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Abstract— Aerial scene classification remains challenging as:1

1) the size of key objects in determining the scene scheme varies2

greatly and 2) many objects irrelevant to the scene scheme are3

often flooded in the image. Hence, how to effectively perceive4

the region of interests (RoIs) from a variety of sizes and build5

more discriminative representation from such complicated object6

distribution is vital to understand an aerial scene. In this article,7

we propose a novel all grains, one scheme (AGOS) framework8

to tackle these challenges. To the best of our knowledge, it is9

the first work to extend the classic multiple instance learning10

(MIL) into multigrain formulation. Specifically, it consists of11

a multigrain perception (MGP) module, a multibranch multi-12

instance representation (MBMIR) module, and a self-aligned13

semantic fusion (SSF) module. First, our MGP module preserves14

the differential dilated convolutional features from the backbone,15

which magnifies the discriminative information from multigrains.16

Then, our MBMIR module highlights the key instances in the17

multigrain representation under the MIL formulation. Finally,18

our SSF module allows our framework to learn the same scene19

scheme from multigrain instance representations and fuses them,20

so that the entire framework is optimized as a whole. Notably,21

our AGOS is flexible and can be easily adapted to existing22

convolutional neural networks (CNNs) in a plug-and-play man-23

ner. Extensive experiments on UCM, aerial image dataset (AID),24

and Northwestern Polytechnical University (NWPU) benchmarks25

demonstrate that our AGOS achieves a comparable performance26

against the state-of-the-art methods.27

Index Terms— Aerial scene classification, differential dilated28

convolution (DDC), multigrain instance representation, multiple29

instance learning (MIL), self-alignment strategy.30
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I. INTRODUCTION 31

AERIAL scene classification stands at the crossroad of 32

image processing and remote sensing, and has drawn 33

increasing attention in the computer vision community in the 34

past few years [1], [2], [3], [4], [5]. Moreover, aerial scene 35

classification is a fundamental task toward the understanding 36

of aerial images, as it plays a significant role on many aerial 37

image applications such as land use classification [6], [7], [8] 38

and urban planning [9]. 39

A. Problem Statement 40

Despite the great performance gain led by deep learning 41

for image recognition [10], [11], [12], [13], [14], [15], aerial 42

scene classification remains challenging due to some unique 43

characteristics. 44

1) More Varied Object Sizes in Aerial Images: As both the 45

spatial resolution and viewpoint of the sensor vary greatly 46

in aerial imaging [1], [17], [18], the object size from bird 47

view is usually more varied compared with the ground images. 48

Specifically, the objects in ground images are usually middle- 49

sized. In contrast, there are much more small-sized objects 50

in aerial images, but some of the objects such as airport and 51

roundabout are extremely large sized. As a result, the average 52

object size from aerial images is much higher than the ground 53

images [shown in Fig. 1(a) and (c)]. 54

Thus, it is difficult for existing convolutional neural net- 55

works (CNNs) with a fixed receptive field to fully perceive 56

the scene scheme of an aerial image due to the more varied 57

sizes of key objects [1], [5], [19], [20], [21], which pulls down 58

the understanding capability of a model for aerial scenes. 59

2) More Crowded Object Distribution in Aerial Images: 60

Due to the bird view from imaging platforms such as 61

unmanned aerial vehicles and satellites, the aerial images are 62

usually large scale and thus contain much more objects than 63

ground images [1], [2], [22] (see Fig. 1(b) and (d) for an 64

example). 65

Unfortunately, existing CNNs are capable of preserving 66

the global semantics [11], [12], [13] but are unqualified to 67

highlight the key local regions [23], [24], i.e., region of inter- 68

ests (RoIs), of a scene with complicated object distributions. 69

Therefore, CNNs are likely to be affected by the local semantic 70

information irrelevant to the scene label and fail to predict the 71
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Fig. 1. Different statistics between aerial image samples (from DOTA and
DOTA2.0) and ground image samples (from PASCAL, COCO, and ImageNet)
on (a) average object sizes and (b) average object quantity. All the original
statistics are quoted from [16]. It can be clearly seen that objects from aerial
images are much more varied in sizes, and each aerial image usually has much
more objects. (c) and (d) Example on the dramatically varied object size and
huge object amount in aerial images. (a) Average object size. (b) Average
object quantity. (c) Example on object size. (d) Example on object quantity.

Fig. 2. Intuitive illustration on how aerial scenes contain more objects
irrelevant to the scene scheme (a) and existing CNNs can fail to activate
the RoIs in aerial scenes (b). In (a), local regions relevant and irrelevant to
the scene scheme are labeled in red and blue, respectively. In (b), attention
refers to the feature maps from the framework in [29].

correct scene scheme [2], [25], [26], [27], [28] (see Fig. 2 for72

an intuitive illustration).73

B. Motivation and Objectives74

We are motivated to tackle the aforementioned challenges75

in aerial scene classification, hoping to build a more discrim-76

inative aerial scene representation. Specific objectives include77

the following.78

1) Highlighting the Key Local Regions in Aerial Scenes:79

Great effort is needed to highlight the key local regions of80

an aerial scene for existing deep learning models, so as to81

correctly perceive the scene scheme rather than activate the 82

background or other local regions in an aerial scene. 83

Therefore, the formulation of classic multiple instance 84

learning (MIL) [30], [31] is adapted in our work to describe 85

the relation between the aerial scene (bag) and the local 86

image patches (instances). This formulation helps highlight 87

the feature responses of key local regions, and thus enhances 88

the understanding capability for the aerial scene. 89

2) Aligning the Same Scene Scheme for Multigrain Repre- 90

sentation: Allowing for the varied object sizes in an aerial 91

scene, it is natural to use existing multiscale convolutional 92

features [18], [19], [20], [21] for more discriminative aerial 93

scene representation. However, given the aforementioned com- 94

plicated object distribution in the aerial scene, whether the 95

representation of each scale learned from existing multiscale 96

solutions can focus on the scene scheme remains to be an open 97

question but is crucial to depict the aerial scenes. 98

Hence, different from existing multiscale solutions [32], 99

we extend the classic MIL formulation to a multigrain manner 100

under the existing deep learning pipeline, in which a set of 101

instance representations is built from multigrain convolutional 102

features. More importantly, in the semantic fusion stage, 103

we develop a simple yet effective strategy to align the instance 104

representation from each grain to the same scene scheme. 105

C. Contribution 106

To realize the aforementioned objectives, our contribution 107

in this article can be summarized as follows. 108

1) We propose an all grains, one scheme (AGOS) frame- 109

work for aerial scene classification. To the best of our 110

knowledge, we are the first to formulate the classic MIL 111

into deep multigrain form. Notably, our framework can 112

be adapted into the existing CNNs in a plug-and-play 113

manner. 114

2) We propose a bag scheme self-alignment strategy, which 115

allows the instance representation from each grain to 116

highlight the key instances corresponding to the bag 117

scheme without additional supervision. Technically, it is 118

realized by our self-aligned semantic fusion (SSF) mod- 119

ule and semantic-aligning loss function. 120

3) We propose a multigrain perception (MGP) module for 121

multigrain convolutional feature extraction. Technically, 122

the absolute difference from each two adjacent grains 123

generates more discriminative aerial scene representa- 124

tion. 125

4) Extensive experiments not only validate the state-of- 126

the-art performance of our AGOS on three aerial scene 127

classification benchmarks but also demonstrate the gen- 128

eralization capability of our AGOS on a variety of CNN 129

backbones and two other classification domains. 130

This article is an extension of our conference paper accepted 131

by the International Conference on Acoustics, Speech, and 132

Signal Processing (ICASSP) 2021 [33]. Compared with [33], 133

the specific improvement of this article includes: 1) the newly 134

designed bag scheme self-alignment strategy, realized by our 135

SSF module and the corresponding loss function, is capable 136

of aligning the bag scheme to the instance representation 137

from each grain; 2) we design an MGP module, which 138
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additionally learns the base instance representation, to align139

the bag scheme and to highlight the key local regions in140

aerial scenes; and 3) empirically, our AGOS demonstrates141

superior performance against our initial version [33]. Also,142

more experiments, discussion, and visualization are provided143

to analyze the insight of our AGOS.144

The rest of this article is organized as follows. In Section II,145

related work is provided. In Section III, the proposed method is146

demonstrated. In Section IV, we report and discuss the exper-147

iments on three aerial image scene classification benchmarks.148

Finally, in Section V, the conclusion is drawn.149

II. RELATED WORK150

A. Aerial Scene Classification151

Aerial scene classification remains a heated research topic152

for both the computer vision and the remote sensing com-153

munity. In terms of the utilized features, these solutions are154

usually divided into the low-level (e.g., color histogram [34],155

wavelet transformation [35], local binary pattern [36], [37],156

etc.), middle-level (e.g., bag of visual words [38], potential157

latent semantic analysis [39], [40], latent Dirichlet alloca-158

tion [41], etc.), and high-level feature-based methods.159

High-level feature methods, also known as deep learning160

methods, have become the dominant paradigm for aerial scene161

classification in the past decade. Major reasons accounting162

for its popularity include their stronger feature representation163

capability and end-to-end learning manner [42], [43].164

Among these deep learning-based methods, CNNs are the165

most commonly utilized [2], [18], [19], [20], [21], [44], as the166

convolutional filters are effective to extract multilevel features167

from the image. In the past two years, CNN-based methods168

(e.g., DSENet [45], MS2AP [46], MSDFF [47], CADNet [48],169

LSENet [5], GBNet [49], MBLANet [50], MG-CAP [51],170

Contourlet CNN [52], STHP [53], SAGM [54], DARTS [55],171

LML [56], and GCSANet [57]) still remain heated for aer-172

ial scene classification. On the other hand, recurrent neural173

network (RNN)-based [25], autoencoder-based [58], [59],174

and generative adversarial network (GAN)-based [60], [61]175

approaches have also been reported effective for aerial scene176

classification.177

Meanwhile, although recently vision transformer (ViT) [62],178

[63], [64] has also been reported to achieve high classification179

performance for remote sensing scenes, they focus more on the180

global semantic information with the self-attention mechanism181

while our motivation focuses more on the local semantic182

representation and activation of RoIs. Also, the combination183

of MIL and deep learning is currently based on the CNN184

pipelines [2], [23], [65], [66], [67]. Hence, the discussion and185

comparison of ViT-based methods are beyond the scope of this186

work.187

To sum up, as the global semantic representation of CNNs188

is still not capable enough to depict the complexity of aerial189

scenes due to the complicated object distribution [2], [25],190

how to properly highlight the RoIs from the complicated back-191

ground of aerial images to enhance the scene representation192

capability still remains rarely explored.193

B. Multiscale Feature Representation 194

Multiscale convolutional feature representation has long 195

been investigated in the computer vision community [68], [69]. 196

As the object sizes are usually more varied in aerial scenes, 197

multiscale convolutional feature representation has also been 198

widely utilized in the remote sensing community for a better 199

understanding of aerial images. 200

Till now, multiscale feature representation for aerial images 201

can be classified into two categories, that is, using multilevel 202

CNN features in a nontrainable manner and directly extracting 203

multiscale CNN features in the deep learning pipeline. 204

For the first category, the basic idea is to derive multilayer 205

convolutional features from a pretrained CNN model, and then 206

to feed these features into a nontrainable encoder such as 207

BoW or LDA. Typical works include [19], [21], and [44]. 208

Although the motivation of such approaches is to learn more 209

discriminative scene representation in the latent space, they are 210

not end to end, and the performance gain is usually marginal. 211

For the second category, the basic idea is to design spatial 212

pyramid pooling [20], [46] or image pyramid [18] to extend 213

the convolutional features into multiscale representation. Gen- 214

erally, such multiscale solutions can be further divided into 215

four categories [32], namely, encoder–decoder pyramid, spatial 216

pyramid pooling, image pyramid, and parallel pyramid. 217

Although nowadays multiscale representation methods 218

become mature, whether the representation from each scale 219

can effectively activate the RoIs in the scene has not been 220

explored. 221

C. Multiple Instance Learning 222

MIL was initially designed for drug prediction [30] and 223

then became an important machine learning tool [31]. In MIL, 224

an object is regarded as a bag, and a bag consists of a set of 225

instances [70]. Generally speaking, there is no specific instance 226

label, and each instance can only be judged as either belonging 227

or not belonging to the bag category. This formulation makes 228

MIL especially qualified to learn from the weakly annotated 229

data [67], [71], [72]. 230

The effectiveness of MIL has also been validated on a 231

series of computer vision tasks such as image recognition [73], 232

saliency detection [74], [75], spectral–spatial fusion [76], and 233

object localization/detection [77], [78], [79], [80], [81]. 234

On the other hand, the classic MIL theory has also been 235

enriched. Specifically, Sivan and Naftali [82] relaxed the 236

Boolean OR assumption in MIL formulation, so that the 237

relation between bag and instances becomes more general. 238

More recently, Alessandro et al. [83] investigated a three-level 239

MIL. The three hierarchical levels are in a vertical manner, and 240

they are top-bag, sub-bag, and instance, where the sub-bag 241

is an embedding between the top-bag and instances. Note 242

that our deep MIL under multigrain form is quite distinctive 243

from [83], as our formulation still has two hierarchical levels, 244

i.e., bag and instances, and the instance representation is 245

generated from multigrain features. 246

In the past few years, deep MIL draws some attention, 247

in which MIL has the trend to be combined with deep learning 248

in a trainable manner. To be specific, Wang et al. [67] utilized 249
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Fig. 3. Our proposed AGOS framework.

TABLE I

BRIEF SUMMARY ON THE ATTRIBUTES OF OUR AGOS AND RECENT

DEEP MIL ALGORITHMS. FOR SPACE ATTRIBUTE, I : INSTANCE-
SPACE PARADIGM, E : EMBEDDING-SPACE PARADIGM;

AGGREGATE ATTRIBUTE REFERS TO THE MIL AGGREGATION

FUNCTION; GRAIN, S : SINGLE-GRAIN, M : MULTIGRAIN

either max pooling or mean pooling to aggregate the instance250

representation in the neural networks. Later, Ilse et al. [23]251

used a gated attention module to generate the weights, which252

are utilized to aggregate the instance scores. Bi et al. [2]253

utilized both spatial attention module and channel-spatial254

attention module to derive the weights and directly aggregate255

the instance scores into bag-level probability distribution.256

More recently, Shi et al. [65], [66] embedded the attention257

weights into the loss function so as to guide the learning258

process for deep MIL.259

On the other hand, it should be noted that the MIL260

formulation discussed in this section is distinctive from some261

recent works [84] that formulate each geo-spatial object as an262

instance, as our MIL formulation: 1) treat each equally parti-263

tioned image patch as an instance and the entire image as a bag264

and 2) the dimension of instance representation is equal to the265

bag representation so that the feature response is represented266

from the semantic-level and is supposed to be independent of267

each other. Thus, the rigid MIL formulation better benefits the268

semantic-level representation for local regions, and thus better 269

highlights the key local regions for remote sensing scenes. 270

III. PROPOSED METHOD 271

A. Preliminary 272

1) Classic and Deep MIL Formulation: For our aerial scene 273

classification task, according to the classic MIL formula- 274

tion [30], [31], a scene X is regarded as a bag, and the bag 275

label Y is identical as the scene category. As each bag X 276

consists of a set of instances {x1, x2, . . . , xl}, each image patch 277

of the scene is regarded as an instance. 278

All the instances indeed have labels y1, y2, . . . , yl , but all 279

these instance labels are weakly annotated, i.e., we only know 280

each instance either belongs to (denoted as 1) or does not 281

belong to (denoted as 0) the bag category. Then, whether or 282

not a bag belongs to a specific category c is determined via 283

Y =
{

0 if
∑l

t=1 yt = 0

1 else.
(1) 284

In deep MIL, as the feature response from the gradient 285

propagation is continuous, the bag probability prediction Y is 286

assumed to be continuous in [0, 1] [2], [23]. It is determined 287

to be a specific category c via 288

Y =
{

1 if pc = max{p1, . . . , pC}
0 else

(2) 289

where p1, p2, . . . , pc, . . . , pC denotes the bag probability 290

prediction of all the total C bag categories. 291

2) MIL Decomposition: In both classic MIL and deep MIL, 292

the transition between instances {xs} (where s = 1, 2, . . . , l) 293

to the bag label Y can be presented as 294

Y = h(g( f ({xs}))) (3) 295
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where f denotes a transformation which converts the instance296

set into an instance representation, g denotes the MIL aggre-297

gation function, and h denotes a transformation to get the bag298

probability distribution.299

3) Instance Space Paradigm: The combination of MIL and300

deep learning is usually conducted in either instance space [2],301

[66], [67] or embedding space [23]. Embedding space-based302

solutions offer a latent space between the instance represen-303

tation and bag representation, but this latent space in the304

embedding space can sometimes be less precise in depicting305

the relation between instance and bag representation [2], [23].306

In contrast, instance space paradigm has the advantage to307

generate the bag probability distribution directly from the308

instance representation [2], [67]. Thus, the h transformation309

in 3 becomes an identity mapping, and it is rewritten as310

Y = g( f ({xs})). (4)311

4) Problem Formulation: As we extend MIL into multigrain312

form, the transformation function f in 4 is extended to a set313

of transformations { ft } (where t = 1, 2, . . . , T ). Then, Y is314

generated from all these grains and thus 4 can be presented315

as316

Y = g( f1({xs}), f2({xs}), . . . , fT ({xs})). (5)317

Hence, how to design a proper and effective transformation318

set { ft} and the corresponding MIL aggregation function g319

under the existing deep learning pipeline is our major task.320

5) Objective: Our objective is to classify the input scene321

X in the deep learning pipeline under the formulation of322

multigrain multi-instance learning. To summarize, the overall323

objective function can be presented as324

arg min
W,b

L(Y, g( f1({xs}), . . . , fT ({xs});W, b))+�(W ) (6)325

where W and b are the weight matrix and the bias matrix to326

train the entire framework, L is the loss function, and � is327

the regularization term.328

Moreover, how the instance representation of each grain329

ft ({xs}) is aligned to the same bag scheme is also taken into330

account in the stage of instance aggregation g and optimization331

L, which can be generally presented as332

s.t . g( f1({xs})) = g( f2({xs})) = · · ·333

= g( ft ({xs})) = · · · = g( fT ({xs})) = Yc334

(7)335

where Yc denotes the ground truth of the bag scheme, i.e., the336

category that the bag belongs to.337

B. Network Overview338

As is shown in Fig. 3, our proposed AGOS framework339

consists of three components after the CNN backbone. To be340

specific, the MGP module (in Section III-C) implements341

our proposed differential dilated convolution (DDC) on the342

convolutional features so as to get a discriminative multigrain343

representation. Then, the multigrain feature presentation is fed344

into our multibranch multi-instance representation (MBMIR)345

module (in Section III-D), which converts the aforementioned346

features into instance representation, and then directly gen- 347

erates the bag-level probability distribution. As aligning the 348

instance representation from each grain to the same bag 349

scheme is another important objective, we propose a bag 350

scheme self-alignment strategy, which is technically fulfilled 351

by our self-aligned semantic module (in Section III-E) and the 352

corresponding loss function (in Section III-F). In this way, the 353

entire framework is trained in an end-to-end manner. 354

C. MGP Module 355

1) Motivation: Our MGP module intends to convert the 356

convolutional feature from the backbone to multigrain repre- 357

sentations. Different from existing multiscale strategies [18], 358

[19], [20], [21], our module builds same-sized feature maps by 359

perceiving multigrain representations from the same convolu- 360

tional feature. Then, the absolute difference of the representa- 361

tions from each two adjacent grains is calculated to highlight 362

the differences from a variety of grains for more discriminative 363

representation (shown in Fig. 4). 364

2) Dilated Convolution: Dilated convolution is capable of 365

perceiving the feature responses from different receptive fields 366

while keeping the same image size [85]. Thus, it has been 367

widely utilized in many visual tasks in the past few years. 368

Generally, dilation rate r is the parameter to control the 369

window size of a dilated convolution filter. For a 3 × 3 370

convolution filter, a dilation rate r means that r − 1 zero- 371

valued elements will be padded into two adjacent elements of 372

the convolution filter. For example, for a 3 × 3 convolution 373

filter, a dilation rate will expand the original convolutional 374

filter to the size of (2r + 1) × (2r + 1). Specifically, when 375

r = 0, there is no zero padding and the dilated convolutional 376

filter degrades into the traditional convolution filter. 377

3) Multigrain Dilated Convolution: Let the convolutional 378

feature from the backbone be denoted as X1. Assume that 379

there are T grains in our MGP, then T dilated convolution 380

filters are implemented on the input X1, which we denote 381

as D1, D2, . . . , DT , respectively. Apparently, the set of multi- 382

grain dilated convolution feature representation X
�
1 from the 383

input X1 can be presented as 384

X
�
1 =

{
X1

1, X2
1, . . . , XT

1

}
(8) 385

where we have 386

Xt
1 = Dt (X1) (9) 387

and t = 1, 2, . . . , T . 388

The determination of the dilation rate r for the multigrain 389

dilated convolution set {Dt} follows the existing rules [85] that 390

r is set as an odd value, i.e., r = 1, 3, 5, . . .. Hence, for Dt , 391

the dilation rate r is 2t − 1. 392

4) Differential Dilated Convolution: To reduce the feature 393

redundancy from different grains while stressing the discrimi- 394

native features that each grain contains, absolute difference of 395

each pair of two adjacent representations in X
�
1 is calculated 396

via 397

Xd,t = �Dt (X1)− Dt−1(X1)� (10) 398

where � · � denotes the absolute difference, and 399

Xd,t (t = 1, 2, . . . , T ) denotes the calculated differential 400
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Fig. 4. Demonstration on our MGP module. The inputted convolutional
features are processed by a set of dilated convolution with different dilated
rates. Then, absolute difference of each adjacent representation pair is
calculated to get the multigrain representation output.

dilated convolutional feature representation. It is worth noting401

that when t = 1, D0(X1) means that the dilated convolution402

degrades to the conventional convolution.403

Finally, the output of this MGP module is a set of convo-404

lutional feature representation X
��
1, presented as405

X
��
1 =

{
Xd,0, Xd,1, Xd,2, . . . , Xd,T

}
(11)406

where Xd,0 denotes the base representation in our bag scheme407

self-alignment strategy, the function of which will be discussed408

in detail in Sections III-D and III-E.409

Generally, Xd,0 is a direct refinement of the input X1 in the410

hope of highlighting the key local regions. The realization of411

this objective is straightforward, as the 1 × 1 convolutional412

layer has recently been reported to be effective in refining the413

feature map and highlighting the key local regions [2], [10].414

This process is presented as415

XW×H×C1
d,0 = W W×H×C1

d,0 XW×H×C1
1 + bW×H×C1

d,0 (12)416

where Wd,0 and bd,0 denote the weight matrix and the bias417

matrix of this 1 × 1 convolutional layer, and W and H418

denote the width and height of the feature representation419

X1. Moreover, as the channel number C1 of Xd,0 keeps the420

same with X1, so the number of convolutional filters in this421

convolutional layer also equals to the aforementioned channel422

number C1.423

5) Summary: As shown in Fig. 4 and depicted from424

(8)–(12), in our MGP, the inputted convolutional features are425

processed by a series of dilated convolution with different426

dilated rates. Then, the absolute difference of each represen-427

tation pair from the adjacent two grains (i.e., r = 1 and428

r = 3, r = 3 and r = 5) is calculated as output, so as to429

generate the multigrain differential convolutional features for430

more discriminative representation.431

D. MBMIR Module432

1) Motivation: The convolutional feature representations433

X
��
1 from different grains contain different discriminative434

Fig. 5. Illustration on the instance representation and the generation of bag
probability distribution.

information in depicting the scene scheme. Hence, for the 435

representation Xd,t from each grain (t = 1, 2, . . . , T ), a deep 436

MIL module is utilized to highlight the key local regions. 437

Specifically, each module converts the convolutional repre- 438

sentation into an instance representation, and then utilizes an 439

aggregation function to get the bag probability distribution. 440

All these parallel modules are organized as a whole for our 441

MBMIR module. 442

2) Instance Representation Transformation: Each convo- 443

lutional representation Xd,t (where t = 0, 1, . . . , T ) in the 444

set X
��
1 needs to be converted into an instance representation 445

by a transformation at first, which is exactly the f function 446

in 3 and 4. Specifically, for Xd,t , this transformation can be 447

presented as 448

IW×H×C
t = W 1×1×C

d,t XW×H×C1
d,t + b1×1×C

d,t (13) 449

where It is the corresponding instance representation, Wd,t is 450

the weight matrix of this 1× 1 convolutional layer, bd,t is the 451

bias matrix of this convolutional layer, and t = 0, 1, 2, . . . , T . 452

Regarding the channel number, assume that there are overall 453

C bag categories, then the instance representation It also has C 454

channels so that the feature map of each channel corresponds 455

to the response on a specific bag category, as it has been 456

suggested in 2. Thus, the number of 1× 1 convolution filters 457

in this layer is also C . 458

Apparently, each 1 × 1 image patch on the W × H -sized 459

feature map corresponds to an instance. As there are C bag 460

categories and the instance representation also has C channels, 461

each instance corresponds to a C-dimensional feature vector 462

and thus each dimension corresponds to the feature response 463

on the specific bag category (demonstrated in Fig. 5). 464

3) Multigrain Instance Representation: After processed 465

by 13, each differential dilated convolutional feature rep- 466

resentation It generates an instance representation at the 467

corresponding grain. Generally, the set of multigrain instance 468

representation {It } can be presented as {I0, I1, . . . , IT }. 469

4) MIL Aggregation Function: As is presented in 4, under 470

the instance space paradigm, the MIL aggregation function g 471

converts the instance representation directly into the bag prob- 472

ability distribution. On the other hand, the MIL aggregation 473
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function is required to be permutation-invariant [30], [31] so474

that the bag scheme prediction is invariant to the change of475

instance positions. Therefore, we utilize the mean-based MIL476

pooling for aggregation.477

Specifically, for the instance representation It from each478

scale, assume that each instance can be presented as Iw,h
t ,479

where 1 ≤ w ≤ W and 1 ≤ h ≤ H . Then, the bag probability480

from a certain grain t , denoted as Yt , is generated via481

Yt =
∑W

w=1

∑H
h=1 Iw,h

t

W × H
. (14)482

Apparently, after aggregation, Yt can be regarded as a483

C-dimensional feature vector. This process can be technically484

solved by a global average pooling (GAP) function in existing485

deep learning frameworks.486

5) Bag Probability Generation: The final bag probability487

distribution Y is the sum of the predictions from each grain,488

which is calculated as489

Y = softmax

(
T∑

t=0

Yi

)
(15)490

where softmax is the softmax function for normalization.491

To sum up, the pseudocode of all the aforementioned steps492

on learning MBMIR is summarized in Algorithm 1, in which493

conv1d refers to the 1 × 1 convolution layer in 12.494

Algorithm 1 Learning MBMIR
Input: convolutional feature X1, grain number T
Output: bag probability distribution Y , instance representa-

tion set {It }
1: zero initialization Y
2: for t = 0 → T do
3: Xt

t ← Dt (X1)
4: end for
5: for t = 0 → T do
6: if t ≥ 1 then
7: Xd,t ← �Xt

1 − Xt−1
1 �

8: else
9: % conv1d: the convolutional layer in Eq. 12

10: Xd,t ← conv1d(X1)
11: end if
12: end for
13: for t = 0 → T do
14: It ← ft (Xd,t )
15: end for
16: for t = 0 → T do
17: Yt ← g(It )
18: Y+ = Yt ;
19: end for
20: Y ← so f tmax(Y )

E. SSF Module495

1) Motivation: To make the instance representation from496

different grains focus on the same bag scheme, we propose a497

bag scheme self-alignment strategy. Specifically, it first finds498

Fig. 6. Demonstration of our SSF module.

the difference between a base instance representation and the 499

instance representations from other grains, and then mini- 500

mizes this difference by our semantic aligning loss function. 501

Fig. 6 offers an intuitive illustration of this module. 502

2) Base Representation: The instance representation I0, 503

only processed by a 1× 1 convolutional layer rather than any 504

dilated convolution, is selected as our base representation. One 505

of the major reasons for using I0 as the base representation 506

is that the processing of the 1 × 1 convolutional layer can 507

highlight the key local regions of an aerial scene. 508

3) Difference From Base Representation: The absolute 509

difference between other instance representation It (here 510

t = 1, 2, . . . , T ) and the base representation I0 is calculated 511

to depict the differences between the base representation and 512

the other instance representation from different grains t . This 513

process can be presented as 514

Id,t = �It − I0� (16) 515

where � · � denotes the absolute difference, Id,t denotes the 516

difference of each pair of instance representations at the 517

corresponding grains, and t = 1, 2, . . . , T . 518

4) Bag Scheme Alignment: By implementing the MIL 519

aggregation function g on Id,t , the bag probability that depicts 520

the difference of instance representations from adjacent grains, 521

denoted as Yd,t , is generated via 522

Yd,t =
∑W

w=1

∑H
h=1 Iw,h

d,t

W × H
(17) 523

where all the notations follow the paradigm in 14, that is, 524

1 ≤ w ≤ W and 1 ≤ h ≤ H , and W and H denote the width 525

and the height, respectively. 526

The overall bag scheme probability distribution differences 527

Yd between the base instance representation Id,0 and other 528

instance representations Id,t (where t = 1, 2, . . . , T ) can be 529
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calculated as530

Yd = softmax

(
T∑

t=1

Yd,t

)
531

= softmax

(∑T
t=1

∑W
w=1

∑H
h=1 Iw,h

d,t

W × H

)
(18)532

where softmax denotes the softmax function.533

By minimizing the overall bag scheme probability differ-534

ences Yd , the bag prediction from each grain tends to be535

aligned to the same category. Technically, this minimization536

process is realized by our loss function in Section III-F.537

Algorithm 2 Bag Scheme Self-Alignment Strategy
Input: instance representation set {It }, bag probability distri-

bution Y , ground truth of bag scheme Yc

Output: loss function L for optimization
1: zero initialization Yd

2: for t = 1 → T do
3: Id,t ← �It − I0�
4: end for
5: for t = 1 → T do
6: Yd,t ← g(Id,t )
7: Yd+ = Yd,t

8: end for
9: Lcrs : the cross-entropy loss function

10: Lcls ← Lcrs(Y, Yc)
11: Lsealig ← Lcrs(Yd , Yc)
12: L ← Lcls + αLsealig

F. Loss Function538

1) Cross-Entropy Loss Function: Following the aforemen-539

tioned notations, still assume that Y is the predicted bag prob-540

ability distribution (in 15), Yc is the exact bag category, and541

there are overall C categories. Then, the classic cross-entropy542

loss function serves as the classification loss Lcls, presented543

as544

Lcls = − 1

C

C∑
i=1

(Yc log Yi + (1− Yc) log(1− Yi )). (19)545

2) Semantic-Aligning Loss Function: The formulation of546

the classic cross-entropy loss is also adapted to minimize547

the overall bag probability differences Yd in 18. Thus, this548

semantic-aligning loss term Lsealig is presented as549

Lsealig = − 1

C

C∑
i=1

(
Yc log Yd,i + (1− Yc) log

(
1− Yd,i

))
. (20)550

3) Overall Loss: The overall loss function L to optimize551

the entire framework is the weighted average of the afore-552

mentioned two terms Lcls and Lsealig, calculated as553

L=Lcls + αLsealig (21)554

where α is the hyperparameter to balance the impact of the555

aforementioned two terms. Empirically, we set α = 5×10−4.556

The pseudocode of our proposed overall bag scheme557

self-alignment strategy is provided in Algorithm 2, which558

covers the content in Sections III-E and III-F.559

TABLE II

DATA PARTITION AND EVALUATION PROTOCOLS OF THE THREE AERIAL
SCENE CLASSIFICATION BENCHMARKS FOLLOWING THE EVALUATION

PROTOCOLS [17], [87], WHERE RUNS DENOTES THE REQUIRED

INDEPENDENT REPETITIONS TO REPORT THE

CLASSIFICATION ACCURACY

IV. EXPERIMENT AND ANALYSIS 560

A. Datasets 561

1) UC Merced Land Use Dataset (UCM): Till now, it is the 562

most commonly used aerial scene classification dataset. It has 563

2100 samples in total, and there are 100 samples for each of 564

the 21 scene categories [86]. All these samples have the size 565

of 256 × 256 with a 0.3-m spatial resolution. Moreover, all 566

these samples are taken from the aerial craft, and both the 567

illumination condition and the viewpoint of all these aerial 568

scenes are quite close. 569

2) Aerial Image Dataset (AID): It is a typical large-scale 570

aerial scene classification benchmark with an image size of 571

600 × 600 [17]. It has 30 scene categories with a total 572

amount of 10 000 samples. The sample number per class varies 573

from 220 to 420. As the imaging sensors in photographing the 574

aerial scenes are more varied in aerial image dataset (AID) 575

benchmark, the illumination conditions and viewpoint are also 576

more varied. Moreover, the spatial resolution of these samples 577

varies from 0.5 to 8 m. 578

3) Northwestern Polytechnical University (NWPU) Dataset: 579

This benchmark is more challenging than the UCM and AID 580

benchmarks, as the spatial resolution of samples varies from 581

0.2 to 30 m [87]. It has 45 scene categories and 700 sam- 582

ples per class. All the samples have a fixed image size of 583

256× 256. Moreover, the imaging sensors and imaging con- 584

ditions are more varied and complicated than AID. 585

B. Evaluation Protocols 586

Following the existing experiment protocols [17], [87], 587

we report the overall accuracy (OA) in the format of 588

“average±deviation” from ten independent runs on all these 589

three benchmarks. 590

Experiments on UCM, AID, and Northwestern Polytechni- 591

cal University (NWPU) datasets are all in accordance with the 592

corresponding training ratio settings. To be specific, for UCM, 593

the training set proportions are 50% and 80%, respectively; 594

for AID, the training set proportions are 20% and 50%, 595

respectively; and for NWPU, the training set proportions are 596

10% and 20%, respectively. 597

C. Experimental Setup 598

1) Parameter Settings: In our AGOS, C1 is set 256, indicat- 599

ing that there are 256 channels for each dilated convolutional 600

filter. Moreover, T is set 3, which means that there are four 601

branches in our AGOS module. Finally, C is set 21, 30, and 602
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45, respectively, when trained on UCM, AID, and NWPU603

benchmarks, respectively, which equals to the total scene604

category number of these three benchmarks.605

2) Model Initialization: A set of backbones, including606

ResNet-50, ResNet-101, and DenseNet-121, all utilize pre-607

trained parameters on ImageNet as the initial parameters. For608

the rest of our AGOS framework, we use random initialization609

for weight parameters with a standard deviation of 0.001. All610

bias parameters are set to zero for initialization.611

3) Training Procedure: The model is optimized by the612

Adam optimizer with β1 = 0.9 and β2 = 0.999. Moreover,613

the batch size is set 32. The initial learning rate is set to be614

0.0001 and is divided by 0.5 every 30 epochs until finish-615

ing 120 epochs. To avoid the potential over-fitting problem,616

L2 normalization with a parameter setting of 5 × 10−4 is617

utilized and a dropout rate of 0.2 is set in all the experiments.618

4) Other Implementation Details: Our experiments were619

conducted under the TensorFlow deep learning framework620

by using the Python program language. All the experiments621

were implemented on a work station with 64-GB RAM and622

an i7-10700 central processing unit (CPU). Moreover, two623

RTX 2080 SUPER graphics processing units (GPUs) are624

utilized for acceleration. Our source code is available at625

https://github.com/BiQiWHU/AGOS.626

D. Comparison With State-of-the-Art Approaches627

We compare the performance of our AGOS with three628

hand-crafted features (PLSA, BOW, and LDA) [17], [87], three629

typical CNN models (AlexNet, VGG, and GoogLeNet) [17],630

[87], 22 latest CNN-based state-of-the-art approaches (MIDC-631

Net [2], RANet [29], APNet [88], SPPNet [20], DCNN [28],632

TEXNet [89], MSCP [18], VGG + FV [21], DSENet [45],633

MS2AP [46], MSDFF [47], CADNet [48], LSENet [5],634

GBNet [49], MBLANet [50], MG-CAP [51], Contourlet635

CNN [52], STHP [53], SAGM [54], DARTS [55], LML [56],636

and GCSANet [57]), one RNN-based approach (ARC-637

Net [25]), two autoencoder-based approaches (SGUFL [59]638

and PARTLETS [58]), and two GAN-based approaches639

(MARTA [60] and AGAN [61]), respectively. The performance640

under the backbone of ResNet-50, ResNet-101, and DenseNet-641

121 is all reported for fair evaluation, as some latest meth-642

ods [47], [48] use much deeper networks as backbone.643

1) Results and Comparison on UCM: In Table III, the644

classification accuracy of our AGOS and other state-of-the-645

art approaches is listed. It can be seen in the table.646

1) Both our current AGOS framework and its initial647

version [33] outperform the existing state-of-the-art648

approaches on both cases when the training ratios are649

50% and 80%, respectively, including CNN-based,650

RNN-based, autoencoder-based, and GAN-based651

approaches. Plus, no matter using lighter backbone652

ResNet-50 or stronger backbone ResNet-101 and653

DenseNet-121, our AGOS shows superior performance654

against all the compared methods.655

2) Our AGOS framework significantly outperforms the656

existing approaches that exploit the multiscale represen-657

tation for aerial scenes [18], [20], [21], [46].658

TABLE III

CLASSIFICATION ACCURACY OF OUR AGOS AND OTHER APPROACHES
ON UCM DATASET. RESULTS PRESENTED IN THE FORM OF

“AVERAGE±DEVIATION” [17]; METRICS PRESENTED IN %; H ,
C , R , A, AND G DENOTE HAND-CRAFTED, CNN-, RNN-,

AUTOENCODER-, AND GAN-BASED APPROACHES, RESPEC-
TIVELY. VALUES IN BOLD AND IN BLUE DENOTE THE

BEST AND SECOND BEST RESULTS

3) Generally speaking, other approaches that achieve the 659

most competitive performance usually highlight the 660

key local regions of an aerial scene [2], [18], [25], 661

[29]. For the autoencoder- and GAN-based approaches, 662

as this aspect remains unexplored, their performance is 663

relatively weak. 664

Per-category classification accuracy (with ResNet-50 back- 665

bone) when the training ratios are 50% and 80% is displayed 666

in Fig. 7(a) and (b), respectively. It is observed that almost 667

all the samples in the UCM are correctly classified. Still, it is 668

notable that the hard-to-distinguish scene categories such as 669

dense residential, medium residential, and sparse residential 670

are all identified correctly. 671

The potential explanations are summarized as follows. 672

1) Compared with ground images, aerial images are usually 673

large scale. Thus, the highlight of key local regions 674

related to the scene scheme is vital. The strongest 675

performed approaches, both CNN-based [2], [18], [25], 676

[28], [29] and our AGOS, take the advantage of these 677

strategies. 678

2) Another important aspect for aerial scene classification 679

is to consider the case that the sizes of key objects 680
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Fig. 7. Classification accuracy of the ResNet-50 baseline and our proposed AGOS with ResNet-50 backbone on three datasets. DMSMIL with orange bar
denotes the performance of our initial version [33]; AGOS with red bar denotes the performance of our current version. (a) UCM 50%. (b) UCM 80%.
(c) AID 20%. (d) AID 50%. (e) NWPU 10%. (f) NWPU 20%.

in aerial scenes vary a lot. Hence, it is observed that681

many competitive approaches are utilizing the multiscale682

feature representation [18], [20], [21], [46]. Our AGOS683

also takes advantage of this and contains an MGP684

module. More importantly, our AGOS further allows the685

instance representation from each grain to focus on the686

same scene scheme, and thus the performance improves.687

3) Generally speaking, the performance of autoencoder-688

based [58], [59] and GAN [60], [61]-based solutions is689

not satisfactory, which may also be explained from the690

lack of the aforementioned capabilities such as the high-691

light of key local regions and multigrain representation.692

2) Results and Comparison on AID: In Table IV, the results693

of our AGOS and other state-of-the-art approaches on AID are694

listed. Several observations can be made.695

1) Our proposed AGOS with DenseNet-121 outperforms all696

the state-of-the-art methods under both the training ratio697

of 20% and 50%. Its ResNet-101 version achieves the698

second best results under training ratio 50%. Moreover,699

AGOS with ResNet-50 and our former version [33] also700

achieve a satisfactory performance on both experiments.701

2) Other state-of-the-art approaches that either highlight702

the key local regions [2], [25], [28], [29] or build703

a multiscale representation [18], [20], [21], [46] also704

perform well on both experiments.705

3) Similar to the situations in UCM, the strongest per-706

formance mainly comes from CNN-based methods [2],707

[25], [28], [29], while the performance of GAN-based708

methods is far from satisfactory [60], [61].709

Per-category classification accuracy under the training ratio710

of 20% and 50% is shown in Fig. 7(c) and (d), respectively.711

It can be seen that most scene categories are well distin-712

guished, and some categories are difficult to classify, i.e., dense713

residential, medium residential, and sparse residential are also 714

classified well by our solution. Possible explanations include 715

the following. 716

1) The sample size in AID is generally larger than UCM, 717

and the key objects to determine the scene category 718

are more varied in terms of sizes. As our AGOS can 719

highlight the key local regions via MIL and can build a 720

more discriminative multigrain representation than exist- 721

ing multiscale aerial scene classification methods [18], 722

[20], [21], [46], it achieves the strongest performance. 723

2) Highlighting the key local regions is also quite important 724

to enhance the aerial scene representation capability 725

for the deep learning frameworks [2], [25], [28], [29], 726

and this can also be one of the major reasons to 727

account for the weak performance of GAN-based 728

methods [60], [61]. 729

3) As there are much more training samples in AID 730

benchmark than in UCM, the gap of representation 731

capability between traditional hand-crafted features and 732

deep learning-based approaches becomes more obvi- 733

ous. In fact, it is a good example to illustrate that 734

the traditional hand-crafted feature-based methods are 735

far enough to depict the complexity of the aerial 736

scenes. 737

3) Results and Comparison on NWPU: Table V lists the 738

per-category classification results of our AGOS and other 739

state-of-the-art approaches on NWPU benchmark. Several 740

observations similar to the AID can be made. 741

1) Our AGOS outperforms all the compared state-of-the- 742

art performance when the training ratios are both 10% 743

and 20%. Its DenseNet-121 and ResNet-101 versions 744

achieve the best and second best results on both settings, 745



BI et al.: AGOS: LEARNING MULTIGRAIN INSTANCE REPRESENTATION 5629217

TABLE IV

CLASSIFICATION ACCURACY OF OUR PROPOSED AGOS AND OTHER
APPROACHES ON AID DATASET. RESULTS PRESENTED IN THE FORM

OF “AVERAGE±DEVIATION” [17]; METRICS PRESENTED IN %;
H , C , R , AND G DENOTE HAND-CRAFTED, CNN-, RNN-, AND

GAN-BASED APPROACHES. VALUES IN BOLD AND IN BLUE
DENOTE THE BEST AND SECOND BEST RESULTS

while the performance of ResNet-50 version is746

competitive.747

2) Generally speaking, those approaches highlighting the748

key local regions of an aerial scene [2], [25],749

[28], [29], [88] or building a multiscale convolu-750

tional feature representation tend to achieve a better751

performance [18], [20], [46].752

3) The performance of GAN-based approaches [60], [61]753

degrades significantly when compared with other754

CNN-based methods on NWPU. Specifically, they are755

weaker than some CNN baselines such as VGGNet and756

GoogLeNet.757

Moreover, the per-category classification accuracy under the758

training ratio of 10% and 20% is shown in Fig. 7(e) and759

(f). Most categories of the NWPU dataset are classified well.760

Similar to the discussion on AID, potential explanations of761

these outcomes include the following.762

1) The difference of spatial resolution and object size is763

more varied in NWPU than in AID and UCM. Thus,764

the importance of both highlighting the key local regions765

TABLE V

OA OF THE PROPOSED AGOS AND OTHER APPROACHES ON
NWPU DATASET. RESULTS PRESENTED IN THE FORM OF

“AVERAGE±DEVIATION” [87]; METRICS PRESENTED IN %;
H , C , R , AND G DENOTE HAND-CRAFTED, CNN-, RNN-,

AND GAN-BASED APPROACHES, RESPECTIVELY. VALUES
IN BOLD AND IN BLUE DENOTE THE BEST AND

SECOND BEST RESULTS

and building more discriminative multigrain representa- 766

tion is critical for an approach to distinguish the aerial 767

scenes of different categories. The weak performance 768

of GAN-based methods can also be accounted that no 769

effort has been investigated on either of the aforemen- 770

tioned two strategies, which is an interesting direction 771

to explore in the future. 772

2) As our AGOS builds multigrain representations and 773

highlights the key local regions, it is capable of dis- 774

tinguishing some scene categories that are varied a lot 775

in terms of object sizes and spatial density. Thus, the 776

experiments on all three benchmarks reflect that our 777

AGOS is qualified to distinguish such scene categories. 778

E. Ablation Studies 779

Apart from the ResNet-50 baseline, our AGOS framework 780

consists of an MGP module, an MBMIR module, and an SSF 781

module. To evaluate the influence of each component on the 782

classification performance, we conduct an ablation study on 783

AID benchmark and the results are reported in Table VI. It can 784

be seen in the table. 785

1) The performance gain led by MGP is about 1.26% 786

and 1.36% if directly fused and then fed into the 787

classification layer. Thus, more powerful representation 788

learning strategies are needed for aerial scenes. 789
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Fig. 8. Visualized feature responses by our AGOS (with ResNet-50 backbone) (denoted as fused) and the intermediate instance presentations are from four
different grains where the dilated rate is 1, 3, 5, and 7 (denoted as r = 1, 3, 5, 7), respectively. For each image adjacent to the instance representation map, the
activated instances are highlighted in white. Key local regions of the scene are labeled in red bounding boxes for reference. Heatmaps (fused) are generated
from the average of instance representations from all grains and resized to the image size, and then normalized to [0, 255].

TABLE VI

ABLATION STUDY OF OUR AGOS (WITH RESNET-50 BACKBONE) ON

AID DATASET; METRICS PRESENTED IN %; RESNET: BACKBONE

RESNET-50; MGP: MGP MODULE; MBMIR MODULE; SSF
MODULE; LCLS : ONLY USE THE CLASSIFICATION TERM

IN THE LOSS FUNCTION

2) Our MBMIR module leads a performance gain of790

4.17% and 3.22%, respectively. Its effectiveness can be791

explained from: 1) highlighting the key local regions792

in aerial scenes by using classic MIL formulation and793

2) building more discriminative multigrain representa-794

tion by extending MIL to the multigrain form.795

3) Our SSF module improves the performance by about 1%796

in both the cases. This indicates that our bag scheme797

self-alignment strategy is effective to further refine the798

multigrain representation so that the representation from799

each grain focuses on the same bag scheme.800

To sum up, an MGP serves as a basis in our AGOS to 801

perceive the multigrain feature representation, and an MBMIR 802

is the key component in our MBMIR which allows the entire 803

feature representation learning under the MIL formulation, 804

and the performance gain is the most. Finally, our SSF helps 805

further refine the instance representations from different grains 806

and allows the aerial scene representation more discriminative. 807

F. Generalization Ability 808

1) On Different Backbones: Table VII lists the classifi- 809

cation performance, parameter number, and inference time 810

of our AGOS framework when embedded into three com- 811

monly used backbones, that is, VGGNet [12], ResNet [11], 812

and Inception [13], respectively. It can be seen that, on all 813

three backbones, our AGOS framework leads to a significant 814

performance gain while only increasing the parameter number 815

and decreasing down the inference time slightly. The marginal 816

increase of parameter number is quite interesting, as our 817

AGOS removes the traditional fully connected layers in CNNs, 818

which usually occupy a large number of parameters. 819

2) On Classification Task From Other Domains: Table VIII 820

reports the performance of our AGOS framework on a medical 821

image classification [92] and a texture classification [93] 822

benchmark, respectively. The dramatic performance gain com- 823

pared with the baseline on both benchmarks indicates that 824
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TABLE VII

PERFORMANCE OF OUR AGOS ON DIFFERENT BACKBONES ON AID
DATASET UNDER THE 50% TRAINING RATIO [17]; METRIC

PRESENTED IN %; PARA. NUM.: PARAMETER NUMBERS;
PRESENTED IN MILLION; FPS: FRAME PER SECOND

TABLE VIII

PERFORMANCE OF OUR AGOS FRAMEWORK (WITH RESNET-50
BACKBONE) ON LARGE-SCALE ATTENTION BASED GLAUCOMA

(LAG) [92] AND KYLBERG TEXTURE DATASET (KTD)
DATASET [93]; BOTH BENCHMARKS REQUIRE THE FIVEFOLD

CLASSIFICATION ACCURACY; METRIC PRESENTED IN %

TABLE IX

GENERALIZATION CAPABILITY OF OUR AGOS ON ZERO-SHOT REMOTE

SENSING SCENE CLASSIFICATION BENCHMARK ZSRSSC [96]; THREE

EXPERIMENTS ARE ALL UNDER GENERAL KNOWLEDGE WITH A

SEEN/UNSEEN RATIO OF 40/30, 50/20, AND 60/10, RESPEC-
TIVELY; OA IS PRESENTED IN %

our AGOS has great generalization capability on other image825

recognition domains.826

3) On Zero-Shot Scene Classification: Zero-shot remote827

sensing scene classification is a challenging topic and has828

drawn increasing attention in the past few years. Despite the829

essence difference that the pipeline of zero-shot classification830

is based on the alignment of high-dimensional feature vectors831

(e.g., 512-d) while the pipeline of our AGOS is based on832

the low-dimensional instance representation (i.e., equals to833

the semantic categories), we remove the MBMIR and SSF834

components and adapt rest parts that can be embedded into835

the zero-shot learning pipelines into the baseline of SAE [94]836

and DMaP [95]. Results are shown in Table IX.837

It can be seen that under all three experimental settings,838

on both baselines, our MGP module from AGOS can boost the839

performance of zero-shot remote sensing scene classification.840

4) On Potential Down-Stream Applications: The feature841

representation from scene recognition pipelines is capable842

of transferring into the down-stream applications such as843

geo-spatial object detection and land cover classification844

(pixel-level). However, most of these existing pipelines take845

the high-dimensional convolutional feature maps as input,846

but our AGOS generates low-dimensional instance represen-847

tations, in which the dimension is equal to the category848

number and is highly compressed. Hence, our full AGOS can849

TABLE X

COMPARISON OF OUR AGOS (WITH RESNET-50 BACKBONE) WITH SOME
CLASSIC SOLUTIONS ON ALIGNING THE AERIAL SCENE SCHEME ON

AID BENCHMARK; MEAN: MEAN OPERATION; MAX: MAX SELEC-
TION; MV; LSS METHOD; METRIC PRESENTED IN %

only be adapted to those down-stream application frameworks 850

that take category-level feature maps as input, or only the 851

components before instance aggregation can be embedded into 852

these existing down-stream application frameworks. 853

Meanwhile, it remains an interesting topic to investigate 854

how these low-dimensional representations can be adapted into 855

the task-specific heads such as detection and segmentation that 856

demand high-dimensional representations as input. 857

G. Discussion on Bag Scheme Alignment 858

Generally speaking, the motivation of our SSF module 859

is to learn a discriminative aerial scene representation from 860

multigrain instance-level representations. However, in classic 861

machine learning and statistical data processing, there are also 862

some solutions that either select or fit an optimal outcome from 863

multiple representations. Hence, it would be quite interesting 864

to compare the impact of our SSF and these classic solutions. 865

To this end, four classic implementations on our bag proba- 866

bility distributions from multigrain instance representations, 867

namely, naive mean (Mean) operation, naive max (Max) 868

selection, majority vote (MV), and least squares (LSs) method, 869

are tested and compared based on the AID dataset under the 870

50% training ratio. Table X lists all these results. Note that, 871

by using naive mean, the entire framework degrades to the 872

third case in our ablation studies (in Table VI). 873

It can be seen that our SSF achieves the best performance 874

while: 1) max selection shows apparent performance decline 875

and 2) other three solutions, namely mean operation, MV, and 876

LS, do not show much performance difference. 877

To better understand how these methods influence the scene 878

scheme alignment, Fig. 9 offers the visualized covariance 879

matrix of the bag probability distributions from all the test 880

samples. Generally speaking, a good scene representation will 881

have higher response on the diagonal region while the response 882

from other regions should be as low as possible. It is clearly 883

seen that our SSF has the best discrimination capability, while 884

for the other solutions, some confusion between bag probabil- 885

ity distributions of different categories always happens. 886

The explanation may lie in the following aspects: 1) our SSF 887

aligns the scene scheme from both representation learning and 888

loss optimization, and thus leads to more performance gain; 889

2) naive average on these multigrain instance representations 890

already achieves an acceptable scene scheme representation, 891

and thus leaves very little space for other solutions such as 892

LS and MV to improve; and 3) max selection itself may lead 893
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Fig. 9. Visualized covariance matrix of the bag probability distribution after scene scheme alignment, processed by mean selection (a), max selection (b),
MV (c), LS method (d), and our AGOS (e). Ideally, the covariance matrix of bag probability distribution should have high responses in the diagonal region
and no responses in other regions. (a) Mean selection. (b) Max selection. (c) MV. (d) LS. (e) AGOS (ours).

Fig. 10. Performance change influenced by the grain number in our AGOS
(with ResNet-50 backbone) on AID 20% (a) and 50% (b). (a) AID 20%.
(b) AID 50%.

to more variance on bag probability prediction and thus the894

performance declines.895

H. Sensitivity Analysis896

1) Influence of Grain Number: Fig. 10 lists the performance897

when the grain number T in our AGOS changes. It can898

be seen that when there are about three or four grains,899

the classification accuracy reaches its peak. After that, the900

classification performance slightly declines. This implies that901

the combined utilization of convolutional features when the902

dilated rate is 1, 3, and 5 is most discriminative in our903

AGOS. When there are too many grains, the perception field904

becomes too large and the scene representation becomes less905

discriminative. Also, when the grain number is little, the906

representation is not qualified enough to completely depict the907

semantic representation where the key objects vary greatly in908

sizes.909

On the other hand, the visualized samples in Fig. 8 also910

reveal that when the dilation rate in our MGP is too small,911

the instance representation tends to focus on a small local912

region of an aerial scene. In contrast, when the dilation rate is913

too large, the instance representation activates too many local914

regions irrelevant to the scene scheme. Thus, the importance915

of our scene scheme self-align strategy reflects, as it helps the916

representation from different grains to align to the same scene917

scheme and refines the activated key local regions. Note that,918

for further investigating the interpretation capability of these919

patches and the possibility for weakly supervised localization920

task, details can be found in [66].921

2) Influence of Hyperparameter α: Fig. 11 shows the clas-922

sification accuracy fluctuation when the hyperparameter α in923

Fig. 11. Performance change influenced by the hyperparameter α in our
AGOS (with ResNet-50 backbone) on AID 20% (a) and 50% (b); α presented
in 5× 10x , and x = −2,−3,−4 and −5. (a) AID 20%. (b) AID 50%.

TABLE XI

COMPARISON OF OUR DDC ON THE CASES WHEN NOT USING
DIFFERENTIAL OPERATION (D#DC), NOT USING DILATED

CONVOLUTION (DD#C) AND NOT USING EITHER DIFFERENTIAL

OPERATION AND DILATED CONVOLUTION (C) ON AID
BENCHMARK WITH RESNET-50

BACKBONE; METRIC IN %

our loss function changes. It can be seen that the performance 924

of our AGOS is stable when α changes. However, when it is 925

too large, the performance shows an obvious decline. When it 926

is too small, the performance degradation is slight. 927

3) Influence of Differential Dilated Convolution: 928

Table XI lists the classification performance when every 929

component of DDC in our MGP is used or not used, and the 930

case when all the representation pairs are summed (denoted 931

as Dense). It can be seen that both the differential operation 932

(D#dc) and the dilated convolution (DD#C) lead to an obvious 933

performance gain for our AGOS. Generally, the performance 934

gain led by the dilated convolution is higher than the differ- 935

ential operation, as it enlarges the receptive field of a deep 936

learning model and thus enhances the feature representation 937

more significantly. 938

Also, the case when using dense prediction (Dense) shows a 939

very close but slightly lower performance when compared with 940

our case only using the neighbor representations (DDC). The 941

explanation may lie in that the sum of all the representation 942
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pairs may contain more redundant information in the final943

fused representation. Hence, the feature representation itself944

may become less discriminative.945

V. CONCLUSION946

In this article, we propose an AGOS framework for aerial947

scene classification. To the best of our knowledge, it is the948

first effort to extend the classic MIL into deep multigrain MIL949

formulation. The effectiveness of our AGOS lies in threefold:950

1) the MIL formulation allows the framework to highlight the951

key local regions in determining the scene category; 2) the952

multigrain multi-instance representation is more capable of953

depicting the complicated aerial scenes; and 3) the bag scheme954

self-alignment strategy allows the instance representation from955

each grain to focus on the same bag category. Experiments956

on three aerial scene classification datasets demonstrate the957

effectiveness of our AGOS and its generalization capability.958

As our AGOS is capable of building discriminative scene959

representation and highlighting the key local regions precisely,960

our future work includes transferring our AGOS framework to961

other tasks such as object localization, detection, and segmen-962

tation especially under the weakly supervised scenarios.963
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