature representations, and ResNet [33]
is an important milestone in the development of CNN archi-
tectures. Thus, different scales of ResNets, e.g., ResNet-18,
ResNet-101, and ResNet-152, are employed as the multitem-
poral encoder of our CDVQA model, aiming at studying the
effects of different scales of CNNs on CDVQA.

Recently, Transformer architecture [34] has achieved excel-
lent performance on NLP tasks [35]. Designed for sequence
modeling tasks, Transformer has the significant advantage
of using attention to learn long-range dependencies in data.
Considering its great success in the language modeling
domain, it has also been applied to computer vision tasks,
to name a few, image classification [36], [37], object detec-
tion [38], and semantic segmentation [39]. In this work,
the Transformer-based encoder for multitemporal images is
also used.

B. Change Enhancing Module

Change detection is a fundamental task in remote sensing
and also the core of CDVQA task. To answer change-related
questions, a model needs to focus on changed regions and
further analyze semantic information. In a number of computer
vision tasks, self-attention mechanism [40], [41], [42] is used
to boost the performance by focusing on important parts of
data samples. However, there are two input images in our
case, where the self-attention mechanism is not applicable.
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Fig. 5. Visualization examples of the generated CDVQA dataset. Here, we show two data samples, and each one contains bitemporal images, questions, and
the corresponding answers. Best viewed in color and zoomed in.

Hence, in this work, we propose a change enhancing module
to enhance the CDVQA model in terms of the capability of
detecting changes.

We denote that the encoded deep features for the input
two images are F; € RNVXCXHxW apnd F, e RN*COxHxW
where N is the batch size, C is the number of channels,
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and H and W are the height and width of feature maps,
respectively. The conventional self-attention model [34] first
transforms the input feature into three independent features,
i.e., the query Q, key K, and value V. In contrast, for
the proposed change enhancing module, we treat the feature
representations F; and F, as the query and key, respectively,
and compute their similarity F, € RV*CXHxW a5 follows:

Fy =f3(F1) — fi(F2)| (1

where f,(-) and f;(-) are 1 x 1 convolutions for the purpose
of feature transformation. Next, a change enhancing map
M. € RV*HXW can be obtained by

M. =o(f.(Fy)) (2)

where f.(-) is a 1 x 1 convolution layer for predicting
the change enhancing map and o (-) is the ReLU activation
function. The map M. is used to encourage the model to
focus on regions where differences between F; and F, are
large. To this end, we scale M. with a parameter § and add
it with an identity matrix I. @ is a learnable parameter with
an initial value of 0 and is optimized during training in an
end-to-end manner. Then, we multiply the transformed M.
and two encoded features, respectively

Fcl = (I+0Mce)F1
Fc2 = (I +9Mce)F2 (3)

where F.; and F, are the final encoded features correspond-
ing to two input images. F.; and F ., will then be fused by the
multitemporal feature fusion module, which will be introduced
in Section III-C.

C. Multitemporal Fusion

After the feature encoding and change enhancing process-
ing, we need to fuse features of time 7} and time 7, to obtain
the final visual feature F,. For the fusion of multiple feature
maps, elementwise subtraction, multiplication, summation,
and concatenation are commonly used methods. Given two
feature maps F.; € RVXOXHXW and F, € RVXCXHXW the
aforementioned fusion methods can be formulated as

FDIZFcleFCZ

Fcl FC2
Fl)2:
Fcill, — 1 Felly
Fl)3 = FclAFCZ
Fl)4 = FCI@FCZ
FU5:FC1®FL’2 (4)

where © denotes the elementwise subtraction operation. Note
that we normalize the two features before the element-
wise subtraction operation for computing F,,. @& and ®
denote elementwise summation and multiplication operations,
respectively. — stands for the concatenation operation along
the channel dimension. To study the effects of different
fusion strategies, we compare and analyze their performance
in Section IV.
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D. Multimodal Fusion

Since CDVQA involves both visual features and language
representations, we need to fuse multimodal features. After the
multitemporal feature fusion, the final visual representation
F, € RVXCxXHXW can be obtained. Meanwhile, an RNN is
used to encode the question into feature vector V, € RV*L,
As the skip-thoughts model has been applied in many remote
sensing image-based NLP tasks [31], [43], we choose to
use the pretrained skip-thoughts model [44] for the language
feature extraction part. Specifically, skip-thought vectors are
modeled with an encoder—decoder architecture, and both are
constructed with RNNs. The encoder transforms the input
sentence into a vector, and two decoders are used to decode the
vector into the previous and the next sentence. In this work,
we use the encoder of skip-thoughts for generating language
embeddings.

Before fusing features of two modalities, we first transform
the visual feature F, into a feature vector F,; € R¥*L. Then,
the two feature vectors have the same size, and we can fuse
F,, and V, together. As how to fuse them is not the main
research content of this work, we simply merge them into a
multimodal feature by concatenation

F,=V, F, 5)

where F,, € RV*2L is the fused multimodal representation.

Finally, as the answer prediction is modeled as a classifica-
tion task in this work, the feature F,, is used to predict the
answer by passing through a classifier, i.e., two fully connected
layers. The answer is given by selecting the answer class
with the highest probability. The output dimension of the first
layer is 256 and the final output dimension of the classifier
is 19, as there are 19 answer types. Specifically, the possible
answers include no, yes, 0%—10%, 0, NVG surface, buildings,
low vegetation, 10%—20%, trees, 20%—-30%, water, 80%—90%,
30%-40%, 90%—100%, 70%—80%, 40%—50%, 60%—70%,
50%—-60%, and playgrounds (sorted by the number of
samples).

IV. EXPERIMENTS
A. Datasets

The CDVQA dataset is publicly available in 2968 image
pairs with the size of 512 x 512. Based on these image pairs,
there are more than 122000 question—answer pairs generated
in total. The training, validation, and test sets are split based
on image pairs captured at different geographical positions.
In particular, the training set contains 65967 question—answer
pairs, which are generated from 1600 (53.91%) image pairs.
There are 16441 question—answer pairs in the validation set,
which are produced based on 400 (13.48%) image pairs.
Besides, we use the left 968 (32.61%) image pairs to generate
two test sets with 39686 (test set 1) and 31036 (test set 2)
question—answer pairs for more comprehensive model evalua-
tion. Note that there is an overlap between the two test sets.

B. Implementation Details

The generated dataset for CDVQA follows the same format
as the work of RSVQA [31]. Regarding training parameters,
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TABLE I

NUMERICAL RESULTS OF USING DIFFERENT BACKBONE
NETWORKS ON TEST SET 1 OF CDVQA DATASET

Question Types ResNet-18  ResNet-101  ResNet-152  ViT-B16
change ratio 0.3455 0.3388 0.3476 0.3600
class change ratio 0.7200 0.7134 0.7115 0.7231
change or not 0.8379 0.8387 0.8374 0.8401
change to what 0.5710 0.5737 0.5770 0.5820
increase or not 0.6913 0.6902 0.6854 0.6952
decrease or not 0.7303 0.7243 0.7275 0.7185
smallest change 0.2627 0.2758 0.2734 0.2710
largest change 0.4603 0.4576 0.4669 0.4648
Average Accuracy 0.5773 0.5766 0.5783 0.5818
Overall Accuracy 0.6771 0.6763 0.6766 0.6800
TABLE I

NUMERICAL RESULTS OF USING DIFFERENT BACKBONE
NETWORKS ON TEST SET 2 OF CDVQA DATASET

Question Types ResNet-18 ~ ResNet-101 ~ ResNet-152  ViT-B16
change ratio 0.3444 0.3465 0.3588 0.3651
class change ratio 0.7131 0.7158 0.7142 0.7174
change or not 0.7818 0.8363 0.8403 0.8353
change to what 0.5316 0.5693 0.5705 0.5790
increase or not 0.7003 0.6880 0.7012 0.6847
decrease or not 0.7142 0.7331 0.7264 0.7303
smallest change 0.2000 0.2803 0.2568 0.2592
largest change 0.3793 0.4607 0.4637 0.4665
Average Accuracy 0.5456 0.5787 0.5790 0.5797
Overall Accuracy 0.6165 0.6333 0.6336 0.6341

the Adam optimizer is used with an initial learning rate
of le™*. For all ResNet-based models, the batch size is set
to 70, and the size of the input image is scaled to 256 x 256.
Since the used ViT [37] model requires the input size to be
384 x 384, we have to reduce the batch size to 32 considering
GPU memory limit. For all experiments, 50 epochs are used
to train models. We utilize accuracy as a measurement for
each question type. In addition, average accuracy and overall
accuracy are also reported.

C. Effects of Different Backbones

The backbone network of the visual encoder is an important
component. Therefore, we compare four different backbones:
three ResNets (ResNet-18, ResNet-101, and ResNet-152) and
a vision Transformer model ViT. In all experiments, we fuse
multitemporal visual features by feature concatenation for all
backbone networks.

The results on two different test sets are shown in
Tables I and II. From the results, we can see that compared
to ResNet-18 and ResNet-101, ResNet-152 does not show
a significant performance advantage. For example, on test
set 1, ResNet-18 and ResNet-152 deliver very close average
and overall accuracies. This indicates that merely improv-
ing the capability of backbone network for visual learn-
ing only yields a limited gain. However, when we change
the network architecture of the backbone from ResNet to
Transformer, the performance can be further improved. The
reason for this improvement is that the self-attention mecha-
nism of Transformer networks is beneficial for learning more
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Fig. 6.  Visualization of training losses. Four different backbone networks
are compared.
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Fig. 7. Visualization of validation losses. Four different backbone networks
are compared.

representative features. Note that the parameters of backbone
networks are fixed during the training stage. In Figs. 6 and 7,
we also visualize training and validation losses of models with
different backbones. It can be seen that the ViT backbone has
significantly lower losses than ResNet-based networks. Note
that we omit the first five epochs to better compare the final
convergence state.

From the results, we can see that different backbone net-
works have very little impact on the performance of our
framework. This is because visual feature learning may not
be the key to improving accuracy. Other parts of the model,
such as multitemporal fusion and change analysis part, may be
more critical for the performance improvement of the CDVQA
task.

D. Effects of Different Multitemporal Fusion Strategies

In this section, we quantitatively compare five com-
monly used feature fusion operations, namely, concatenation
(Concat), summation (Sum), subtraction (Sub), normalized
subtraction (NSub), and multiplication (Mul). The numerical
results on two test sets are presented in Tables III and IV.
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the second image?

What is the percentage of changed regions ?

What is the change ratio of trees in the post-
event image?

Label: 0%-10% Predicted: 0%-10%

Label: 10%-20% Predicted: 10%-20%

Label: 0%-10%

Predicted: 0%

Did the areas of buildings increase?

What type of change is the smallest in the pre-
event image?

What do the regions of non-vegetated ground
surface in the first image mainly changed to?

Label: No Predicted: No

Label: NVG surface Predicted: NVG surface

Label: Trees

Predicted: Buildings

Have the areas of low vegetation changed in
the second image?

What is the smallest change?

What type of change is the smallest in the pre-
event image?

Label: Yes Predicted: Yes

Label: Buildings

Predicted: Buildings

Label: Low vegetation | Predicted: NVG surface

Did the areas of trees change in the pre-
change image?

Has the areas of non-vegetated ground surface
changed in the second image?

Have the regions of buildings decreased?

Label: No Predicted: No

Label: Yes Predicted: Yes

Label: Yes

Predicted: No

Fig. 8.

are shown in blue and wrong answers are shown in red.

The results in these tables show that concatenation is the
best. The concatenation operation first concatenates two inputs
together, and then, several fully connected layers are used to
fuse these inputs by learnable weights. This makes it a more

flexible and general fusion strategy.

Visualization examples of CDVQA results. Each row presents three different questions and the same input image pair. Correctly predicted results

For change analysis tasks, intuitively, subtraction should be
the best fusion method, as it can better highlight changed
regions. However, it can be seen from the results that the
subtraction operation cannot outperform others. Considering

that the direct subtraction of two features may undermine their
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TABLE III
NUMERICAL RESULTS OF USING DIFFERENT FUSION
STRATEGIES ON TEST SET 1 OF CDVQA DATASET
Concat  Sub NSub Mul Sum
ResNet-101 . o o ® S
change ratio 0.3388 0.3182 0.3151 0.3047 0.3352
class change ratio  0.7134 0.7129 0.7130 0.7131 0.7167
change or not 0.8387 0.8249 0.8245 0.8271 0.8378
change to what 0.5737 0.5269 0.5543 0.5693 0.5690
increase or not 0.6902 0.6897 0.6919 0.6967 0.6891
decrease or not 0.7243 0.6983 0.7056 0.7020 0.7239
smallest change 0.2758 0.2778 0.2789 0.2799 0.2703
largest change 0.4576 0.4473 04411 04290 0.4476
Average Accuracy  0.5766 0.5620 0.5655 0.5652 0.5737
Overall Accuracy  0.6763 0.6631 0.6657 0.6665 0.6746
TABLE IV

NUMERICAL RESULTS OF USING DIFFERENT BACKBONE
NETWORKS ON TEST SET 2 OF CDVQA DATASET

: Concat  Sub NSub Mul Sum
ResNet-101 . o o ® o
change ratio 0.3465 0.3223 0.3243 0.3119 0.3409

class change ratio  0.7158 0.7097 0.7103 0.7104 0.7169
change or not 0.8363 0.8195 0.8228 0.8148 0.8347
change to what 0.5693 0.5275 0.5549 0.5396 0.5690
increase or not 0.6880 0.6986 0.7146 0.7036 0.6886
decrease or not 0.7331 0.7029 0.7046 0.7172  0.7423
smallest change 0.2803 0.2792 0.2796 0.2799 0.2679
largest change 0.4607 0.4442 0.4428 0.4290 0.4486
Average Accuracy  0.5787 0.5630 0.5692 0.5632 0.5761
Overall Accuracy  0.6333 0.6199 0.6244 0.6196 0.6313
TABLE V

ABLATION STUDY ON TEST SET 1 OF CDVQA DATASET
FOR RESNET-101 BACKBONE

Question Types w/o CEM w/ CEM
change ratio 0.3388 0.3854
class change ratio 0.7134 0.7071
change or not 0.8387 0.8292
change to what 0.5737 0.5804
increase or not 0.6902 0.7443
decrease or not 0.7243 0.7697
smallest change 0.2758 0.3127
largest change 0.4576 0.4777
Average Accuracy 0.5766 0.6008
Overall Accuracy 0.6763 0.6903

representability, we normalize two input features by using
{> normalization before the subtraction operation. Neverthe-
less, the normalized subtraction operation is still no better
than concatenation and summation. This indicates that directly
subtracting two inputs is not useful to CDVQA tasks, and a
specific change analysis module should be designed.

E. Effect of Change Enhancing Module

It is critical to obtain semantic change information from
multitemporal images. However, there are no pixelwise
ground-truth change labels available in this task. To incorpo-
rate change information into the model, we propose a change
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TABLE VI

ABLATION STUDY ON TEST SET 2 OF CDVQA
DATASET FOR RESNET-101 BACKBONE

Question Types w/o CEM w/ CEM
change ratio 0.3465 0.3904
class change ratio 0.7158 0.7714
change or not 0.8363 0.8123
change to what 0.5693 0.6511
increase or not 0.6880 0.7534
decrease or not 0.7331 0.7868
smallest change 0.2803 0.2431
largest change 0.4607 0.3766
Average Accuracy 0.5787 0.5982
Overall Accuracy 0.6333 0.6513
TABLE VII

EXPERIMENTAL RESULTS IN THE CROSS-DATASET TEST SETTING

Question Types Random init. Ours
change ratio 0.0442 0.0615
class change ratio 0.0362 0.0751
change or not 0.0730 0.2042
change to what 0.0722 0.0834
increase or not 0.0382 0.4713
decrease or not 0.0837 0.4659
smallest change 0.0434 0.1413
largest change 0.0724 0.1557
Average Accuracy 0.0601 0.1969
Overall Accuracy 0.0559 0.1560

True

70.t0 80
60.t0.70-
50.t0.60

80.t0.90
30040
90.t0.100-

Predicted

Fig. 9. Normalized confusion matrix for our CDVQA dataset on test set 1
(ResNet-152 is used as the backbone).

enhancing module to highlight changed regions in the input
images. To validate the effectiveness of the module, we con-
duct an ablation study, and numerical results are shown in
Tables V and VI. In the two tables, change enhancing module
is abbreviated as CEM for the sake of simplification. The
experimental results on both test sets indicate that the proposed
change enhancing module is beneficial to the CDVQA task.
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Did the areas of low vegetation

change in the post-change images? | |- -

Predicted: Yes
Label: Yes

Have the regions of playgrounds
changed in the second image?

Predicted: No

Label: No

Have the regions of buildings
changed in the first image?

. Predicted: Yes
Label: Yes
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Have the areas of non-vegetated
" ground surface changed in the pre-
"l change images?

s
T

Predicted: Yes
Label: Yes

What have the areas of buildings in the
pre-change image mainly changed to?

Predicted: NVG surface

Label: NVG surface

What is the change ratio of trees in the
post-event image?

_ | Predicted: 0-10
Label: 0

Fig. 10. Visualization examples of change attention maps. Best viewed in color.

In particular, from the results in Tables V and VI, it can be
seen that the proposed module can consistently improve both
the average accuracy and overall accuracy.

F. Cross-Dataset Evaluation

In order to explore the generalization ability of the model,
we construct another CDVQA dataset as an additional test set.
Specifically, we collect 138 image pairs of size 256 x 256
from the HTCD [45] dataset (only binary change maps are
available) and manually annotate semantic change maps. Then,
3303 question—answer pairs are generated and used for the
cross-dataset test setting. To show the effectiveness of the pro-
posed method, we compare the performance of a model trained
on the CDVQA dataset and another model with randomly
initialized weights. Table VII shows the numerical results.
We can see that the model trained on our CDVQA dataset
can be transferred to unseen scenarios, but its performance
is not satisfactory in this cross-dataset test setting. This is
mainly because there is a domain gap between the tests set
of CDVQA and this one. We see that much more research
efforts are needed in this direction.

G. Discussion

Regarding numerical results, generally, the average accuracy
is lower than 60%, and the overall accuracy is lower than 70%.
Some visualization examples of CDVQA results are presented
in Fig. 8. Both correctly predicted examples and failures are
displayed. From the experimental results, we can conclude
that CDVQA is a complex and challenging task. To correctly
answer different types of questions, a model first needs to learn
multimodal representations for the input images and questions.
Visual and language understanding is of great importance for
the model. Besides, CDVQA also requires the model to be able
to analyze semantic change information, i.e., the model needs
to not only locate changed areas but also identify land-cover
classes of changed regions to answer some complex questions.
Currently, the proposed baseline framework does not make
use of semantic change labels. Thus, its performance on
questions related to land-cover classes is not that satisfactory.
The change ratio for each land cover has higher accuracy than

the change ratio for all land covers. This is mainly because
the former has more training samples. We also visualize the
normalized confusion matrix in Fig. 9. Note that the confusion
matrix is normalized along the predicted label axis.

To better understand what the model has learned for making
decisions, we visualize attention maps of our model on some
examples in Fig. 10. It can be seen that the model learns
to focus on the related changed regions to predict answers.
From experimental results, we can conclude that more research
efforts are needed to reach a satisfactory performance on the
challenging CDVQA task. Specifically, more effective change
analysis-based visual learning methods should be investigated.
We also see that Transformer-based models have great poten-
tial for multitemporal and multimodal feature learning in
CDVQA tasks. In addition, self-supervised or unsupervised
change detection methods need to be studied. How to obtain
the semantic change information from multitemporal data in
an unsupervised manner is also an important research direction
in CDVQA tasks.

V. CONCLUSION

To provide ordinary end users with flexible access to change
information, we introduce a new task named CDVQA with
natural language as output. This task takes multitemporal
aerial images and a natural question as inputs to predict
the corresponding answer. To be specific, we create a new
dataset, which contains 2968 pairs of aerial images and more
than 122000 question—answer pairs. In addition, a baseline
CDVQA model is devised, and different components of mod-
els are evaluated on the generated dataset. The experimen-
tal results outline possible problems that are needed to be
addressed for the CDVQA task. This work also provides some
useful insights for developing better CDVQA models, which
are important for future research in this direction.
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