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Abstract— Microwave vegetation optical depth (VOD) and soil
moisture (SM) can be simultaneously retrieved based on L-band
radiometry with polarization information. VOD is indicative
of the vegetation water content (VWC) because it captures
the extinction of land surface emission. If the connectivity of
VOD to VWC is robust, the pair of VWC-SM observations
can be viable bases for understanding soil-plant-atmosphere
water relations, providing new perspectives on ecosystem science.
Simultaneous SM—-VOD retrievals are feasible by inverting the
7 — » model with two independent datasets in dual-channel algo-
rithms. However, given correlated satellite vertical and horizontal
brightness temperatures (TBs; TB, and TB,,), an ill-posed inverse
problem arises where TB errors result in high uncertainties of
retrievals. In this study, we apply the degrees-of-information
(Dol) metric and propose a signal-to-noise ratio (SNR) metric to
assess the “retrievability” of VOD given the Soil Moisture Active
Passive (SMAP) TB,-TB,, linear dependence. The application of
these metrics allows determining where the VOD retrievals are
robust and reliable. This is a necessary step in supporting the
applications of VOD in ecology and hydrology. Results show that
regions with mainly nonwoody vegetation have the best potential
for VOD retrievals, though regularization is necessary. We then
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assess VOD time variations from two regularization products
that reduce the impact of underdetermined inversions: the
L3 dual-channel algorithm (L3-DCA) and the multitemporal
dual-channel algorithm (MTDCA), which constrain VOD time
dynamics with and without using a priori VOD -climatology,
respectively. Though they both reduce noise, especially in the
VOD retrievals, they result in differences in VOD seasonal
amplitude and coupling to SM at high frequencies as we outline
here.

Index Terms— Microwave retrieval algorithms, regularization,
soil moisture (SM), Soil Moisture Active Passive (SMAP),
vegetation optical depth (VOD) robustness.

I. INTRODUCTION

ICROWAVE radiometers on board the Soil Moisture

Active Passive (SMAP; launched in 2015 [1]) and Soil
Moisture and Ocean Salinity (SMOS; launched in 2009 [2])
satellites measure the Earth’s microwave surface emission
at a low frequency (L-band, 1.4 GHz). Over land, such
measurements are sensitive to the rough surface reflectivity
and to the attenuation and scattering that the entire vege-
tation canopy exerts over the surface emission. The rough
surface reflectivity is related to the soil dielectric constant and
electromagnetic roughness. The inversion of estimated surface
reflectivity results in estimates of surface soil moisture (SM).
A by-product of the retrieval is the amount of vegetation
attenuation and scattering that together are captured by the
vegetation optical depth (VOD). VOD is known to be related to
the vegetation water content (VWC), the vegetation biomass,
and the plants’ structure [3], [4], [5].

SM and VOD are valuable hydrologic and ecological
indicators important for a breadth of applications and studies.
These include biomass estimation (e.g., [6], [7], [8]), crop
yield assessment [9], [10], development of drought indicators
(e.g., [11]), study of drought-derived tree mortality [12],
estimation of vegetation moisture [13], [14], and
analyses of water exchange in the soil-plant—atmosphere
continuum [15], [16], [17].

The estimates of global SM fields based on SMAP and
SMOS L-band measurements are routinely assessed against
widely available in situ SM probe measurements. In contrast,
there are only few studies reporting how well VOD represents
in situ plant physiology and phenology (e.g., [18]). Studies
of how well VOD represents VWC at the satellite scale are
becoming more prevalent [4], [S], [15], [19], [20], [21]. These
assessments are based on sparse tower measurements and
crop models, which are highly informative. However, VOD
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in situ measurements are sparse, leaving only limited or
indirect methods for global assessment. Thus, there is still
a need to determine where and to what degree VOD is more
robust to satellite measurement error. The concern arises from
the retrieval of two parameters (VOD and SM) from two
measurements [polarized brightness temperatures (TBs)] that
are correlated [22].

To retrieve simultaneously SM and VOD, the inversion of
a zeroth-order radiative transfer model (the 7 — @ model [23])
is commonly applied. This requires at least two independent
sources of information in order to minimize the cost function
that links measured and estimated TBs to retrieve the appro-
priate SM—VOD pairs. Different approaches are considered
depending on each sensor and algorithm. For the SMOS satel-
lite, its multiangular and dual-polarization configuration allows
obtaining SM and VOD simultaneously without the need of
ancillary information [24]. For SMAP, with one incidence
angle (0 = 40°), VOD is derived from ancillary information
in order to retrieve SM when only one polarization is used
(i.e., the single-channel algorithm (SCA) [25]). Alternatively,
both horizontal and vertical polarizations are applied in the
dual-channel algorithm (DCA) to simultaneously retrieve SM
and VOD [26]. Nevertheless, these TBs at horizontal (TBj,)
and vertical (TB,) polarizations are often correlated, contain-
ing redundant information [27]. Thus, they are not independent
measurements, and their differences can be dominated by
instrument error. As a result, DCA approaches are ill-posed
and can lead to difficulty in algorithmic gradient search
methods finding the true SM and VOD values for a given
snapshot [28].

Therefore, the underdetermination of the VOD and SM
inversion due to correlated polarization measurements is
expected to introduce noise into the retrievals. We expect that
the noise has different characteristics at different frequencies.
At longer time scales such as the seasonal cycle, we expect that
the various approaches to regularize the inversion yield similar
results. Indeed, Zwieback et al. [29], Feldman et al. [30],
and Gao et al. [31] showed that the seasonal cycles of the
various approaches are similar and the climatologies of VOD
are comparable. Our concern, however, is that the noise at
much higher frequencies such as the overpass-to-overpass or
the Nyquist frequency may be at different levels depending
on the approach to the inversion. This would impact studies
that examine short-time scale (i.e., subweekly to monthly)
covariations in VOD and SM, such as the study of the soil-
plant-atmosphere water dynamics. Most other studies that
examine climatologies of VOD (e.g., those focusing on above-
ground biomass, crop phenology, and so on) may be less
affected.

In order to quantify how well-posed the inversion is, pre-
vious work estimates the degrees-of-information (Dol) metric
(Dol is defined in [22] and measures the fractional amount
of information, which is between 1 and 2 in a pair of
measurements). Because TB, and TB, as observation pairs
are correlated, Dol is below 2 and differences between TB,
and TBy;, can become influenced by random instrument error.
Thus, retrievals of SM and VOD by using two polarizations
are not fully independent and errors can potentially affect one
or both retrievals. The spurious noise reduces the robustness
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of the method [22], [32]. For multiple angles, this effect is
expected to be less pronounced due to the higher amount of
information available [33], [34], although the depolarization
with more dense vegetation will still reduce the amount of
information across the angles. Also, note that other error
sources are present, for example, from errors in the assump-
tions about the roughness parameter (k, e.g., [35], [36], [37])
and single-scattering albedo (w). They are explored only
complementarily in this work because our main focus here
is on how TB errors impact SM and VOD.

To overcome these issues, SMAP-based VOD-SM retrievals
have introduced various regularization approaches that aim to
reduce retrieval noise by incorporating a priori information
mainly about variations in VOD. The multitemporal DCA
(MTDCA) is based on the premise that changes in the vege-
tation biomass occur on time scales that are longer than SM
fluctuations due to storms and interstorms [32], [38]. Based on
this assumption, the MTDCA uses two consecutive overpasses
to retrieve two SM values and a single VOD output for each
time-adjacent overpass pair. It also uses model selection over
the entire record to estimate the effective single-scattering
albedo as a static feature of the dominant vegetation type.
Hence, four TB values (two for each overpass) are available
to retrieve three unknowns. This increases Dol above three
[32], [39]. As Dol is the upper limit on the number of
possibly retrieved parameters, the problem is not necessarily
overdetermined. This procedure results in two VOD values
retrieved for each overpass (one using information from the
overpass before and one using information from the over-
pass after). In averaging these two VOD values together,
information from multiple overpasses ultimately constrains the
VOD retrieved at a given overpass. Recently, other algorithms
have also included time aggregation with a priori decision
of the degree of regularization: the SMOS L3 algorithm [40]
and the constrained multichannel algorithm (CMCA) [28].
These approaches often incorporate a penalty on time rates
of change of VOD [29], [41]. Following a similar concept,
new SMAP L3 dual-channel algorithm (L3-DCA) retrievals
[26], [42] incorporate a Tikhonov regularization [43]. Despite
being called a DCA, its incorporation of a regularization
approach is at odds with traditional DCA approaches. For
clarity, we refer to this DCA approach as L3-DCA through-
out this article. This approach instead imposes a weighted
a priori VOD based on the moderate resolution imaging
spectroradiometer (MODIS) normalized difference vegetation
index (NDVI) and penalizes deviations of the SMAP-retrieved
VOD from this assumed time series. The retrieved VOD
is therefore constrained by a less noisy, NDVI-based VOD
seasonal climatology [26].

Despite these advances on new information metrics and
regularization techniques, SMAP DCAs and regularization
approaches still need to be evaluated. We recognize that the
Dol metric is useful to quantify the information available in
satellite measurements, but it does not uniquely indicate the
robustness of the retrievals. For example, Dol may increase
with more random noise (i.e., independent TB, and TBy
values), which paradoxically suggests more robustness to
noise. Therefore, here, we introduce an additional metric of
retrieval susceptibility to noise (and hence robustness): the
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Fig. 1. MTDCA VOD (black line) and L3-DCA VOD (red line) in (a) grasslands in central North America, (b) woody savanna in the Sahel, (c¢) deciduous

forest in the northern Iberian Peninsula, and (d) tropical forests in the Congo basin. VOD data used in this figure are detailed in Section II-A. Precipitation
estimates are based on the Global Precipitation Measurement (GPM) IMERG Final Precipitation L3 v06 product at 0.1 resolution [44]. Off-sets between the
two VOD series are partially due to different algorithmic treatments of surface electromagnetic roughness and effective vegetation scattering albedo. Different

behaviors in the two VOD products (i.e.,
approaches which we investigate in this study.

signal-to-noise ratio (SNR). It complements Dol in order
to provide a holistic understanding of the VOD retrieval
algorithm robustness.

Regularization techniques can overconstrain the resulting
VOD, thus removing VOD variability that contains a physical
signal and creating an unwanted smoothing effect [29], [30].
We examine VOD from two common regularization techniques
(Tikhonov for L3-DCA and multitemporal for MTDCA) at
different time scales in order to gain an understanding of
error sources and characteristics. Fig. 1 shows the examples
that motivate this research. It shows time series of VOD
from MTDCA and L3-DCA in several different vegetation
conditions. Differences in VOD between the algorithms are
likely due to the different regularization approaches that
they use and to their different albedo (@) and roughness (k)
parameters. In low vegetation (grasslands), both VOD products
have similar patterns in terms of variability [Fig. 1(a)].

smoother versus sharper changes along the time series) are likely due to the fact of using different regularization

Fig. 1(b) shows that seasonal variations in a woody savannah
are captured by both approaches, but with a smaller L3-DCA
seasonal amplitude. We aim to understand if either of the
regularization approaches may be under or overregularizing
the VOD variability both in seasonal and high-frequency vari-
ations. Fig. 1(c) and (d) show how high-frequency MTDCA
VOD variation increases with biomass (i.e., the largest rapid
changes are found in the tropical forest pixel), while the
L3-DCA VOD time series is smooth in both cases (especially
in the tropical forest). For dense vegetation, this motivates
investigating whether the MTDCA approach may be carrying
excess noise in its retrievals in high plant biomass regions.
It also motivates determining whether the L3-DCA is overreg-
ularizing VOD variability, creating an unintended smoothing
effect.

Therefore, in this study, we first assess the retrievability
of VOD by examining observed TB,—TB, differences and
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using Dol and the proposed SNR. Second, we compare the
VOD retrievals and noise of multitemporal and Tikhonov
regularization techniques. We perform this test for both the
full signal and the high-frequency signal near the Nyquist
frequency. Our driving research questions are given as follows.

1) Which metrics quantify uncertainty in SM and VOD
retrievals due to instrument noise and what do they
reveal about current global SM—VOD retrievals?

2) How do the retrieved VOD time series based on com-
monly used regularization approaches qualitatively com-
pare across different timescales of variability?

This work thus complements recent efforts to determine
how TB error relatively propagates into SM and VOD in
these algorithms, how much retrieved SM and VOD error
is attributed to errors in the satellite measurements, radiative
transfer model, and algorithmic parameterization, as well as
how much VOD regularization reduces these errors [27], [29],
[30], [45]. The assessment of these errors may have relevant
implications as well for SM estimates, as the uncertainty in
VOD is an important contributor to errors in SM retrievals
[46, pp. 208-210], [47, Ch. 6].

II. DATA AND METHODS
A. Datasets

The SMAP mission was launched by the National Aero-
nautics and Space Administration (NASA) in January 2015.
It has a native spatial resolution of ~36 km (based on half
power or —3-dB definition) and a revisit time of approximately
2-3 days depending on latitude. The following SMAP datasets
are studied globally, using the descending passes of the
satellite (6 A.M.) for the period April 2015-March 2020:

1) TBs at both vertical (TB,) and horizontal (TB;) polar-
izations from the L1C radiometer product, version 2
(SPLICTB [49]). This product contains calibrated,
geolocated TBs derived from SMAP Level-1B (L1B)
antenna temperatures. Backus—Gilbert optimal interpo-
lation methods are applied to extract maximum infor-
mation from the antenna temperatures of SMAP and
convert them to TBs at 9-km gridding (EASE2 grid).

The SMAP L3-DCA that contains SM, VOD, and con-
stant albedo (w) datasets. It is the SMAP-enhanced L3
radiometer SM product, version 4 (SPL3SMP [50]), also
at 9-km gridding. It relies on the DCA algorithm to
retrieve SM and VOD from the aforementioned L1C
TBs. SM and VOD retrievals in this product are based on
a Tikhonov regularization approach designed to remove
excess noise in the VOD estimates, but at the cost of
assuming an a priori VOD time series (see Section I).
To do so, this method defines a degree of regularization,
which modifies the least-squares misfit (y2) between
modeled TBs (as a function of SM and VOD) and
measured TBs. As such, this approach penalizes the
retrieved VOD’s deviation from the a priori VOD time
series with the degree of penalty determined by an
a priori multiplicative factor. Therefore, the regular-
ization inputs information about VOD variations based
on other time series such that the correlated TB

2)
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observations can be potentially used to reliably retrieve
SM and VOD with reduced noise. More details on this
regularization method are provided in [26] and [51].
The SMAP MTDCA SM, VOD, and o datasets
[38], [52]. Note that w is constant for the study period.
The product is also derived from the SMAP L1C 9-km
TBs and applies the MTDCA retrieval algorithm for two
consecutive overpasses. The algorithm is based on a time
series method, which uses all TB values within a pre-
defined time window. The default window length is two
overpasses (i.e., 2-3 days depending on latitude). VOD
is held constant between the two overpasses, but this is
repeated for each time-adjacent overpass pair such that
information from both time-adjacent overpasses is used
(averaged) in the VOD retrieval. Therefore, the VOD
variations, especially those due to noise, are reduced.
Ultimately, this approach penalizes large changes in
VOD between overpasses, eliminating noise more than
the physical VOD signal [30].

In order to analyze the results, datasets on vegetation density
and type are used. This includes the VWC product [42] that
is used in the SCA. This VWC product is derived from NDVI
seasonal climatologies from the NASA MODIS satellite for
use within the SMAP algorithms. Complementarily, we also
include the original MODIS NDVI [48]. In addition, land
cover (LC) data from the MODIS International Geosphere-
Biosphere Program (IGBP, MCDI12C1 product v.6; 3-km
resolution) is used to define homogeneous vegetation classes
in two steps: 1) only the fully homogeneous 9-km pixels
(i.e., those containing all 3-km pixels of the same LC
class) are considered and 2) latitude and homogeneous LC
pixels are applied to define seven different vegetation classes:
tropical forests, temperate forests, boreal forests, savannahs,
shrublands, grasslands, and croplands (Table S1, see the
Supplementary Material).

3)

B. © — w Framework and Reliance on TB
Polarization Differences

Retrievals of SM and VOD from passive microwave mea-
surements rely on the inversion of a “zeroth-order” radiative
transfer model, commonly known as the 7 — w model [23].
In this model, the L-band TBs are represented as the sum
of three terms: 1) the upwelling vegetation emission; 2) the
downwelling emission from vegetation, which is reflected by
the soil and then attenuated by the canopy; and 3) the direct
soil emission and its attenuation through the vegetation

TB)=(1-w)(d-y)T+0-w)d-7y)

rp T4+ (L=rp)y - Ty (1)
where y is the vegetation transmissivity, which depends on the
VOD (algebraically represented by 7) according to Beer’s law
)

where 6 is the incidence angle. Then, 7 (used synony-
mously with VOD here) is one of the two unknowns to be
retrieved. The VOD can be different for different polarizations.
However, currently, neither the SMOS nor the SMAP science

y = e(iﬁd))
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data products account for any polarization difference; both
assume that VOD is the same at both polarizations due
to mixed orientation of vegetation at the 36-km scale. The
soil reflectivity at polarization p (r,) is linked to the soil
dielectric constant through Fresnel equations and a nominal
value of isotropic soil roughness. The soil dielectric constant
is dependent on soil texture and SM. SM is the other unknown
to be retrieved in the 7 —w framework. The effective scattering
albedo (w) accounts for extinction and scattering effects due
to vegetation. Albedo is obtained from nominal values distin-
guishing forest/nonforest vegetation in the case of the SMOS
current algorithms [53, p. 2] and from lookup tables based on
LC in the case of the SMAP ones (e.g., [42]). Like VOD, the
albedo can have polarization differences that are not consid-
ered at this time. While efforts are underway to understand w
and its time dynamics [54], we focus only on SM and VOD
retrievability here. T, and T are the temperatures of the canopy
and the soil, respectively. Both temperatures are assumed to
be equivalent at SMOS and SMAP overpasses times (6 A.M.
and 6 P.M. local times) and are obtained from ancillary surface
temperature information. The isothermal assumption is known
to hold well near 6 A.M. local time.

In dual-polarization algorithms, theoretically, VOD may be
inferred alongside SM if there is observed TB polarization
dependence above instrument noise. This is shown when
separating out the polarization-dependent term (r,,) from (1)

TB,
TZV+(1—w)-(l—y)+wp[(1—w)-(l—y)—1}

3)

where the two values of surface reflectivity (r,: one for TB,
and one for TB;) will lead to two equations. In (3), the
first term is the same for both polarizations (in the SMAP
and SMOS implementations) and only the second term adds
any polarization difference in the forward model. The joint
retrievability of SM and VOD depends on a large enough
difference in TB measurements at H and V polarizations.
VOD is part of y [see (2)]. If TB, and TB;, approach
one another, this suggests that the differences in r, and r,
values are not making a large contribution to the emission
as surface reflectivity typically has large differences at H
and V polarizations. In this scenario, TB measurements have
less contribution from the surface emission-influenced terms
in the final bracketed term in (3), and thus, only VOD can
be retrieved. However, this results in optimization instability
when still attempting joint retrievals under this scenario [many
combinations of possible SM and VOD would satisty (3)].
Therefore, the robustness of DCAs is highly affected by the
TB polarization difference fluctuations close to the instrument
noise level, which can create noise in the estimations.

C. Analysis of the VOD Retrievability

To assess the VOD robustness, first, the relationship and
differences between TB;, and TB, are evaluated for different
bins of VWC: 0-1, 3-4, and >9 kg/m?>. They represent
three contrasting classes of vegetation density, ordered from
lower to higher VWC (i.e., from lower to greater biomass):
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Fig. 2. Graphical summary of how the difference relative to the TB,—TB,

linear dependence (L: red solid line) is computed.

1) low vegetation in semiarid regions, tundra, and steppes;
2) woodlands and nontropical forests; and 3) tropical forests
(Fig. S1, see the Supplementary Material). This first analysis
provides the broader context, which addresses how vegetation
types reduce the TB,—TB,, differences and, quantitatively, how
close are they to the instrument noise.

Second, we use the Dol as proposed in [22]. Dol is a mea-
sure of how much independent information exists in several
measurements (e.g., TB, and TB;,) when the measurements
are correlated. Dol is computed as

Dol = N — Co(X1, ..., X») )

where N is the number of parameters (here, N = 2 if
considering a single snapshot with TB, and TB;) and C,
represents the total correlation among the different parame-
ters X1—X, (here, TB, and TBy;). The total correlation is a
generalization of the mutual information, which consists of
the Kullback-Leibler divergence between the joint and the
marginal entropies of the datasets. C,, captures the amount of
information shared between any of the measurements in a set
[22], [55]. Higher total correlation suggests less independent
information between two parameters.

Third, we introduce an SNR metric to quantitatively assess
retrievability. It measures how much TB, and TB; (two cor-
related measurements) are different relative to the instrument
noise. The dispersion (standard deviation) of the polarization
difference relative to the TB,—TBy, linear dependence is com-
puted. In Fig. 2, this polarization difference is distance L and
is represented by a red solid line.

Once o (L) is obtained, then the SNR metric is

o*(L)
SNR = 5 5
(NEDT; + NEDT;)

(5)

where NEDT states for noise equivalent delta temperature
for the L1C TBs, which is the measurement of the instru-
ment noise. NEDT equals 0.77 according to the L1C TBs
Assessment Report [51, p. 43]. The value is estimated over
a stable vicarious target or constant temperature and salinity
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Fig. 3.

Comparison of SMAP TBs at vertical (TB,: x-axis) and horizontal (TBj: y-axis) polarizations for increasing VWC: (Left) 0-1 kg/mz,

(Center) 3—4 kg/m?, and (Right) >9 kg/m?. See Fig. S1 for a map of the global distribution of the three categories. The color bar shows the density

of pixels (decimal logarithm of the number of pixels).
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Fig. 4. Dol for TBs at vertical (TB,) and horizontal (TB},) polarizations. Dol measures how much independent information exists in several measurements
(here two) when they are correlated (e.g., Dol = 1.5 indicates that 1.5 parameters may be retrieved).

ocean patches. Here, the NEDT of vertical and horizontal
polarizations is assumed to be independent.

D. Metrics to Interpret the Effect of Regularization
on VOD and Noise

Regularization techniques can mitigate issues of correlated
TB, and TB; measurements. However, there are different
regularization approaches that have produced satellite VOD
retrievals and their differences have not been assessed. The
SMAP L3-DCA VOD uses the Tikhonov regularization

J = Z (TB obs (X) _TBpMod)2
p=H,V

min
X=VOD,SM

+72(VOD; — VODpior)*  (6)

where for a given overpass, VOD is retrieved simultaneously
as in the traditional DCA (first addend), but a penalty (1) is
placed on VOD deviations from a prior input VOD based on
NDVI climatology (second addend). This VOD prior input was

previously used in the SMAP SCA SM retrievals. A larger 4
value would force the retrieved VOD to be closer to the VOD
prior. By contrast, the MTDCA uses time-adjacent overpasses
assuming that VOD is constant between n overpasses (n = 2 in
the studied product, see Section II-A)

n=2
. 2
X=V0g,1é113/ll,SM2 I = tzl: XH:V (TBPObs(X) - TBPMod) - (D
=1 p=H,

To evaluate the impacts of multitemporal and Tikhonov
regularizations on the resulting VOD and noise, both the
MTDCA and the L3-DCA products will be assessed and
compared at different time scales. Results will be interpreted
in the context of Dol and SNR. First, the mean annual
VOD and the seasonal amplitude of the raw VOD signal are
estimated and compared between the products. Second, the
near-Nyquist frequency of VOD (NyVOD) and SM (NySM)
will be computed by subtracting the seven-day moving aver-
ages from both raw variables. The high-frequency changes in
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Fig. 6. Summary map of uncertainty of joint SM and VOD retrievals with regularization based on SNR and DOI. Dark green (higher confidence) spans

44.2% of global vegetated land, light green (medium confidence) spans 24.2%, and light yellow (lower confidence) spans 31.6%. DOIx2 represents the degrees
of information of two overpass pairs (or four TB measurements), which should be greater than 3 to be able to retrieve VOD without being an underdetermined
problem. We use DOIx2 here (instead of DOI) for a clearer interpretation of the retrievability, especially in the multitemporal case.

VOD will be analyzed by means of the standard deviation
of the NyVOD. This will provide insight into the amount of
remaining high-frequency VOD variations after regularization.
Third, the covariance between NyVOD and NySM will be
calculated in order to understand the influence of SM-VOD
compensation occurring with noisy inputs during inversion and
differences in this coupling between the two products. These
results will be discussed in the context of SNR and SM—VOD
retrieval errors compensation.

Note that VOD differences between algorithms will not
solely be a function of the differences in regularization
approaches in (7) and (8) because both approaches have
different algorithmic choices, mainly in scattering albedo

and roughness parameters. Though we aim to address our
second research question focusing on the aforementioned
regularizations (which are commonly used in VOD studies),
we also conduct complementary analyses on the impact of
different albedos in the VOD differences between algorithms.
In addition, we discuss the role that roughness may have on
these differences.

III. RETRIEVABILITY OF VOD ACCORDING
TO DOI AND SNR METRICS

The capacity of the t—w framework to provide accurate
VOD retrievals depends on the availability of at least two
independent pieces of information. However, Fig. 3 shows
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Fig. 7. (a) Mean of VOD retrieved with MTDCA, (b) mean of VOD retrieved with L3-DCA, and (c) differences between VOD retrievals (MTDCA — L3-DCA).

that TB, and TBy, are highly correlated. Indeed, the TB,—TB;,  their variability become small. This illustrates why TB, and
difference narrows as VWC increases [see (2) and (3)]. In the TB,, do not represent two independent data sources (Fig. 3) and
densest canopies where VWC > 9 kg/m? (i.e., tropical forests, their differences can be dominated by instrument error. In con-
Figs. 3 and S1) and NDVI > 0.8 (Fig. S2), the differences and trast, regions with less vegetation density (VWC < 1, i.e.,
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Fig. 8. Differences in VOD climatology between algorithms are compared to (a) differences between algorithm roughness parameter (2) and (b) differences
in albedo (). The color bars show the decimal logarithm of counts. Roughness parameter differences explain nearly 70% of the mean bias in VOD from

each algorithm. The scattering albedo has only a minor impact.

semiarid regions, see Fig. S1) do show larger differences
and variations between vertical and horizontal polarizations
(Fig. 3). This eases the partitioning between SM and VOD in
the retrieval approaches as demonstrated with (3).

The Dol metric can be used to quantify the amount of inde-
pendent information in the two measurements. Fig. 4 shows
the Dol map where, generally, Dol ranges between 1.5 and
1.8 for two polarizations in many regions. Hence, theoretically,
around 1.5 parameters can be inferred with a single satellite
overpass (i.e., there is approximately 1.5 independent infor-
mation content in TB, and TBj). In the case of multitemporal
retrievals, the number of parameters that can be inferred
should be (theoretically) the result of multiplying Dol by the
number of overpasses (e.g., roughly three parameters for two
consecutive samples [32]).

Nevertheless, Dol needs to be interpreted with caution as it
may give “false positives” in very dense canopies if it is not
interpreted in the context of noise. In particular, Figs. 4 and S3
show that Dol is very close to 2 in dense tropical forests
(i.e., the Amazon, the Congo basin, and Indonesia). This is
because noise dominates the signal in these dense vegetation
regions. Variations in TBs are small or comparable to instru-
ment noise. Hence, Dol is essentially measuring the indepen-
dence of two uncorrelated time series. It suggests that there
is enough independent information to retrieve two unknowns
but does not consider that the variations are dominated by
instrument noise rather than physical signal. This results in
a deceiving DOI value of 2 for the pair. The polarization
due to surface reflectivity (3) is largely attenuated: TBs are
depolarized (Fig. 3), suggesting that only the instrument noise
might be present in the measurements.

Thus, there is a need for an additional SNR metric to inter-
pret the retrievability where the fluctuations in TB approach
the instrument noise level. We introduce an SNR metric to
complement the Dol in interpreting VOD retrievability. The
SNR should measure, in the context of instrument noise, the
ratio of signal to noise present after linearly predicting one
covariate from another.

Fig. 5 shows the map of SNR. SNR values are close to 1 in
dense tropical forests (median SNR = 1.24). This indicates
that the signal is greatly influenced by noise and suggests
caution in interpreting Dol alone. A low SNR shows that
Dol is likely only higher in tropical forests because the total
correlation is low due to noise. This quantifies the problem
and shows, geographically precise, where retrievals of VOD
may be problematic (Figs. 4 and 5). In other forest types,
as well as in savannas, the value of Dol decreases and the SNR
increases compared to tropical forests (median Dol and SNR
in temperate forests: 1.72 and 1.44, respectively; median Dol
and SNR in savannas: 1.60 and 1.71, respectively; Fig. S3).
In the case of boreal forests, a higher SNR is found (median
SNR = 2.24). Overall, this shows that VOD and SM retrievals
based on DCAs should be robust in terms of available infor-
mation in most land regions, including nontropical forests.

In contrast, lightly vegetated, nonforested regions have the
largest variations in the difference in horizontal and vertical
polarization TBs (Fig. 3). As shown in Figs. 5 and S3,
this results in SNR values over 3 in semiarid regions
(e.g., the Sahel and central Australia), grasslands (e.g., Central
Asia, the U.S. Great Plains, and the Pampas), and croplands
(e.g., the U.S. Corn Belt, Ukraine, Argentina, and the SW
and SE areas of Australia). In these areas, the low vegetation
density permits a good retrievability with high SNR, but in
need of regularization as shown by Dol values closer to
1.5 (Figs. 4 and S3). Hence, VOD and SM retrievals will
be achievable where Dol and SNR are both high. However,
based on these SMAP measurements, DOI is well below 2
where SNR is high, meaning that some degree of regular-
ization is needed to stabilize retrievals. Dol can be adjusted
with regularization. However, SNR is intrinsic to the satellite
measurements and thus cannot be directly altered. Therefore,
we anticipate retrieval difficulty of VOD in wooded regions
with low SNR, but an improvement on VOD retrievals after
regularization in grasslands, croplands, and shrublands as
well as in few cases of boreal and temperate forest areas
(Figs. 6 and S3).
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Taken together, Dol and SNR metrics suggest that VOD
can be robustly retrieved with regularization in regions with
low and moderate vegetation density with an increase in
uncertainty in most savannas and forests, especially in tropical
ones (Fig. 6). If Dol is doubled in a regularization approach
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Seasonal amplitudes of (a) MTDCA VOD and (b) L3-DCA VOD. (c) Differences between seasonal amplitudes (MTDCA — L3-DCA).

(see Section IV), in regions where SNR is also high, both
SM and VOD can be retrieved with lower risk of estimation
instability within the optimization (Fig. 6). Fig. 6 should be
used as a guide in determining where dual retrievals of SM
and VOD are most certain using regularization approaches.
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Fig. 10. Standard deviation of VOD at the Nyquist frequency for (a) MTDCA and (b) L3-DCA. (¢c) MTDCA minus the L3-DCA VOD standard deviation
at the Nyquist frequency.

IV. IMPACTS OF TIKHONOV AND MULTITEMPORAL L3-DCA (Tikhonov regularization). The spatial patterns are
REGULARIZATIONS ON VOD similar, with Pearson’s correlation coefficient () equal to
RETRIEVALS AND NOISE 0.89, although mean VOD values for MTDCA are generally

Global patterns of time-mean total VOD signal are shown higher than those for L3-DCA (Fig. 7). These differences are
in Fig. 7 for MTDCA (multitemporal regularization) and partially attributable to choices of the roughness parameter (/)
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in both algorithms, where higher & inputs generally reduce
mean VOD. In particular, differences in A explain 67% of
variance of the difference between the average VODs of both
products [Fig. 8(a)], where lower L3-DCA’s mean VOD can
be partially explained by its higher /2 inputs. Again, note
that the L3-DCA includes the SMAP product with Tikhonov
regularization and is not a traditional DCA snapshot retrieval.
In addition, note that we have found no relationship between
differences in average VOD and those in w [Fig. 8(b)].

The components of VOD variability at low frequency
(i.e., seasonal amplitude) are shown in Fig. 9. Note that since
the L3-DCA is constrained by NDVI climatology, the seasonal
amplitude may partially be driven by the NDVI climatol-
ogy amplitude and/or spatial pattern of conversion factors
to VOD. The seasonal amplitudes are broadly comparable
(r = 0.44), but the MTDCA shows slightly higher amplitudes,
especially in forests [Fig. 9(c)]. This is expected because:
1) the L3-DCA’s NDVI climatology prior will suppress any
VOD interannual variability and 2) NDVI signal saturates
for closed canopies and more dense vegetation [56], thus
placing a maximum on the NDVI-based climatology used
in L3-DCA regularization. We suggest that these considera-
tions may be dampening the seasonal amplitude of L3-DCA
VOD. A particular exception is croplands, where the sea-
sonal amplitude is larger for the L3-DCA product than for
MTDCA. This is evident in the U.S. Corn Belt and in crop
areas of Argentina [Fig. 9(c)]. We suggest that time-based
regularization approaches without an a priori VOD (such
as the MTDCA) may have reduced capacity to capture the
rapid growing phase seasonality and sharp amplitude in these
regions; rapid corn growth may cause large VOD changes
(around 0.2 Np) in less than ten days that VOD regularization
approaches could dampen [41]. In the case of the Tikhonov
regularization, accounting for an a priori VOD climatology
may ease capturing a larger seasonal amplitude in these
croplands, but at the cost of constraining changes in the
retrievals between years, thus introducing interannual biases
when studying crop phenology. In that sense, note that the
large interannual variability of VOD in croplands (see [18,
Fig. 6]) will be less detected by the L3-DCA VOD [55]
because the a priori VOD is prescribed based on a constant
mean NDVI climatology. The MTDCA may be better able to
detect the interannual variability.

Overall, the difference in seasonal amplitudes may originate
from both regularization approach differences as well as other
parameter choices. For example, the magnitude of effective
single-scattering albedo (w) scales the impact of VOD on the
TB. However, we find that these seasonal amplitude differ-
ences are not linked to the changes in @ between algorithms
(results not shown) consistently with differences in mean
VOD not being linked to changes in w neither [Fig. 8(b)].
Instead, similar to the differences in VOD time means, a gen-
erally larger i roughness parameter chosen for the L3-DCA
[Fig. 8(a)] and the use of an NDVI-based seasonality likely
contribute to decrease the L3-DCA VOD seasonal variability
in comparison to that of MTDCA.

We now evaluate the higher frequency variability near the
Nyquist frequency (periods of 4—7 days for SMAP), which is
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Fig. 11. DCA estimation cost function using synthetic data. The blue symbol
is the true solution, while the green symbol is the noisy solution when
the TB error on the order of 1 K is added to the measurements. Adapted
from [27, Fig. 1].

more sensitive to noise, but the robustness of which can be
improved through regularization [30]. The Nyquist variability
removes some of the influence of the NDVI climatology prior,
and thus, the L3-DCA NyVOD results are more of a function
of the degree of regularization choice (1). Fig. 10(a) and (b)
show the standard deviation of the MTDCA and L3-DCA
high-frequency values. A pattern emerges, which provides
insight into how retrievable VOD is under different regular-
ization approaches. The variability of MTDCA NyVOD is
higher than that of L3-DCA NyVOD distinctly in tropical
and boreal forests. Outside of these forests and in croplands,
the NyVOD standard deviation tends to be lower for both
algorithms. This implies that the forest biomes need additional
constraints on VOD than the TBs alone can provide (such as an
input VOD climatology), even with multitemporal persistence
assumptions.

The estimation of the covariance between SM and VOD
high-frequency variabilities provides insights into how much
compensation may be taking place in inverting for SM and
VOD simultaneously. Fig. 11 shows a representation of the
joint VOD-SM cost function for an example of a dual-
channel retrieval problem without regularization for a given
overpass. In this example, the cost function has an elongated
valley. Small amounts of noise will result in variations in
retrievals following the contours of the valley. In the presence
of noise, this compensation will result in positive covariance
at the Nyquist frequency as shown by the positive VOD-SM
relationship at the minimum cost function values (Fig. 11).

Given that SM and VOD errors are typically positively
correlated (Fig. 11 and [30]), we evaluate systematic compen-
sation between VOD and SM by computing the covariance
between the SM and VOD at the Nyquist frequency. If the
problem is significantly underdetermined, this may manifest
itself as random variability (and thus as positive covariance)
in the signal at high frequencies.

Fig. 12 shows the resulting covariance between VOD
and SM at the Nyquist frequencies for each product. The
covariance rather than the correlation is used to normalize out
differences between the L3-DCA’s and MTDCA’s SM—-VOD
coupling that are due to the standard deviations of SM
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Fig. 12. (a) Map of covariance between Nyquist SM and Nyquist VOD for MTDCA. (b) Map of covariance between Nyquist SM and Nyquist VOD for
L3-DCA. (c) Histogram comparing the distribution of covariances between Nyquist SM and Nyquist VOD for L3-DCA (red) and MTDCA (gray).

and VOD. For the multitemporal regularization (MTDCA),
this covariance is positive on average [mean cov =
1.75 x 107, see Fig. 12(a) and (c)]. This trend occurs in
forest vegetation classes (Fig. S4, see the Supplementary Mate-
rial). Importantly, these results indicate that the multitemporal

algorithm using two satellite overpasses may still be contam-
inated by errors. However, note that there are cases where
positive covariance between SM and VOD on subweekly
timescales is expected based on predawn soil-plant equilib-
rium under the plant hydraulic theory [15]. This may be the



4413417

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

50 F

Latitude (°)
o

o
S

=

= 0.5

-150 -100

0 50

100

Longitude (°)

Fig. 13.

case in boreal forests, where the high covariance values for this
vegetation class (Fig. S4) should not be related to VOD-SM
compensation due to errors, as suggested by the high SNR in
boreal woodlands (SNR > 2, see Figs. 5 and S4). It should be
noted that forested regions with low SNR do show typically
positive covariance, which may indicate mainly the effects of
noise. In nonforest regions, where SNR is higher, the MTDCA
shows low SM-VOD covariance at the Nyquist frequency.
This is consistent with lack of SM—VOD compensating errors
when retrievability is high. Also, negative covariance could
be expected in semiarid regions, where negative SM—VOD
correlation at short timescales occurs during dry-downs [16].
This is likely not observed here to as large of a degree as in
previous work because we are analyzing the entire time series,
not only dry-downs (Figs. 12 and S4).

For the Tikhonov regularization (L3-DCA product), the
NySM-NyVOD covariance is slightly negative [mean cov =
—1 x 107%, see Fig. 12(b) and (c)]. This happens inde-
pendently of the SNR values (Figs. 5, 12, and S4). The
trend is consistent through most vegetation classes, except for
temperate (cov ~ 0) and boreal forests (cov > 0, see Fig. S4).
The exact mechanism leading to the negative covariance
is unclear. Potentially, this may result from the Tikhonov
regularization having too high of a degree of regularization.
This is likely given that the Tikhonov approach in the L3-DCA
uses MODIS greenness climatology as a prior. As such, the
L3-DCA constrains the ability to assess high-frequency VOD
variability. Tests indicate that the L3-DCA closely relates to
the prior input of NDVI climatology (SCA-VOD) in many
places (Fig. S5a), supporting that too much regularization may
have been applied in the L3-DCA VOD retrievals. In partic-
ular, the correlation between L3-DCA and SCA-VOD is high
(median correlation > 0.6) in boreal and temperate forests and
in croplands (Fig. S5b).

Despite differences in the algorithms and coupling with SM,
the high-frequency variability of VOD from both products

Map of Pearson’s correlation coefficient (r) between Nyquist VOD for MTDCA and Nyquist VOD for L3-DCA.

tends to be positively correlated (except in tropical forests,
see Fig. 13). This indicates that the aforementioned differences
may be playing a larger role on the amplitude of variations
across frequencies of the variations. Ultimately, the detection
of increases and decreases in VOD generally tends to be
similar and in phase.

V. CONCLUSION

This study evaluates the robustness of VOD retrievals
based on SMAP horizontal and vertical polarization TB
measurements in the context of instrument noise. The study
also assesses how two different SMAP VOD regularization
techniques impact this robustness. Toward these goals, first,
an SNR metric is proposed to capture variability above instru-
ment noise; it is used as a complementary metric to the Dol
that measures the statistical independence of measurements.
Second, VOD retrievals and noise from two different VOD
regularization approaches using SMAP observations are qual-
itatively compared across different time scales (annual mean,
seasonal amplitude, and high-frequency variability). Namely,
the SMAP MTDCA and L3-DCA products are compared
based on multitemporal and Tikhonov regularization tech-
niques, respectively.

We show that VOD can be robustly retrieved with regular-
ization in regions with lower vegetation density and with more
uncertainty in regions with greater vegetation density. Regions
with the highest Dol values correspond to high vegetation
densities (i.e., tropical forests, VWC > 9 kg/mz), but these
values are inflated due to random noise. Moreover, SNR is
low based on high TB,—TB,, correlations, which indicates that
the VOD signal in tropical forests is highly impacted by noise
due to TB depolarization. Therefore, interpreting Dol alone is
misleading in dense vegetation areas: values of Dol ~ 2 are
due to random noise, which gives the false impression of hav-
ing two independent TB sources. We conclude that Dol must
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be interpreted along with SNR for a holistic understanding of
VOD retrievability. In contrast, low-density vegetation areas
show high SNR values, with Dol being close to 1.5. The latter
indicates the need for regularization in order to achieve robust
retrievals with enough independent information. Ultimately,
Fig. 6 is a guide for where regularized joint retrievals of SM
and VOD would produce the smallest errors.

The comparison of multitemporal (MTDCA) and Tikhonov
(L3-DCA) regularization techniques shows that their magni-
tudes of high-frequency variability are similar, except for in
tropical forests where the variability of MTDCA NyVOD is
higher than that of L3-DCA NyVOD. Furthermore, both reg-
ularization techniques show generally similar spatial patterns
of high-frequency coupling of SM-VOD, where covariance
tends to be neutral or negative in regions with herbaceous
vegetation. This is because regularization reduces noise-based
positive correlations between NySM and NyVOD. However,
the L3-DCA NySM-NyVOD covariance tends to be lower
and more negative on average than that of the MTDCA,
even in tropical forests. Based on the more negative NySM-
NyVOD coupling and reduced VOD high-frequency variability
with the L3-DCA product, we suggest that this may be due
to too high of a degree of regularization imposed in the
L3-DCA Tikhonov algorithm, which forces the VOD retrieval
to be like the VOD a priori time series based on NDVI
climatology. We provide evidence for this by showing that
in many global regions, the L3-DCA VOD retrieval is still
temporally similar to its VOD a priori constraint. This may
overconstrain VOD variability in some cases. Conversely, the
MTDCA may require an a priori VOD time series in tropical
forests because regularization alone is insufficient to prevent
high positive correlations between SM and VOD and high
standard deviation of VOD likely due to noise. This indicates
that potentially, a VOD a priori constraint via the Tikhonov
regularization may only be needed in more densely vegetated
regions. A more naive approach such as the MTDCA or
Sobolev-norm regularization that does not require an a priori
VOD time series may be sufficient for regions with low-density
vegetation.

Ultimately, the high-frequency signals of the L3-DCA and
MTDCA VOD time series positively correlate (except for
tropical forests). Therefore, despite the differences in VOD
retrieval approaches and potential for underregularization and
overregularization in each product, the increases and decreases
in VOD at subweekly timescales are in phase between the
algorithms. This indicates that the amplitude of variability
across different frequencies may be more impacted than the
subweekly detection of increases and decreases in VOD. More
confidence may therefore be exhibited in the use of VOD to
detect plant rehydration and water loss rather than the magni-
tude of these changes. These patterns emerge independent of
the regularization approach.

Altogether, from the results presented here, we first
recommend the simultaneous application of SNR and Dol
metrics for the evaluation of VOD robustness. Second, we sug-
gest further assessing whether the degree of regularization
within the SMAP L3-DCA’s Tikhonov approach is too high.
If so, it can be reduced to capture VOD dynamics where
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adequate polarization information exists based on TBs, Dol,
and SNR. This reduction could be addressed by using a
spatially varying 4 (instead of a global constant value) accord-
ing to a map of VOD noise [see [26, Fig. 2(a)]. Third,
we recommend potentially increasing the regularization in
the multitemporal retrievals or imposing a priori climatology
for noise-dominated regions (mainly tropical forests). Also,
future work should be addressed to evaluate the robustness of
VOD retrievals for other algorithms (e.g., CMCA [28]) and
sensors (the L3 algorithm of SMOS [40]), which are based
on time-aggregation approaches using a priori regularization.
We expect that the implementation of these changes can lead
to more accurately retrieving SM—VOD dynamics.
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