
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022 5630613

Change Detection Meets Visual Question Answering
Zhenghang Yuan, Student Member, IEEE, Lichao Mou , Zhitong Xiong, Member, IEEE,

and Xiao Xiang Zhu , Fellow, IEEE

Abstract— The Earth’s surface is continually changing, and1

identifying changes plays an important role in urban planning2

and sustainability. Although change detection techniques have3

been successfully developed for many years, these techniques4

are still limited to experts and facilitators in related fields.5

In order to provide every user with flexible access to change6

information and help them better understand land-cover changes,7

we introduce a novel task: change detection-based visual question8

answering (CDVQA) on multitemporal aerial images. In par-9

ticular, multitemporal images can be queried to obtain high-10

level change-based information according to content changes11

between two input images. We first build a CDVQA dataset,12

including multitemporal image–question–answer triplets using an13

automatic question–answer generation method. Then, a baseline14

CDVQA framework is devised in this work, and it contains four15

parts: multitemporal feature encoding, multitemporal fusion,16

multimodal fusion, and answer prediction. In addition, we also17

introduce a change enhancing module to multitemporal fea-18

ture encoding, aiming at incorporating more change-related19

information. Finally, the effects of different backbones and20

multitemporal fusion strategies are studied on the performance21

of CDVQA task. The experimental results provide useful insights22

for developing better CDVQA models, which are important for23

future research on this task. The dataset will be available at24

https://github.com/YZHJessica/CDVQA.25

Index Terms— Change detection, deep learning, multitemporal26

aerial images, visual question answering (VQA).27

I. INTRODUCTION28

THE Earth’s surface is continually changing by man-29

made and natural influences. These changes are closely30

involved in human and social development and also guide31

urban planning and sustainability [1]. Change detection,32

aiming at detecting differences of the same region at dif-33

ferent times, has become a research priority in recent34
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decades [2], [3], [4]. Timely and effective change information 35

can be used for many practical applications, such as envi- 36

ronmental management [5], [6], [7], natural disasters mon- 37

itoring [8], [9], urban land use [10], [11], and agriculture 38

production [12]. 39

Nowadays, change detection technology has been devel- 40

oped significantly, and there are various algorithms with 41

great performance improvement for remote sensing data 42

[13], [14], [15]. Change detection methods can be divided 43

into two main categories, depending on whether or not the 44

types of changes are detected. One is binary change detection 45

that only detects changed regions but ignores the type of 46

changes, e.g., the object-oriented key point vector distance 47

for detecting binary land-cover changes [16] and the end-to- 48

end 2-D convolutional neural network (CNN) for hyperspectral 49

image change detection [17]. Change maps obtained by such 50

methods are visualized by binary values to depict change 51

information at the pixel level. The other is semantic change 52

detection, for instance, using an asymmetric Siamese network 53

for identifying changes via feature pairs [18] and reasoning 54

bitemporal semantic correlations [19]. These methods not only 55

detect changed regions but also identify change types. 56

Although change detection has great application value, the 57

specialized nature of this task makes change information 58

limited to researchers. It is still difficult for end users to 59

access and understand much of important change information. 60

For instance, ordinary users are interested in a certain change 61

type in a certain region, but it is inconvenient and ineffective 62

for them to find it on change maps in practical applications. 63

Considering this problem, efficient and effective change infor- 64

mation interaction with end users becomes important. In this 65

context, natural language processing (NLP) enables computers 66

to understand the text in almost the same way as humans. It is 67

user-friendly and can greatly improve the interactivity between 68

image analysis systems and end users. Therefore, in order 69

to alleviate the interaction issue, the integration of computer 70

vision and NLP [20] has gradually become a hot research topic 71

in the machine learning community. In particular, tasks, such 72

as visual description generation [21], visual storytelling [22], 73

visual question answering (VQA) [23], [24], and visual dia- 74

log [25], have been fully and successfully conducted in 75

computer vision. Similarly, tasks of integrating remote sensing 76

imagery and NLP, such as image captioning and VQA, have 77

also become an active research topic in the field of remote 78

sensing [26], [27]. Captioning for remote sensing images was 79

first proposed in [28], and Lu et al. [29] further explored 80

captioning methods using both handcrafted and convolutional 81
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Fig. 1. Examples of questions for natural imagery, aerial imagery, and
multitemporal aerial images in VQA tasks.

features and proposed a new dataset. Recently, a multilayer82

aggregated Transformer was utilized to extract information for83

caption generation [30]. Regarding VQA for remote sensing84

data (RSVQA), Lobry et al. [31] first introduced this task,85

built two datasets, and used a hybrid CNN–recurrent neural86

network (RNN) model to extract features, and Yuan et al. [32]87

proposed a self-paced curriculum learning-based model trained88

from easy to hard questions gradually.89

Compared to natural images, aerial images are more spe-90

cialized due to the top-view perspective and complicated back-91

ground. As shown in Fig. 1, answers to questions about natural92

images [23] are more obvious than answers to questions about93

aerial images [31] in many cases in VQA tasks. Besides,94

Fig. 1 shows that answers to questions about the comparison95

of multitemporal aerial images require careful observation96

and even calculation, which is unfriendly to ordinary users.97

Though VQA for natural images has been studied for many98

years and VQA for remote sensing data has also gradually99

become a research focus, VQA for change detection based100

on multitemporal images is underexplored. Considering the101

significance of change detection task and its values in practical102

applications, it is vital to investigate how to improve the103

friendliness and accessibility of change detection systems to104

end users. Hence, there is also a greater need to develop end105

user accessible VQA algorithms for multitemporal remotely106

sensed data.107

In this article, we introduce the task of change detection-108

based visual question answering (CDVQA) on multitemporal109

aerial images. Specifically, given two aerial images captured110

at different times and a natural language question about111

them, the CDVQA task aims to provide an answer in natural112

language by comparing the content of two images. To this113

end, we create a CDVQA dataset by an automatic generation114

method, which contains 2968 pairs of multitemporal images115

and more than 122 000 question–answer pairs. The questions116

are carefully designed to cover various types of changes.117

Moreover, we propose a baseline method for the CDVQA task,118

as shown in Fig. 2. To sum up, the main contributions of this119

work are summarized as follows.120

1) We design an automatic question–answer generation121

method and create a new CDVQA dataset. Specifically,122

the proposed dataset contains 2968 pairs of aerial images 123

and more than 122 000 corresponding question–answer 124

pairs. 125

2) A baseline framework for CDVQA task is proposed, and 126

it includes four parts: multitemporal feature encoding, 127

multitemporal fusion, multimodal fusion, and answer 128

prediction. In addition, a change enhancing module is 129

proposed to incorporate more change-related informa- 130

tion into visual features. 131

3) Extensive experiments have been conducted to study 132

the effects of different network parts on the CDVQA 133

performance. In particular, different backbones and mul- 134

titemporal fusion strategies are investigated. The results 135

provide useful insights on the CDVQA task. 136

The rest of this article is organized as follows. The detailed 137

information for the construction of CDVQA dataset is intro- 138

duced in Section II. Section III presents the methodology. 139

Experimental results and discussion are shown in Section IV. 140

Finally, this article is concluded in Section V. 141

II. DATASET 142

Different from the traditional VQA task, CDVQA involves 143

multitemporal aerial images and requires time series analysis. 144

Taking this into account, we choose the existing semantic 145

change detection dataset SECOND [18] as the basic data 146

to automatically generate a CDVQA dataset. The SECOND 147

dataset collects bitemporal high-resolution optical (RGB) 148

images by several different aerial platforms and sensors, with 149

spatial resolution varying from 0.5 to 3 m [19]. Geographical 150

positions include several cities in China, such as Shanghai, 151

Hangzhou, and Chengdu. It has 4662 pairs of aerial images 152

with the size of 512 × 512 pixels, and 2968 pairs are publicly 153

available. Each pair consists of a preevent aerial image and 154

a postevent image of the same location at different times. 155

Besides, each pair has two labeled semantic change maps at 156

the pixel level, before and after the change. In each semantic 157

change map, nonchange region and six land-cover classes 158

related to changes, including nonvegetated ground (NVG) 159

surface, buildings, playgrounds, water, low vegetation, and 160

trees, are annotated. The authors of the SECOND dataset 161

declare in their paper that semantic change maps in this dataset 162

are labeled by a team of experts in Earth vision applications 163

and high accuracy is guaranteed. Therefore, the generated 164

question–answer pairs in this work are highly relevant to 165

the content of image pairs. Overall, this dataset has critical 166

semantic change information of main land-cover classes at 167

the pixel level, which provides sufficient information for 168

generating question–answer pairs for the CDVQA task. In this 169

case, we use the 2968 openly available pairs as our basic data 170

for further dataset construction. 171

A. Multitemporal Image–Question–Answer 172

Triplets Construction 173

Formally, in each pair of multitemporal aerial images, let 174

xt1 ∈ R
3×H×W be the image at time T1 and xt2 ∈ R

3×H×W
175

be the image at time T2. st1 ∈ R
H×W and st2 ∈ R

H×W
176

denote semantic change maps of xt1 and xt2 , respectively, and 177
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Fig. 2. Main architecture of the proposed CDVQA framework. It contains four main parts: multitemporal feature encoding, multitemporal fusion, multimodal
fusion, and answer prediction.

each pixel in st1 and st2 indicates one semantic class, ranging178

from 0 to 6. Semantic change maps show changed regions179

and provide their change types at the pixel level. Background180

pixels mean nonchange regions, which are the same in both st1181

and st2 for an image pair. Foreground pixels indicate changed182

regions of different land-cover types. Specifically, the value183

of the pixel in st1 indicates the semantic class at T1 and the184

value of the pixel in st2 indicates the semantic class at T2.185

The main advantage of introducing semantic change maps is186

that we can access more details about changes, i.e., we are187

able to know not only where changes happen but also what188

types they are. In this work, our motivation is to use natural189

language as queries to obtain these two types of information.190

Given semantic change information of st1 and st2 , the following191

five types of questions are designed in the proposed dataset:192

change or not, increase/decrease or not, change to what,193

largest/smallest change, and change ratio. In our case, the194

smallest/largest change refers to the land-cover class that195

has the least/most pixels changing. These questions are of196

great interest to end users in real-world applications. In what197

follows, a detailed description of the automatic generation198

of multitemporal image–question–answer triplets for different199

question types is given.200

1) Change or Not:201

a) Change or Not for an Image Pair: The most202

fundamental yet important information in change203

detection is about whether a certain land cover204

has changed. Note that a change occurs regardless205

of whether the area of a land cover increases206

or decreases. For each pair of aerial images, the207

set of changed land-cover classes Lt1 and Lt2 are208

extracted from st1 and st2 , respectively. Let li be a209

land-cover class, li ∈ Lt1 or li ∈ Lt2 , indicating that210

the corresponding land-cover type has changed.211

In this case, the answer should be yes. On the212

contrary, if li /∈ Lt1 and li /∈ Lt2 , it indicates that the213

corresponding land cover does not change. Then, 214

the answer should be no. All land-cover types 215

are traversed to generate multiple question–answer 216

pairs. 217

b) Change or Not for a Single Image: For change 218

detection tasks, sometimes one want to focus 219

not only on whether a certain land-cover class 220

has changed but also on whether changes have 221

occurred in the preevent image or postevent image. 222

Therefore, we extract semantic change information 223

solely from the first or second image to generate 224

relevant questions and answers. Please note that in 225

this work, the first image in the image pair refers 226

to the preevent/prechange, and the second image 227

means the postevent/postchange. In particular, for 228

the land-cover class li , if li ∈ Lt1 , it indicates that 229

the corresponding land cover has changed on the 230

preevent image. The answer under this situation 231

should be yes. Similarly, if li ∈ Lt2 , it means that 232

the area of li has changed on the postevent image. 233

The answer will also be yes. In other cases, i.e., 234

li /∈ Lt1 and li /∈ Lt2 , the corresponding answer 235

to the question about whether it has changed on a 236

single image should be no. 237

2) Increase/Decrease or Not: Change detection in real- 238

world applications often requires more specific change 239

information, for instance, whether the area of a land 240

cover has increased or decreased. In this context, 241

we denote the area of li in st1 as Ai
t1 and the area in 242

st2 as Ai
t2

. For increasing-related question–answer pairs, 243

if Ai
t2 − Ai

t1 > 0, the area of li increases. Then, the 244

answer to this question should be yes. For decreasing- 245

related pairs, the generation process is similar. 246

If Ai
t2 − Ai

t1 < 0, the area of li decreases. Note that the 247

area of li is defined as all pixels with label li in the whole 248

imagery. 249
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3) Change to What: This type of question involves more250

detailed information about changes, i.e., what the land251

cover at time T1 mainly becomes at time T2. Such ques-252

tions require analyzing the same region in multitemporal253

images to obtain the change of land-cover types in this254

region. Although one class may change to more than one255

class over time, it is more meaningful to focus on the256

major change. In particular, for a semantic class, we first257

find its pixel indices in st1 . Then, the indices are used to258

select the corresponding pixels in st2 . Finally, we count259

the number of the selected pixels for each land-cover260

type and choose the type with the largest number as the261

major change. In this case, the answer to the question262

what the regions of li at time T1 mainly change to should263

be the major change type.264

4) Largest/Smallest Change:265

a) Largest/Smallest Change for an Image Pair: Such266

questions focus on the largest or smallest changes267

in multitemporal images. For each land-cover type,268

all changes in the two images should be considered.269

Therefore, the changed area for the land-cover270

class li is Ai
t1 + Ai

t2 . By traversing all change types,271

the maximum and minimum changed regions can272

be obtained, and the corresponding land-cover273

classes are answers to this type of question. In this274

dataset, the smallest change is which has the small-275

est changed area, and the unchanged type is not276

considered.277

b) Largest/Smallest Change for a Single Image:278

To extract more detailed information about279

changes, we also analyze the maximum and min-280

imum changed regions for the preevent and281

postevent images, respectively. The maximum and282

minimum changed regions at time T1 can be easily283

obtained by arg maxli (Ai
t1) and arg minli (Ai

t1), and284

the selected land cover li is the corresponding285

answer. For time T2, the generation process is the286

same. This type of question requires a model to287

not only identify land-cover changes in bitemporal288

images but also understand which image (T1 or T2)289

is queried by users. In this context, the question290

“What is the smallest change in the first image?” is291

actually asking about the land cover of the smallest292

changed region in the image captured at an earlier293

date.294

5) Change Ratio:295

a) Change Ratio for All Land Covers: The percent-296

ages of changed regions are also very important297

information in practical applications. The change298

ratio can be calculated via dividing the changed299

area by the total area of the whole map and the300

same for nonchange ratio. Since proportions are301

continuous numbers, they cannot be compatible302

with the classification task. Thus, we discretize303

ratios into bins. To be more specific, numer-304

ical answers are quantized into 11 categories:305

0%, 0%–10%, 10%–20%, 20%–30%, 30%–40%,306

40%–50%, 50%–60%, 60%–70%, 70%–80%, 307

80%–90%, and 90%–100%. Notice that in this con- 308

text, A%-B% means (A, B]. In this way, we calcu- 309

late the change percentage for each image pair and 310

gain answers to the change ratio-related questions. 311

b) Change Ratio for Each Land Cover: In addition 312

to the ratio of all changed regions, we also want 313

to analyze the change ratio for each land-cover 314

class on the preevent or postevent image. Similarly, 315

numerical answers are also quantized as above. 316

For each land-cover class li , we first calculate its 317

changed regions Ai
t1 and Ai

t2 at T1 and T2. Then, 318

the change ratio for li on the preevent image is 319

calculated via dividing Ai
t1

by the total area of the 320

whole image. In the same way, change ratios for 321

different land covers on the postevent image can 322

be obtained. 323

In practice, we have defined multiple synonymous templates 324

for each type of questions. During the question–answer gen- 325

eration process, for each image pair, question–answer pairs 326

are generated separately for each question type. As more than 327

one template is designed for each question type, we randomly 328

select one of them to generate a sample. To balance the number 329

of samples in each question type, we set different probabilities 330

for generating samples of different question types. Specifically, 331

we set a low probability value for the “yes/no” type and a high 332

probability value for other question types. For each image pair, 333

we generate 16 samples in average. 334

B. Question and Answer Distributions 335

As 2968 pairs of images are publicly available, we use these 336

images as the basic data to generate the CDVQA dataset. 337

The whole dataset is split into the training set, validation set, 338

and test set. To better evaluate the robustness and reliability 339

of CDVQA models, we generate two test sets with different 340

distributions of answers. The class distributions of answers 341

in the generated CDVQA dataset are shown in Fig. 3. From 342

this figure, we can see that the training set, validation set, 343

and test set 1 share the same class distribution. The answer 344

distributions of test sets 1 and 2 are different. 345

As we can see from Fig. 3, answer types in all subsets 346

obey the long-tail distribution. Concretely, answer class no 347

dominates answer distributions in all subsets. For example, 348

in the training set, samples with answer no occupy 30.9% of 349

all instances. In test set 1, answers no account for 31.15% 350

of total answers. In contrast, answers 50%–60% only occupy 351

0.22% of all answers. The reason for the class imbalance is 352

that there are more questions asking for yes or no. The answers 353

to questions such as change or not and increase/decrease or 354

not are yes or no. 355

The question type distributions of all four subsets are 356

presented in Fig. 4. For simplicity, change ratio for each 357

land-cover is denoted as class change ratio. We can see that 358

distributions of question types are also long-tailed. In addition, 359

question type change or not has the highest frequencies in all 360

subsets. This is the reason why the two most frequent answer 361

types are yes and no. Similar to answer distributions, the 362
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Fig. 3. Visualization of answer distributions of different subsets. From left to right: training set, validation set, test set 1, and test set 2.

Fig. 4. Visualization of question distributions of different subsets. (From
Left to Right) Training set, validation set, test set 1, and test set 2.

distributions of question types for the training set, validation363

set, and test set 1 are the same, while they are different from364

the distribution of test set 2. Specifically, the proportions of365

questions about “change to what,” “change ratio,” and “class366

change ratio” increase in test set 2 compared to test set 1.367

Since questions of these types are more difficult, test set 2 is368

more difficult than test set 1. Visualization examples of the369

generated CDVQA dataset are shown in Fig. 5.370

III. METHODOLOGY371

In this work, the CDVQA task is deemed as a classifi-372

cation task. Note that semantic change maps are only used373

to generate question–answer pairs in the dataset preparation374

phase, and in CDVQA, only image pairs, questions, and the375

corresponding answers are used for training and evaluating376

a model. As shown in Fig. 2, our CDVQA model takes as377

input two aerial images and a question. The output of the378

model is an answer predicted by the network. In particular,379

the whole network architecture consists of four parts. The first380

component is a multitemporal visual feature learning module,381

which is used to encode the input images into deep features.382

The second part, named multitemporal fusion, is responsible383

for fusing the features of the two images. The third one is384

a multimodal fusion module that aims at fusing the image385

and question features. The fourth is an answer prediction part,386

which takes the fused multimodal feature as input to predict387

the answer. In addition, for the CDVQA task, we design a388

change enhancing module to encourage the model to focus on389

changed pixels of the input images. The proposed modules 390

in our CDVQA framework will be described in detail in the 391

following. 392

A. Multitemporal Encoder 393

Different from tasks such as image classification, object 394

detection, and semantic segmentation, change analysis 395

involves two input images of the same location but at different 396

times. Similarly, a CDVQA system takes as input multitempo- 397

ral inputs. In order to identify changes between two images, 398

temporal differences should be extracted and analyzed. 399

In respect of multiple inputs, Siamese networks are com- 400

monly used in many vision tasks. We denote the feature of 401

the image of time T1 as F1 = f1(xt1). Likewise, f2(·) is used 402

to obtain the encoded representation for the image of time T2. 403

For Siamese networks, we set the network architecture and 404

parameters of f1 and f2 to be the same. 405

In this work, we explore the effects of different encoder 406

networks on CDVQA. For visual feature extraction, CNNs are 407

usually used to learn feature representations, and ResNet [33] 408

is an important milestone in the development of CNN archi- 409

tectures. Thus, different scales of ResNets, e.g., ResNet-18, 410

ResNet-101, and ResNet-152, are employed as the multitem- 411

poral encoder of our CDVQA model, aiming at studying the 412

effects of different scales of CNNs on CDVQA. 413

Recently, Transformer architecture [34] has achieved excel- 414

lent performance on NLP tasks [35]. Designed for sequence 415

modeling tasks, Transformer has the significant advantage 416

of using attention to learn long-range dependencies in data. 417

Considering its great success in the language modeling 418

domain, it has also been applied to computer vision tasks, 419

to name a few, image classification [36], [37], object detec- 420

tion [38], and semantic segmentation [39]. In this work, 421

the Transformer-based encoder for multitemporal images is 422

also used. 423

B. Change Enhancing Module 424

Change detection is a fundamental task in remote sensing 425

and also the core of CDVQA task. To answer change-related 426

questions, a model needs to focus on changed regions and 427

further analyze semantic information. In a number of computer 428

vision tasks, self-attention mechanism [40], [41], [42] is used 429

to boost the performance by focusing on important parts of 430

data samples. However, there are two input images in our 431

case, where the self-attention mechanism is not applicable. 432
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Fig. 5. Visualization examples of the generated CDVQA dataset. Here, we show two data samples, and each one contains bitemporal images, questions, and
the corresponding answers. Best viewed in color and zoomed in.

Hence, in this work, we propose a change enhancing module433

to enhance the CDVQA model in terms of the capability of434

detecting changes.435

We denote that the encoded deep features for the input 436

two images are F1 ∈ R
N×C×H×W and F2 ∈ R

N×C×H×W , 437

where N is the batch size, C is the number of channels, 438
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and H and W are the height and width of feature maps,439

respectively. The conventional self-attention model [34] first440

transforms the input feature into three independent features,441

i.e., the query Q, key K , and value V . In contrast, for442

the proposed change enhancing module, we treat the feature443

representations F1 and F2 as the query and key, respectively,444

and compute their similarity Fs ∈ R
N×C×H×W as follows:445

Fs = | fq(F1) − fk(F2)| (1)446

where fq(·) and fk(·) are 1 × 1 convolutions for the purpose447

of feature transformation. Next, a change enhancing map448

Mce ∈ R
N×H×W can be obtained by449

Mce = σ( fc(Fs)) (2)450

where fc(·) is a 1 × 1 convolution layer for predicting451

the change enhancing map and σ(·) is the ReLU activation452

function. The map Mce is used to encourage the model to453

focus on regions where differences between F1 and F2 are454

large. To this end, we scale Mce with a parameter θ and add455

it with an identity matrix I . θ is a learnable parameter with456

an initial value of 0 and is optimized during training in an457

end-to-end manner. Then, we multiply the transformed Mce458

and two encoded features, respectively459

Fc1 = (I + θ Mce)F1460

Fc2 = (I + θ Mce)F2 (3)461

where Fc1 and Fc2 are the final encoded features correspond-462

ing to two input images. Fc1 and Fc2 will then be fused by the463

multitemporal feature fusion module, which will be introduced464

in Section III-C.465

C. Multitemporal Fusion466

After the feature encoding and change enhancing process-467

ing, we need to fuse features of time T1 and time T2 to obtain468

the final visual feature Fv . For the fusion of multiple feature469

maps, elementwise subtraction, multiplication, summation,470

and concatenation are commonly used methods. Given two471

feature maps Fc1 ∈ R
N×C×H×W and Fc2 ∈ R

N×C×H×W , the472

aforementioned fusion methods can be formulated as473

Fv1 = Fc1 � Fc2474

Fv2 = Fc1

||Fc1||2
� Fc2

||Fc2||2
475

Fv3 = Fc1
� Fc2476

Fv4 = Fc1⊕Fc2477

Fv5 = Fc1 ⊗ Fc2 (4)478

where � denotes the elementwise subtraction operation. Note479

that we normalize the two features before the element-480

wise subtraction operation for computing Fv2. ⊕ and ⊗481

denote elementwise summation and multiplication operations,482

respectively. � stands for the concatenation operation along483

the channel dimension. To study the effects of different484

fusion strategies, we compare and analyze their performance485

in Section IV.486

D. Multimodal Fusion 487

Since CDVQA involves both visual features and language 488

representations, we need to fuse multimodal features. After the 489

multitemporal feature fusion, the final visual representation 490

Fv ∈ R
N×C×H×W can be obtained. Meanwhile, an RNN is 491

used to encode the question into feature vector V q ∈ R
N×L . 492

As the skip-thoughts model has been applied in many remote 493

sensing image-based NLP tasks [31], [43], we choose to 494

use the pretrained skip-thoughts model [44] for the language 495

feature extraction part. Specifically, skip-thought vectors are 496

modeled with an encoder–decoder architecture, and both are 497

constructed with RNNs. The encoder transforms the input 498

sentence into a vector, and two decoders are used to decode the 499

vector into the previous and the next sentence. In this work, 500

we use the encoder of skip-thoughts for generating language 501

embeddings. 502

Before fusing features of two modalities, we first transform 503

the visual feature Fv into a feature vector Fvt ∈ R
N×L . Then, 504

the two feature vectors have the same size, and we can fuse 505

Fvt and V q together. As how to fuse them is not the main 506

research content of this work, we simply merge them into a 507

multimodal feature by concatenation 508

Fm = V q
� Fvt (5) 509

where Fm ∈ R
N×2L is the fused multimodal representation. 510

Finally, as the answer prediction is modeled as a classifica- 511

tion task in this work, the feature Fm is used to predict the 512

answer by passing through a classifier, i.e., two fully connected 513

layers. The answer is given by selecting the answer class 514

with the highest probability. The output dimension of the first 515

layer is 256 and the final output dimension of the classifier 516

is 19, as there are 19 answer types. Specifically, the possible 517

answers include no, yes, 0%–10%, 0, NVG surface, buildings, 518

low vegetation, 10%–20%, trees, 20%–30%, water, 80%–90%, 519

30%–40%, 90%–100%, 70%–80%, 40%–50%, 60%–70%, 520

50%–60%, and playgrounds (sorted by the number of 521

samples). 522

IV. EXPERIMENTS 523

A. Datasets 524

The CDVQA dataset is publicly available in 2968 image 525

pairs with the size of 512 × 512. Based on these image pairs, 526

there are more than 122 000 question–answer pairs generated 527

in total. The training, validation, and test sets are split based 528

on image pairs captured at different geographical positions. 529

In particular, the training set contains 65 967 question–answer 530

pairs, which are generated from 1600 (53.91%) image pairs. 531

There are 16 441 question–answer pairs in the validation set, 532

which are produced based on 400 (13.48%) image pairs. 533

Besides, we use the left 968 (32.61%) image pairs to generate 534

two test sets with 39 686 (test set 1) and 31 036 (test set 2) 535

question–answer pairs for more comprehensive model evalua- 536

tion. Note that there is an overlap between the two test sets. 537

B. Implementation Details 538

The generated dataset for CDVQA follows the same format 539

as the work of RSVQA [31]. Regarding training parameters, 540
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TABLE I

NUMERICAL RESULTS OF USING DIFFERENT BACKBONE
NETWORKS ON TEST SET 1 OF CDVQA DATASET

TABLE II

NUMERICAL RESULTS OF USING DIFFERENT BACKBONE

NETWORKS ON TEST SET 2 OF CDVQA DATASET

the Adam optimizer is used with an initial learning rate541

of 1e−4. For all ResNet-based models, the batch size is set542

to 70, and the size of the input image is scaled to 256 × 256.543

Since the used ViT [37] model requires the input size to be544

384 ×384, we have to reduce the batch size to 32 considering545

GPU memory limit. For all experiments, 50 epochs are used546

to train models. We utilize accuracy as a measurement for547

each question type. In addition, average accuracy and overall548

accuracy are also reported.549

C. Effects of Different Backbones550

The backbone network of the visual encoder is an important551

component. Therefore, we compare four different backbones:552

three ResNets (ResNet-18, ResNet-101, and ResNet-152) and553

a vision Transformer model ViT. In all experiments, we fuse554

multitemporal visual features by feature concatenation for all555

backbone networks.556

The results on two different test sets are shown in557

Tables I and II. From the results, we can see that compared558

to ResNet-18 and ResNet-101, ResNet-152 does not show559

a significant performance advantage. For example, on test560

set 1, ResNet-18 and ResNet-152 deliver very close average561

and overall accuracies. This indicates that merely improv-562

ing the capability of backbone network for visual learn-563

ing only yields a limited gain. However, when we change564

the network architecture of the backbone from ResNet to565

Transformer, the performance can be further improved. The566

reason for this improvement is that the self-attention mecha-567

nism of Transformer networks is beneficial for learning more568

Fig. 6. Visualization of training losses. Four different backbone networks
are compared.

Fig. 7. Visualization of validation losses. Four different backbone networks
are compared.

representative features. Note that the parameters of backbone 569

networks are fixed during the training stage. In Figs. 6 and 7, 570

we also visualize training and validation losses of models with 571

different backbones. It can be seen that the ViT backbone has 572

significantly lower losses than ResNet-based networks. Note 573

that we omit the first five epochs to better compare the final 574

convergence state. 575

From the results, we can see that different backbone net- 576

works have very little impact on the performance of our 577

framework. This is because visual feature learning may not 578

be the key to improving accuracy. Other parts of the model, 579

such as multitemporal fusion and change analysis part, may be 580

more critical for the performance improvement of the CDVQA 581

task. 582

D. Effects of Different Multitemporal Fusion Strategies 583

In this section, we quantitatively compare five com- 584

monly used feature fusion operations, namely, concatenation 585

(Concat), summation (Sum), subtraction (Sub), normalized 586

subtraction (NSub), and multiplication (Mul). The numerical 587

results on two test sets are presented in Tables III and IV. 588



YUAN et al.: CHANGE DETECTION MEETS VISUAL QUESTION ANSWERING 5630613

Fig. 8. Visualization examples of CDVQA results. Each row presents three different questions and the same input image pair. Correctly predicted results
are shown in blue and wrong answers are shown in red.

The results in these tables show that concatenation is the589

best. The concatenation operation first concatenates two inputs590

together, and then, several fully connected layers are used to591

fuse these inputs by learnable weights. This makes it a more592

flexible and general fusion strategy.593

For change analysis tasks, intuitively, subtraction should be 594

the best fusion method, as it can better highlight changed 595

regions. However, it can be seen from the results that the 596

subtraction operation cannot outperform others. Considering 597

that the direct subtraction of two features may undermine their 598
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TABLE III

NUMERICAL RESULTS OF USING DIFFERENT FUSION
STRATEGIES ON TEST SET 1 OF CDVQA DATASET

TABLE IV

NUMERICAL RESULTS OF USING DIFFERENT BACKBONE

NETWORKS ON TEST SET 2 OF CDVQA DATASET

TABLE V

ABLATION STUDY ON TEST SET 1 OF CDVQA DATASET

FOR RESNET-101 BACKBONE

representability, we normalize two input features by using599

�2 normalization before the subtraction operation. Neverthe-600

less, the normalized subtraction operation is still no better601

than concatenation and summation. This indicates that directly602

subtracting two inputs is not useful to CDVQA tasks, and a603

specific change analysis module should be designed.604

E. Effect of Change Enhancing Module605

It is critical to obtain semantic change information from606

multitemporal images. However, there are no pixelwise607

ground-truth change labels available in this task. To incorpo-608

rate change information into the model, we propose a change609

TABLE VI

ABLATION STUDY ON TEST SET 2 OF CDVQA
DATASET FOR RESNET-101 BACKBONE

TABLE VII

EXPERIMENTAL RESULTS IN THE CROSS-DATASET TEST SETTING

Fig. 9. Normalized confusion matrix for our CDVQA dataset on test set 1
(ResNet-152 is used as the backbone).

enhancing module to highlight changed regions in the input 610

images. To validate the effectiveness of the module, we con- 611

duct an ablation study, and numerical results are shown in 612

Tables V and VI. In the two tables, change enhancing module 613

is abbreviated as CEM for the sake of simplification. The 614

experimental results on both test sets indicate that the proposed 615

change enhancing module is beneficial to the CDVQA task. 616
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Fig. 10. Visualization examples of change attention maps. Best viewed in color.

In particular, from the results in Tables V and VI, it can be617

seen that the proposed module can consistently improve both618

the average accuracy and overall accuracy.619

F. Cross-Dataset Evaluation620

In order to explore the generalization ability of the model,621

we construct another CDVQA dataset as an additional test set.622

Specifically, we collect 138 image pairs of size 256 × 256623

from the HTCD [45] dataset (only binary change maps are624

available) and manually annotate semantic change maps. Then,625

3303 question–answer pairs are generated and used for the626

cross-dataset test setting. To show the effectiveness of the pro-627

posed method, we compare the performance of a model trained628

on the CDVQA dataset and another model with randomly629

initialized weights. Table VII shows the numerical results.630

We can see that the model trained on our CDVQA dataset631

can be transferred to unseen scenarios, but its performance632

is not satisfactory in this cross-dataset test setting. This is633

mainly because there is a domain gap between the tests set634

of CDVQA and this one. We see that much more research635

efforts are needed in this direction.636

G. Discussion637

Regarding numerical results, generally, the average accuracy638

is lower than 60%, and the overall accuracy is lower than 70%.639

Some visualization examples of CDVQA results are presented640

in Fig. 8. Both correctly predicted examples and failures are641

displayed. From the experimental results, we can conclude642

that CDVQA is a complex and challenging task. To correctly643

answer different types of questions, a model first needs to learn644

multimodal representations for the input images and questions.645

Visual and language understanding is of great importance for646

the model. Besides, CDVQA also requires the model to be able647

to analyze semantic change information, i.e., the model needs648

to not only locate changed areas but also identify land-cover649

classes of changed regions to answer some complex questions.650

Currently, the proposed baseline framework does not make651

use of semantic change labels. Thus, its performance on652

questions related to land-cover classes is not that satisfactory.653

The change ratio for each land cover has higher accuracy than654

the change ratio for all land covers. This is mainly because 655

the former has more training samples. We also visualize the 656

normalized confusion matrix in Fig. 9. Note that the confusion 657

matrix is normalized along the predicted label axis. 658

To better understand what the model has learned for making 659

decisions, we visualize attention maps of our model on some 660

examples in Fig. 10. It can be seen that the model learns 661

to focus on the related changed regions to predict answers. 662

From experimental results, we can conclude that more research 663

efforts are needed to reach a satisfactory performance on the 664

challenging CDVQA task. Specifically, more effective change 665

analysis-based visual learning methods should be investigated. 666

We also see that Transformer-based models have great poten- 667

tial for multitemporal and multimodal feature learning in 668

CDVQA tasks. In addition, self-supervised or unsupervised 669

change detection methods need to be studied. How to obtain 670

the semantic change information from multitemporal data in 671

an unsupervised manner is also an important research direction 672

in CDVQA tasks. 673

V. CONCLUSION 674

To provide ordinary end users with flexible access to change 675

information, we introduce a new task named CDVQA with 676

natural language as output. This task takes multitemporal 677

aerial images and a natural question as inputs to predict 678

the corresponding answer. To be specific, we create a new 679

dataset, which contains 2968 pairs of aerial images and more 680

than 122 000 question–answer pairs. In addition, a baseline 681

CDVQA model is devised, and different components of mod- 682

els are evaluated on the generated dataset. The experimen- 683

tal results outline possible problems that are needed to be 684

addressed for the CDVQA task. This work also provides some 685

useful insights for developing better CDVQA models, which 686

are important for future research in this direction. 687
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