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Abstract— Microwave vegetation optical depth (VOD) and soil1

moisture (SM) can be simultaneously retrieved based on L-band2

radiometry with polarization information. VOD is indicative3

of the vegetation water content (VWC) because it captures4

the extinction of land surface emission. If the connectivity of5

VOD to VWC is robust, the pair of VWC-SM observations6

can be viable bases for understanding soil–plant–atmosphere7

water relations, providing new perspectives on ecosystem science.8

Simultaneous SM–VOD retrievals are feasible by inverting the9

τ −ω model with two independent datasets in dual-channel algo-10

rithms. However, given correlated satellite vertical and horizontal11

brightness temperatures (TBs; TBv and TBh), an ill-posed inverse12

problem arises where TB errors result in high uncertainties of13

retrievals. In this study, we apply the degrees-of-information14

(DoI) metric and propose a signal-to-noise ratio (SNR) metric to15

assess the “retrievability” of VOD given the Soil Moisture Active16

Passive (SMAP) TBv–TBh linear dependence. The application of17

these metrics allows determining where the VOD retrievals are18

robust and reliable. This is a necessary step in supporting the19

applications of VOD in ecology and hydrology. Results show that20

regions with mainly nonwoody vegetation have the best potential21

for VOD retrievals, though regularization is necessary. We then22
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assess VOD time variations from two regularization products 23

that reduce the impact of underdetermined inversions: the 24

L3 dual-channel algorithm (L3-DCA) and the multitemporal 25

dual-channel algorithm (MTDCA), which constrain VOD time 26

dynamics with and without using a priori VOD climatology, 27

respectively. Though they both reduce noise, especially in the 28

VOD retrievals, they result in differences in VOD seasonal 29

amplitude and coupling to SM at high frequencies as we outline 30

here. 31

Index Terms— Microwave retrieval algorithms, regularization, 32

soil moisture (SM), Soil Moisture Active Passive (SMAP), 33

vegetation optical depth (VOD) robustness. 34

I. INTRODUCTION 35

M ICROWAVE radiometers on board the Soil Moisture 36

Active Passive (SMAP; launched in 2015 [1]) and Soil 37

Moisture and Ocean Salinity (SMOS; launched in 2009 [2]) 38

satellites measure the Earth’s microwave surface emission 39

at a low frequency (L-band, 1.4 GHz). Over land, such 40

measurements are sensitive to the rough surface reflectivity 41

and to the attenuation and scattering that the entire vege- 42

tation canopy exerts over the surface emission. The rough 43

surface reflectivity is related to the soil dielectric constant and 44

electromagnetic roughness. The inversion of estimated surface 45

reflectivity results in estimates of surface soil moisture (SM). 46

A by-product of the retrieval is the amount of vegetation 47

attenuation and scattering that together are captured by the 48

vegetation optical depth (VOD). VOD is known to be related to 49

the vegetation water content (VWC), the vegetation biomass, 50

and the plants’ structure [3], [4], [5]. 51

SM and VOD are valuable hydrologic and ecological 52

indicators important for a breadth of applications and studies. 53

These include biomass estimation (e.g., [6], [7], [8]), crop 54

yield assessment [9], [10], development of drought indicators 55

(e.g., [11]), study of drought-derived tree mortality [12], 56

estimation of vegetation moisture [13], [14], and 57

analyses of water exchange in the soil–plant–atmosphere 58

continuum [15], [16], [17]. 59

The estimates of global SM fields based on SMAP and 60

SMOS L-band measurements are routinely assessed against 61

widely available in situ SM probe measurements. In contrast, 62

there are only few studies reporting how well VOD represents 63

in situ plant physiology and phenology (e.g., [18]). Studies 64

of how well VOD represents VWC at the satellite scale are 65

becoming more prevalent [4], [5], [15], [19], [20], [21]. These 66

assessments are based on sparse tower measurements and 67

crop models, which are highly informative. However, VOD 68
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in situ measurements are sparse, leaving only limited or69

indirect methods for global assessment. Thus, there is still70

a need to determine where and to what degree VOD is more71

robust to satellite measurement error. The concern arises from72

the retrieval of two parameters (VOD and SM) from two73

measurements [polarized brightness temperatures (TBs)] that74

are correlated [22].75

To retrieve simultaneously SM and VOD, the inversion of76

a zeroth-order radiative transfer model (the τ −ω model [23])77

is commonly applied. This requires at least two independent78

sources of information in order to minimize the cost function79

that links measured and estimated TBs to retrieve the appro-80

priate SM–VOD pairs. Different approaches are considered81

depending on each sensor and algorithm. For the SMOS satel-82

lite, its multiangular and dual-polarization configuration allows83

obtaining SM and VOD simultaneously without the need of84

ancillary information [24]. For SMAP, with one incidence85

angle (θ = 40◦), VOD is derived from ancillary information86

in order to retrieve SM when only one polarization is used87

(i.e., the single-channel algorithm (SCA) [25]). Alternatively,88

both horizontal and vertical polarizations are applied in the89

dual-channel algorithm (DCA) to simultaneously retrieve SM90

and VOD [26]. Nevertheless, these TBs at horizontal (TBh)91

and vertical (TBv) polarizations are often correlated, contain-92

ing redundant information [27]. Thus, they are not independent93

measurements, and their differences can be dominated by94

instrument error. As a result, DCA approaches are ill-posed95

and can lead to difficulty in algorithmic gradient search96

methods finding the true SM and VOD values for a given97

snapshot [28].98

Therefore, the underdetermination of the VOD and SM99

inversion due to correlated polarization measurements is100

expected to introduce noise into the retrievals. We expect that101

the noise has different characteristics at different frequencies.102

At longer time scales such as the seasonal cycle, we expect that103

the various approaches to regularize the inversion yield similar104

results. Indeed, Zwieback et al. [29], Feldman et al. [30],105

and Gao et al. [31] showed that the seasonal cycles of the106

various approaches are similar and the climatologies of VOD107

are comparable. Our concern, however, is that the noise at108

much higher frequencies such as the overpass-to-overpass or109

the Nyquist frequency may be at different levels depending110

on the approach to the inversion. This would impact studies111

that examine short-time scale (i.e., subweekly to monthly)112

covariations in VOD and SM, such as the study of the soil–113

plant–atmosphere water dynamics. Most other studies that114

examine climatologies of VOD (e.g., those focusing on above-115

ground biomass, crop phenology, and so on) may be less116

affected.117

In order to quantify how well-posed the inversion is, pre-118

vious work estimates the degrees-of-information (DoI) metric119

(DoI is defined in [22] and measures the fractional amount120

of information, which is between 1 and 2 in a pair of121

measurements). Because TBv and TBh as observation pairs122

are correlated, DoI is below 2 and differences between TBv123

and TBh can become influenced by random instrument error.124

Thus, retrievals of SM and VOD by using two polarizations125

are not fully independent and errors can potentially affect one126

or both retrievals. The spurious noise reduces the robustness127

of the method [22], [32]. For multiple angles, this effect is 128

expected to be less pronounced due to the higher amount of 129

information available [33], [34], although the depolarization 130

with more dense vegetation will still reduce the amount of 131

information across the angles. Also, note that other error 132

sources are present, for example, from errors in the assump- 133

tions about the roughness parameter (h, e.g., [35], [36], [37]) 134

and single-scattering albedo (ω). They are explored only 135

complementarily in this work because our main focus here 136

is on how TB errors impact SM and VOD. 137

To overcome these issues, SMAP-based VOD–SM retrievals 138

have introduced various regularization approaches that aim to 139

reduce retrieval noise by incorporating a priori information 140

mainly about variations in VOD. The multitemporal DCA 141

(MTDCA) is based on the premise that changes in the vege- 142

tation biomass occur on time scales that are longer than SM 143

fluctuations due to storms and interstorms [32], [38]. Based on 144

this assumption, the MTDCA uses two consecutive overpasses 145

to retrieve two SM values and a single VOD output for each 146

time-adjacent overpass pair. It also uses model selection over 147

the entire record to estimate the effective single-scattering 148

albedo as a static feature of the dominant vegetation type. 149

Hence, four TB values (two for each overpass) are available 150

to retrieve three unknowns. This increases DoI above three 151

[32], [39]. As DoI is the upper limit on the number of 152

possibly retrieved parameters, the problem is not necessarily 153

overdetermined. This procedure results in two VOD values 154

retrieved for each overpass (one using information from the 155

overpass before and one using information from the over- 156

pass after). In averaging these two VOD values together, 157

information from multiple overpasses ultimately constrains the 158

VOD retrieved at a given overpass. Recently, other algorithms 159

have also included time aggregation with a priori decision 160

of the degree of regularization: the SMOS L3 algorithm [40] 161

and the constrained multichannel algorithm (CMCA) [28]. 162

These approaches often incorporate a penalty on time rates 163

of change of VOD [29], [41]. Following a similar concept, 164

new SMAP L3 dual-channel algorithm (L3-DCA) retrievals 165

[26], [42] incorporate a Tikhonov regularization [43]. Despite 166

being called a DCA, its incorporation of a regularization 167

approach is at odds with traditional DCA approaches. For 168

clarity, we refer to this DCA approach as L3-DCA through- 169

out this article. This approach instead imposes a weighted 170

a priori VOD based on the moderate resolution imaging 171

spectroradiometer (MODIS) normalized difference vegetation 172

index (NDVI) and penalizes deviations of the SMAP-retrieved 173

VOD from this assumed time series. The retrieved VOD 174

is therefore constrained by a less noisy, NDVI-based VOD 175

seasonal climatology [26]. 176

Despite these advances on new information metrics and 177

regularization techniques, SMAP DCAs and regularization 178

approaches still need to be evaluated. We recognize that the 179

DoI metric is useful to quantify the information available in 180

satellite measurements, but it does not uniquely indicate the 181

robustness of the retrievals. For example, DoI may increase 182

with more random noise (i.e., independent TBv and TBh 183

values), which paradoxically suggests more robustness to 184

noise. Therefore, here, we introduce an additional metric of 185

retrieval susceptibility to noise (and hence robustness): the 186
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Fig. 1. MTDCA VOD (black line) and L3-DCA VOD (red line) in (a) grasslands in central North America, (b) woody savanna in the Sahel, (c) deciduous
forest in the northern Iberian Peninsula, and (d) tropical forests in the Congo basin. VOD data used in this figure are detailed in Section II-A. Precipitation
estimates are based on the Global Precipitation Measurement (GPM) IMERG Final Precipitation L3 v06 product at 0.1 resolution [44]. Off-sets between the
two VOD series are partially due to different algorithmic treatments of surface electromagnetic roughness and effective vegetation scattering albedo. Different
behaviors in the two VOD products (i.e., smoother versus sharper changes along the time series) are likely due to the fact of using different regularization
approaches which we investigate in this study.

signal-to-noise ratio (SNR). It complements DoI in order187

to provide a holistic understanding of the VOD retrieval188

algorithm robustness.189

Regularization techniques can overconstrain the resulting190

VOD, thus removing VOD variability that contains a physical191

signal and creating an unwanted smoothing effect [29], [30].192

We examine VOD from two common regularization techniques193

(Tikhonov for L3-DCA and multitemporal for MTDCA) at194

different time scales in order to gain an understanding of195

error sources and characteristics. Fig. 1 shows the examples196

that motivate this research. It shows time series of VOD197

from MTDCA and L3-DCA in several different vegetation198

conditions. Differences in VOD between the algorithms are199

likely due to the different regularization approaches that200

they use and to their different albedo (ω) and roughness (h)201

parameters. In low vegetation (grasslands), both VOD products202

have similar patterns in terms of variability [Fig. 1(a)].203

Fig. 1(b) shows that seasonal variations in a woody savannah 204

are captured by both approaches, but with a smaller L3-DCA 205

seasonal amplitude. We aim to understand if either of the 206

regularization approaches may be under or overregularizing 207

the VOD variability both in seasonal and high-frequency vari- 208

ations. Fig. 1(c) and (d) show how high-frequency MTDCA 209

VOD variation increases with biomass (i.e., the largest rapid 210

changes are found in the tropical forest pixel), while the 211

L3-DCA VOD time series is smooth in both cases (especially 212

in the tropical forest). For dense vegetation, this motivates 213

investigating whether the MTDCA approach may be carrying 214

excess noise in its retrievals in high plant biomass regions. 215

It also motivates determining whether the L3-DCA is overreg- 216

ularizing VOD variability, creating an unintended smoothing 217

effect. 218

Therefore, in this study, we first assess the retrievability 219

of VOD by examining observed TBv–TBh differences and 220
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using DoI and the proposed SNR. Second, we compare the221

VOD retrievals and noise of multitemporal and Tikhonov222

regularization techniques. We perform this test for both the223

full signal and the high-frequency signal near the Nyquist224

frequency. Our driving research questions are given as follows.225

1) Which metrics quantify uncertainty in SM and VOD226

retrievals due to instrument noise and what do they227

reveal about current global SM–VOD retrievals?228

2) How do the retrieved VOD time series based on com-229

monly used regularization approaches qualitatively com-230

pare across different timescales of variability?231

This work thus complements recent efforts to determine232

how TB error relatively propagates into SM and VOD in233

these algorithms, how much retrieved SM and VOD error234

is attributed to errors in the satellite measurements, radiative235

transfer model, and algorithmic parameterization, as well as236

how much VOD regularization reduces these errors [27], [29],237

[30], [45]. The assessment of these errors may have relevant238

implications as well for SM estimates, as the uncertainty in239

VOD is an important contributor to errors in SM retrievals240

[46, pp. 208–210], [47, Ch. 6].241

II. DATA AND METHODS242

A. Datasets243

The SMAP mission was launched by the National Aero-244

nautics and Space Administration (NASA) in January 2015.245

It has a native spatial resolution of ∼36 km (based on half246

power or −3-dB definition) and a revisit time of approximately247

2–3 days depending on latitude. The following SMAP datasets248

are studied globally, using the descending passes of the249

satellite (6 A.M.) for the period April 2015–March 2020:250

1) TBs at both vertical (TBv ) and horizontal (TBh) polar-251

izations from the L1C radiometer product, version 2252

(SPL1CTB [49]). This product contains calibrated,253

geolocated TBs derived from SMAP Level-1B (L1B)254

antenna temperatures. Backus–Gilbert optimal interpo-255

lation methods are applied to extract maximum infor-256

mation from the antenna temperatures of SMAP and257

convert them to TBs at 9-km gridding (EASE2 grid).258

2) The SMAP L3-DCA that contains SM, VOD, and con-259

stant albedo (ω) datasets. It is the SMAP-enhanced L3260

radiometer SM product, version 4 (SPL3SMP [50]), also261

at 9-km gridding. It relies on the DCA algorithm to262

retrieve SM and VOD from the aforementioned L1C263

TBs. SM and VOD retrievals in this product are based on264

a Tikhonov regularization approach designed to remove265

excess noise in the VOD estimates, but at the cost of266

assuming an a priori VOD time series (see Section I).267

To do so, this method defines a degree of regularization,268

which modifies the least-squares misfit (χ2) between269

modeled TBs (as a function of SM and VOD) and270

measured TBs. As such, this approach penalizes the271

retrieved VOD’s deviation from the a priori VOD time272

series with the degree of penalty determined by an273

a priori multiplicative factor. Therefore, the regular-274

ization inputs information about VOD variations based275

on other time series such that the correlated TB276

observations can be potentially used to reliably retrieve 277

SM and VOD with reduced noise. More details on this 278

regularization method are provided in [26] and [51]. 279

3) The SMAP MTDCA SM, VOD, and ω datasets 280

[38], [52]. Note that ω is constant for the study period. 281

The product is also derived from the SMAP L1C 9-km 282

TBs and applies the MTDCA retrieval algorithm for two 283

consecutive overpasses. The algorithm is based on a time 284

series method, which uses all TB values within a pre- 285

defined time window. The default window length is two 286

overpasses (i.e., 2–3 days depending on latitude). VOD 287

is held constant between the two overpasses, but this is 288

repeated for each time-adjacent overpass pair such that 289

information from both time-adjacent overpasses is used 290

(averaged) in the VOD retrieval. Therefore, the VOD 291

variations, especially those due to noise, are reduced. 292

Ultimately, this approach penalizes large changes in 293

VOD between overpasses, eliminating noise more than 294

the physical VOD signal [30]. 295

In order to analyze the results, datasets on vegetation density 296

and type are used. This includes the VWC product [42] that 297

is used in the SCA. This VWC product is derived from NDVI 298

seasonal climatologies from the NASA MODIS satellite for 299

use within the SMAP algorithms. Complementarily, we also 300

include the original MODIS NDVI [48]. In addition, land 301

cover (LC) data from the MODIS International Geosphere- 302

Biosphere Program (IGBP, MCD12C1 product v.6; 3-km 303

resolution) is used to define homogeneous vegetation classes 304

in two steps: 1) only the fully homogeneous 9-km pixels 305

(i.e., those containing all 3-km pixels of the same LC 306

class) are considered and 2) latitude and homogeneous LC 307

pixels are applied to define seven different vegetation classes: 308

tropical forests, temperate forests, boreal forests, savannahs, 309

shrublands, grasslands, and croplands (Table S1, see the 310

Supplementary Material). 311

B. τ − ω Framework and Reliance on TB 312

Polarization Differences 313

Retrievals of SM and VOD from passive microwave mea- 314

surements rely on the inversion of a “zeroth-order” radiative 315

transfer model, commonly known as the τ − ω model [23]. 316

In this model, the L-band TBs are represented as the sum 317

of three terms: 1) the upwelling vegetation emission; 2) the 318

downwelling emission from vegetation, which is reflected by 319

the soil and then attenuated by the canopy; and 3) the direct 320

soil emission and its attenuation through the vegetation 321

TBp = (1 − ω)(1 − γ )Tc + (1 − ω)(1 − γ )γ 322

· rp · Tc + (
1 − rp

)
γ · Ts (1) 323

where γ is the vegetation transmissivity, which depends on the 324

VOD (algebraically represented by τ ) according to Beer’s law 325

γ = e(−
τ

cosθ ) (2) 326

where θ is the incidence angle. Then, τ (used synony- 327

mously with VOD here) is one of the two unknowns to be 328

retrieved. The VOD can be different for different polarizations. 329

However, currently, neither the SMOS nor the SMAP science 330
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data products account for any polarization difference; both331

assume that VOD is the same at both polarizations due332

to mixed orientation of vegetation at the 36-km scale. The333

soil reflectivity at polarization p (rp) is linked to the soil334

dielectric constant through Fresnel equations and a nominal335

value of isotropic soil roughness. The soil dielectric constant336

is dependent on soil texture and SM. SM is the other unknown337

to be retrieved in the τ −ω framework. The effective scattering338

albedo (ω) accounts for extinction and scattering effects due339

to vegetation. Albedo is obtained from nominal values distin-340

guishing forest/nonforest vegetation in the case of the SMOS341

current algorithms [53, p. 2] and from lookup tables based on342

LC in the case of the SMAP ones (e.g., [42]). Like VOD, the343

albedo can have polarization differences that are not consid-344

ered at this time. While efforts are underway to understand ω345

and its time dynamics [54], we focus only on SM and VOD346

retrievability here. Tc and Ts are the temperatures of the canopy347

and the soil, respectively. Both temperatures are assumed to348

be equivalent at SMOS and SMAP overpasses times (6 A.M.349

and 6 P.M. local times) and are obtained from ancillary surface350

temperature information. The isothermal assumption is known351

to hold well near 6 A.M. local time.352

In dual-polarization algorithms, theoretically, VOD may be353

inferred alongside SM if there is observed TB polarization354

dependence above instrument noise. This is shown when355

separating out the polarization-dependent term (rp) from (1)356

TBp

T
= γ + (1 − ω) · (1 − γ ) + γ rp

[
(1 − ω) · (1 − γ ) − 1

]
357

(3)358

where the two values of surface reflectivity (rp: one for TBv359

and one for TBh) will lead to two equations. In (3), the360

first term is the same for both polarizations (in the SMAP361

and SMOS implementations) and only the second term adds362

any polarization difference in the forward model. The joint363

retrievability of SM and VOD depends on a large enough364

difference in TB measurements at H and V polarizations.365

VOD is part of γ [see (2)]. If TBv and TBh approach366

one another, this suggests that the differences in rh and rv367

values are not making a large contribution to the emission368

as surface reflectivity typically has large differences at H369

and V polarizations. In this scenario, TB measurements have370

less contribution from the surface emission-influenced terms371

in the final bracketed term in (3), and thus, only VOD can372

be retrieved. However, this results in optimization instability373

when still attempting joint retrievals under this scenario [many374

combinations of possible SM and VOD would satisfy (3)].375

Therefore, the robustness of DCAs is highly affected by the376

TB polarization difference fluctuations close to the instrument377

noise level, which can create noise in the estimations.378

C. Analysis of the VOD Retrievability379

To assess the VOD robustness, first, the relationship and380

differences between TBh and TBv are evaluated for different381

bins of VWC: 0–1, 3–4, and >9 kg/m2. They represent382

three contrasting classes of vegetation density, ordered from383

lower to higher VWC (i.e., from lower to greater biomass):384

Fig. 2. Graphical summary of how the difference relative to the TBv–TBh
linear dependence (L: red solid line) is computed.

1) low vegetation in semiarid regions, tundra, and steppes; 385

2) woodlands and nontropical forests; and 3) tropical forests 386

(Fig. S1, see the Supplementary Material). This first analysis 387

provides the broader context, which addresses how vegetation 388

types reduce the TBv–TBh differences and, quantitatively, how 389

close are they to the instrument noise. 390

Second, we use the DoI as proposed in [22]. DoI is a mea- 391

sure of how much independent information exists in several 392

measurements (e.g., TBv and TBh) when the measurements 393

are correlated. DoI is computed as 394

DoI = N − Cn(X1, . . . , Xn) (4) 395

where N is the number of parameters (here, N = 2 if 396

considering a single snapshot with TBv and TBh) and Cn 397

represents the total correlation among the different parame- 398

ters X1–Xn (here, TBv and TBh). The total correlation is a 399

generalization of the mutual information, which consists of 400

the Kullback–Leibler divergence between the joint and the 401

marginal entropies of the datasets. Cn captures the amount of 402

information shared between any of the measurements in a set 403

[22], [55]. Higher total correlation suggests less independent 404

information between two parameters. 405

Third, we introduce an SNR metric to quantitatively assess 406

retrievability. It measures how much TBv and TBh (two cor- 407

related measurements) are different relative to the instrument 408

noise. The dispersion (standard deviation) of the polarization 409

difference relative to the TBv–TBh linear dependence is com- 410

puted. In Fig. 2, this polarization difference is distance L and 411

is represented by a red solid line. 412

Once σ(L) is obtained, then the SNR metric is 413

SNR = σ 2(L)(
NEDT2

v + NEDT2
h

) (5) 414

where NEDT states for noise equivalent delta temperature 415

for the L1C TBs, which is the measurement of the instru- 416

ment noise. NEDT equals 0.77 according to the L1C TBs 417

Assessment Report [51, p. 43]. The value is estimated over 418

a stable vicarious target or constant temperature and salinity 419
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Fig. 3. Comparison of SMAP TBs at vertical (TBv : x-axis) and horizontal (TBh : y-axis) polarizations for increasing VWC: (Left) 0–1 kg/m2,
(Center) 3–4 kg/m2, and (Right) >9 kg/m2. See Fig. S1 for a map of the global distribution of the three categories. The color bar shows the density
of pixels (decimal logarithm of the number of pixels).

Fig. 4. DoI for TBs at vertical (TBv ) and horizontal (TBh) polarizations. DoI measures how much independent information exists in several measurements
(here two) when they are correlated (e.g., DoI = 1.5 indicates that 1.5 parameters may be retrieved).

ocean patches. Here, the NEDT of vertical and horizontal420

polarizations is assumed to be independent.421

D. Metrics to Interpret the Effect of Regularization422

on VOD and Noise423

Regularization techniques can mitigate issues of correlated424

TBv and TBh measurements. However, there are different425

regularization approaches that have produced satellite VOD426

retrievals and their differences have not been assessed. The427

SMAP L3-DCA VOD uses the Tikhonov regularization428

min
X=VOD,SM

J =
∑

p=H,V

(
TBpObs(X) − TBpMod

)2
429

+ λ2
(
VODt − VODpriort

)2
(6)430

where for a given overpass, VOD is retrieved simultaneously431

as in the traditional DCA (first addend), but a penalty (λ) is432

placed on VOD deviations from a prior input VOD based on433

NDVI climatology (second addend). This VOD prior input was434

previously used in the SMAP SCA SM retrievals. A larger λ 435

value would force the retrieved VOD to be closer to the VOD 436

prior. By contrast, the MTDCA uses time-adjacent overpasses 437

assuming that VOD is constant between n overpasses (n = 2 in 438

the studied product, see Section II-A) 439

min
X=VOD,SM1,SM2

J =
n=2∑

t=1

∑

p=H,V

(
TBpObs(X) − TBpMod

)2
. (7) 440

To evaluate the impacts of multitemporal and Tikhonov 441

regularizations on the resulting VOD and noise, both the 442

MTDCA and the L3-DCA products will be assessed and 443

compared at different time scales. Results will be interpreted 444

in the context of DoI and SNR. First, the mean annual 445

VOD and the seasonal amplitude of the raw VOD signal are 446

estimated and compared between the products. Second, the 447

near-Nyquist frequency of VOD (NyVOD) and SM (NySM) 448

will be computed by subtracting the seven-day moving aver- 449

ages from both raw variables. The high-frequency changes in 450
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Fig. 5. Map of SNR, which is based on σ(L). SNR provides a new metric to evaluate the robustness of VOD retrievals.

Fig. 6. Summary map of uncertainty of joint SM and VOD retrievals with regularization based on SNR and DOI. Dark green (higher confidence) spans
44.2% of global vegetated land, light green (medium confidence) spans 24.2%, and light yellow (lower confidence) spans 31.6%. DOI∗2 represents the degrees
of information of two overpass pairs (or four TB measurements), which should be greater than 3 to be able to retrieve VOD without being an underdetermined
problem. We use DOI∗2 here (instead of DOI) for a clearer interpretation of the retrievability, especially in the multitemporal case.

VOD will be analyzed by means of the standard deviation451

of the NyVOD. This will provide insight into the amount of452

remaining high-frequency VOD variations after regularization.453

Third, the covariance between NyVOD and NySM will be454

calculated in order to understand the influence of SM–VOD455

compensation occurring with noisy inputs during inversion and456

differences in this coupling between the two products. These457

results will be discussed in the context of SNR and SM–VOD458

retrieval errors compensation.459

Note that VOD differences between algorithms will not460

solely be a function of the differences in regularization461

approaches in (7) and (8) because both approaches have462

different algorithmic choices, mainly in scattering albedo463

and roughness parameters. Though we aim to address our 464

second research question focusing on the aforementioned 465

regularizations (which are commonly used in VOD studies), 466

we also conduct complementary analyses on the impact of 467

different albedos in the VOD differences between algorithms. 468

In addition, we discuss the role that roughness may have on 469

these differences. 470

III. RETRIEVABILITY OF VOD ACCORDING 471

TO DOI AND SNR METRICS 472

The capacity of the τ–ω framework to provide accurate 473

VOD retrievals depends on the availability of at least two 474

independent pieces of information. However, Fig. 3 shows 475
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Fig. 7. (a) Mean of VOD retrieved with MTDCA, (b) mean of VOD retrieved with L3-DCA, and (c) differences between VOD retrievals (MTDCA − L3-DCA).

that TBv and TBh are highly correlated. Indeed, the TBv–TBh476

difference narrows as VWC increases [see (2) and (3)]. In the477

densest canopies where VWC > 9 kg/m2 (i.e., tropical forests,478

Figs. 3 and S1) and NDVI > 0.8 (Fig. S2), the differences and479

their variability become small. This illustrates why TBv and 480

TBh do not represent two independent data sources (Fig. 3) and 481

their differences can be dominated by instrument error. In con- 482

trast, regions with less vegetation density (VWC < 1, i.e., 483
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Fig. 8. Differences in VOD climatology between algorithms are compared to (a) differences between algorithm roughness parameter (h) and (b) differences
in albedo (ω). The color bars show the decimal logarithm of counts. Roughness parameter differences explain nearly 70% of the mean bias in VOD from
each algorithm. The scattering albedo has only a minor impact.

semiarid regions, see Fig. S1) do show larger differences484

and variations between vertical and horizontal polarizations485

(Fig. 3). This eases the partitioning between SM and VOD in486

the retrieval approaches as demonstrated with (3).487

The DoI metric can be used to quantify the amount of inde-488

pendent information in the two measurements. Fig. 4 shows489

the DoI map where, generally, DoI ranges between 1.5 and490

1.8 for two polarizations in many regions. Hence, theoretically,491

around 1.5 parameters can be inferred with a single satellite492

overpass (i.e., there is approximately 1.5 independent infor-493

mation content in TBv and TBh). In the case of multitemporal494

retrievals, the number of parameters that can be inferred495

should be (theoretically) the result of multiplying DoI by the496

number of overpasses (e.g., roughly three parameters for two497

consecutive samples [32]).498

Nevertheless, DoI needs to be interpreted with caution as it499

may give “false positives” in very dense canopies if it is not500

interpreted in the context of noise. In particular, Figs. 4 and S3501

show that DoI is very close to 2 in dense tropical forests502

(i.e., the Amazon, the Congo basin, and Indonesia). This is503

because noise dominates the signal in these dense vegetation504

regions. Variations in TBs are small or comparable to instru-505

ment noise. Hence, DoI is essentially measuring the indepen-506

dence of two uncorrelated time series. It suggests that there507

is enough independent information to retrieve two unknowns508

but does not consider that the variations are dominated by509

instrument noise rather than physical signal. This results in510

a deceiving DOI value of 2 for the pair. The polarization511

due to surface reflectivity (3) is largely attenuated: TBs are512

depolarized (Fig. 3), suggesting that only the instrument noise513

might be present in the measurements.514

Thus, there is a need for an additional SNR metric to inter-515

pret the retrievability where the fluctuations in TB approach516

the instrument noise level. We introduce an SNR metric to517

complement the DoI in interpreting VOD retrievability. The518

SNR should measure, in the context of instrument noise, the519

ratio of signal to noise present after linearly predicting one520

covariate from another.521

Fig. 5 shows the map of SNR. SNR values are close to 1 in 522

dense tropical forests (median SNR = 1.24). This indicates 523

that the signal is greatly influenced by noise and suggests 524

caution in interpreting DoI alone. A low SNR shows that 525

DoI is likely only higher in tropical forests because the total 526

correlation is low due to noise. This quantifies the problem 527

and shows, geographically precise, where retrievals of VOD 528

may be problematic (Figs. 4 and 5). In other forest types, 529

as well as in savannas, the value of DoI decreases and the SNR 530

increases compared to tropical forests (median DoI and SNR 531

in temperate forests: 1.72 and 1.44, respectively; median DoI 532

and SNR in savannas: 1.60 and 1.71, respectively; Fig. S3). 533

In the case of boreal forests, a higher SNR is found (median 534

SNR = 2.24). Overall, this shows that VOD and SM retrievals 535

based on DCAs should be robust in terms of available infor- 536

mation in most land regions, including nontropical forests. 537

In contrast, lightly vegetated, nonforested regions have the 538

largest variations in the difference in horizontal and vertical 539

polarization TBs (Fig. 3). As shown in Figs. 5 and S3, 540

this results in SNR values over 3 in semiarid regions 541

(e.g., the Sahel and central Australia), grasslands (e.g., Central 542

Asia, the U.S. Great Plains, and the Pampas), and croplands 543

(e.g., the U.S. Corn Belt, Ukraine, Argentina, and the SW 544

and SE areas of Australia). In these areas, the low vegetation 545

density permits a good retrievability with high SNR, but in 546

need of regularization as shown by DoI values closer to 547

1.5 (Figs. 4 and S3). Hence, VOD and SM retrievals will 548

be achievable where DoI and SNR are both high. However, 549

based on these SMAP measurements, DOI is well below 2 550

where SNR is high, meaning that some degree of regular- 551

ization is needed to stabilize retrievals. DoI can be adjusted 552

with regularization. However, SNR is intrinsic to the satellite 553

measurements and thus cannot be directly altered. Therefore, 554

we anticipate retrieval difficulty of VOD in wooded regions 555

with low SNR, but an improvement on VOD retrievals after 556

regularization in grasslands, croplands, and shrublands as 557

well as in few cases of boreal and temperate forest areas 558

(Figs. 6 and S3). 559
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Fig. 9. Seasonal amplitudes of (a) MTDCA VOD and (b) L3-DCA VOD. (c) Differences between seasonal amplitudes (MTDCA − L3-DCA).

Taken together, DoI and SNR metrics suggest that VOD560

can be robustly retrieved with regularization in regions with561

low and moderate vegetation density with an increase in562

uncertainty in most savannas and forests, especially in tropical563

ones (Fig. 6). If DoI is doubled in a regularization approach564

(see Section IV), in regions where SNR is also high, both 565

SM and VOD can be retrieved with lower risk of estimation 566

instability within the optimization (Fig. 6). Fig. 6 should be 567

used as a guide in determining where dual retrievals of SM 568

and VOD are most certain using regularization approaches. 569
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Fig. 10. Standard deviation of VOD at the Nyquist frequency for (a) MTDCA and (b) L3-DCA. (c) MTDCA minus the L3-DCA VOD standard deviation
at the Nyquist frequency.

IV. IMPACTS OF TIKHONOV AND MULTITEMPORAL570

REGULARIZATIONS ON VOD571

RETRIEVALS AND NOISE572

Global patterns of time-mean total VOD signal are shown573

in Fig. 7 for MTDCA (multitemporal regularization) and574

L3-DCA (Tikhonov regularization). The spatial patterns are 575

similar, with Pearson’s correlation coefficient (r) equal to 576

0.89, although mean VOD values for MTDCA are generally 577

higher than those for L3-DCA (Fig. 7). These differences are 578

partially attributable to choices of the roughness parameter (h) 579
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in both algorithms, where higher h inputs generally reduce580

mean VOD. In particular, differences in h explain 67% of581

variance of the difference between the average VODs of both582

products [Fig. 8(a)], where lower L3-DCA’s mean VOD can583

be partially explained by its higher h inputs. Again, note584

that the L3-DCA includes the SMAP product with Tikhonov585

regularization and is not a traditional DCA snapshot retrieval.586

In addition, note that we have found no relationship between587

differences in average VOD and those in ω [Fig. 8(b)].588

The components of VOD variability at low frequency589

(i.e., seasonal amplitude) are shown in Fig. 9. Note that since590

the L3-DCA is constrained by NDVI climatology, the seasonal591

amplitude may partially be driven by the NDVI climatol-592

ogy amplitude and/or spatial pattern of conversion factors593

to VOD. The seasonal amplitudes are broadly comparable594

(r = 0.44), but the MTDCA shows slightly higher amplitudes,595

especially in forests [Fig. 9(c)]. This is expected because:596

1) the L3-DCA’s NDVI climatology prior will suppress any597

VOD interannual variability and 2) NDVI signal saturates598

for closed canopies and more dense vegetation [56], thus599

placing a maximum on the NDVI-based climatology used600

in L3-DCA regularization. We suggest that these considera-601

tions may be dampening the seasonal amplitude of L3-DCA602

VOD. A particular exception is croplands, where the sea-603

sonal amplitude is larger for the L3-DCA product than for604

MTDCA. This is evident in the U.S. Corn Belt and in crop605

areas of Argentina [Fig. 9(c)]. We suggest that time-based606

regularization approaches without an a priori VOD (such607

as the MTDCA) may have reduced capacity to capture the608

rapid growing phase seasonality and sharp amplitude in these609

regions; rapid corn growth may cause large VOD changes610

(around 0.2 Np) in less than ten days that VOD regularization611

approaches could dampen [41]. In the case of the Tikhonov612

regularization, accounting for an a priori VOD climatology613

may ease capturing a larger seasonal amplitude in these614

croplands, but at the cost of constraining changes in the615

retrievals between years, thus introducing interannual biases616

when studying crop phenology. In that sense, note that the617

large interannual variability of VOD in croplands (see [18,618

Fig. 6]) will be less detected by the L3-DCA VOD [55]619

because the a priori VOD is prescribed based on a constant620

mean NDVI climatology. The MTDCA may be better able to621

detect the interannual variability.622

Overall, the difference in seasonal amplitudes may originate623

from both regularization approach differences as well as other624

parameter choices. For example, the magnitude of effective625

single-scattering albedo (ω) scales the impact of VOD on the626

TB. However, we find that these seasonal amplitude differ-627

ences are not linked to the changes in ω between algorithms628

(results not shown) consistently with differences in mean629

VOD not being linked to changes in ω neither [Fig. 8(b)].630

Instead, similar to the differences in VOD time means, a gen-631

erally larger h roughness parameter chosen for the L3-DCA632

[Fig. 8(a)] and the use of an NDVI-based seasonality likely633

contribute to decrease the L3-DCA VOD seasonal variability634

in comparison to that of MTDCA.635

We now evaluate the higher frequency variability near the636

Nyquist frequency (periods of 4–7 days for SMAP), which is637

Fig. 11. DCA estimation cost function using synthetic data. The blue symbol
is the true solution, while the green symbol is the noisy solution when
the TB error on the order of 1 K is added to the measurements. Adapted
from [27, Fig. 1].

more sensitive to noise, but the robustness of which can be 638

improved through regularization [30]. The Nyquist variability 639

removes some of the influence of the NDVI climatology prior, 640

and thus, the L3-DCA NyVOD results are more of a function 641

of the degree of regularization choice (λ). Fig. 10(a) and (b) 642

show the standard deviation of the MTDCA and L3-DCA 643

high-frequency values. A pattern emerges, which provides 644

insight into how retrievable VOD is under different regular- 645

ization approaches. The variability of MTDCA NyVOD is 646

higher than that of L3-DCA NyVOD distinctly in tropical 647

and boreal forests. Outside of these forests and in croplands, 648

the NyVOD standard deviation tends to be lower for both 649

algorithms. This implies that the forest biomes need additional 650

constraints on VOD than the TBs alone can provide (such as an 651

input VOD climatology), even with multitemporal persistence 652

assumptions. 653

The estimation of the covariance between SM and VOD 654

high-frequency variabilities provides insights into how much 655

compensation may be taking place in inverting for SM and 656

VOD simultaneously. Fig. 11 shows a representation of the 657

joint VOD–SM cost function for an example of a dual- 658

channel retrieval problem without regularization for a given 659

overpass. In this example, the cost function has an elongated 660

valley. Small amounts of noise will result in variations in 661

retrievals following the contours of the valley. In the presence 662

of noise, this compensation will result in positive covariance 663

at the Nyquist frequency as shown by the positive VOD–SM 664

relationship at the minimum cost function values (Fig. 11). 665

Given that SM and VOD errors are typically positively 666

correlated (Fig. 11 and [30]), we evaluate systematic compen- 667

sation between VOD and SM by computing the covariance 668

between the SM and VOD at the Nyquist frequency. If the 669

problem is significantly underdetermined, this may manifest 670

itself as random variability (and thus as positive covariance) 671

in the signal at high frequencies. 672

Fig. 12 shows the resulting covariance between VOD 673

and SM at the Nyquist frequencies for each product. The 674

covariance rather than the correlation is used to normalize out 675

differences between the L3-DCA’s and MTDCA’s SM–VOD 676

coupling that are due to the standard deviations of SM 677
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Fig. 12. (a) Map of covariance between Nyquist SM and Nyquist VOD for MTDCA. (b) Map of covariance between Nyquist SM and Nyquist VOD for
L3-DCA. (c) Histogram comparing the distribution of covariances between Nyquist SM and Nyquist VOD for L3-DCA (red) and MTDCA (gray).

and VOD. For the multitemporal regularization (MTDCA),678

this covariance is positive on average [mean cov =679

1.75 × 10−4, see Fig. 12(a) and (c)]. This trend occurs in680

forest vegetation classes (Fig. S4, see the Supplementary Mate-681

rial). Importantly, these results indicate that the multitemporal682

algorithm using two satellite overpasses may still be contam- 683

inated by errors. However, note that there are cases where 684

positive covariance between SM and VOD on subweekly 685

timescales is expected based on predawn soil–plant equilib- 686

rium under the plant hydraulic theory [15]. This may be the 687
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Fig. 13. Map of Pearson’s correlation coefficient (r) between Nyquist VOD for MTDCA and Nyquist VOD for L3-DCA.

case in boreal forests, where the high covariance values for this688

vegetation class (Fig. S4) should not be related to VOD–SM689

compensation due to errors, as suggested by the high SNR in690

boreal woodlands (SNR > 2, see Figs. 5 and S4). It should be691

noted that forested regions with low SNR do show typically692

positive covariance, which may indicate mainly the effects of693

noise. In nonforest regions, where SNR is higher, the MTDCA694

shows low SM–VOD covariance at the Nyquist frequency.695

This is consistent with lack of SM–VOD compensating errors696

when retrievability is high. Also, negative covariance could697

be expected in semiarid regions, where negative SM–VOD698

correlation at short timescales occurs during dry-downs [16].699

This is likely not observed here to as large of a degree as in700

previous work because we are analyzing the entire time series,701

not only dry-downs (Figs. 12 and S4).702

For the Tikhonov regularization (L3-DCA product), the703

NySM-NyVOD covariance is slightly negative [mean cov =704

−1 × 10−4, see Fig. 12(b) and (c)]. This happens inde-705

pendently of the SNR values (Figs. 5, 12, and S4). The706

trend is consistent through most vegetation classes, except for707

temperate (cov ∼ 0) and boreal forests (cov > 0, see Fig. S4).708

The exact mechanism leading to the negative covariance709

is unclear. Potentially, this may result from the Tikhonov710

regularization having too high of a degree of regularization.711

This is likely given that the Tikhonov approach in the L3-DCA712

uses MODIS greenness climatology as a prior. As such, the713

L3-DCA constrains the ability to assess high-frequency VOD714

variability. Tests indicate that the L3-DCA closely relates to715

the prior input of NDVI climatology (SCA-VOD) in many716

places (Fig. S5a), supporting that too much regularization may717

have been applied in the L3-DCA VOD retrievals. In partic-718

ular, the correlation between L3-DCA and SCA-VOD is high719

(median correlation > 0.6) in boreal and temperate forests and720

in croplands (Fig. S5b).721

Despite differences in the algorithms and coupling with SM,722

the high-frequency variability of VOD from both products723

tends to be positively correlated (except in tropical forests, 724

see Fig. 13). This indicates that the aforementioned differences 725

may be playing a larger role on the amplitude of variations 726

across frequencies of the variations. Ultimately, the detection 727

of increases and decreases in VOD generally tends to be 728

similar and in phase. 729

V. CONCLUSION 730

This study evaluates the robustness of VOD retrievals 731

based on SMAP horizontal and vertical polarization TB 732

measurements in the context of instrument noise. The study 733

also assesses how two different SMAP VOD regularization 734

techniques impact this robustness. Toward these goals, first, 735

an SNR metric is proposed to capture variability above instru- 736

ment noise; it is used as a complementary metric to the DoI 737

that measures the statistical independence of measurements. 738

Second, VOD retrievals and noise from two different VOD 739

regularization approaches using SMAP observations are qual- 740

itatively compared across different time scales (annual mean, 741

seasonal amplitude, and high-frequency variability). Namely, 742

the SMAP MTDCA and L3-DCA products are compared 743

based on multitemporal and Tikhonov regularization tech- 744

niques, respectively. 745

We show that VOD can be robustly retrieved with regular- 746

ization in regions with lower vegetation density and with more 747

uncertainty in regions with greater vegetation density. Regions 748

with the highest DoI values correspond to high vegetation 749

densities (i.e., tropical forests, VWC > 9 kg/m2), but these 750

values are inflated due to random noise. Moreover, SNR is 751

low based on high TBv–TBh correlations, which indicates that 752

the VOD signal in tropical forests is highly impacted by noise 753

due to TB depolarization. Therefore, interpreting DoI alone is 754

misleading in dense vegetation areas: values of DoI ∼ 2 are 755

due to random noise, which gives the false impression of hav- 756

ing two independent TB sources. We conclude that DoI must 757
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be interpreted along with SNR for a holistic understanding of758

VOD retrievability. In contrast, low-density vegetation areas759

show high SNR values, with DoI being close to 1.5. The latter760

indicates the need for regularization in order to achieve robust761

retrievals with enough independent information. Ultimately,762

Fig. 6 is a guide for where regularized joint retrievals of SM763

and VOD would produce the smallest errors.764

The comparison of multitemporal (MTDCA) and Tikhonov765

(L3-DCA) regularization techniques shows that their magni-766

tudes of high-frequency variability are similar, except for in767

tropical forests where the variability of MTDCA NyVOD is768

higher than that of L3-DCA NyVOD. Furthermore, both reg-769

ularization techniques show generally similar spatial patterns770

of high-frequency coupling of SM–VOD, where covariance771

tends to be neutral or negative in regions with herbaceous772

vegetation. This is because regularization reduces noise-based773

positive correlations between NySM and NyVOD. However,774

the L3-DCA NySM-NyVOD covariance tends to be lower775

and more negative on average than that of the MTDCA,776

even in tropical forests. Based on the more negative NySM-777

NyVOD coupling and reduced VOD high-frequency variability778

with the L3-DCA product, we suggest that this may be due779

to too high of a degree of regularization imposed in the780

L3-DCA Tikhonov algorithm, which forces the VOD retrieval781

to be like the VOD a priori time series based on NDVI782

climatology. We provide evidence for this by showing that783

in many global regions, the L3-DCA VOD retrieval is still784

temporally similar to its VOD a priori constraint. This may785

overconstrain VOD variability in some cases. Conversely, the786

MTDCA may require an a priori VOD time series in tropical787

forests because regularization alone is insufficient to prevent788

high positive correlations between SM and VOD and high789

standard deviation of VOD likely due to noise. This indicates790

that potentially, a VOD a priori constraint via the Tikhonov791

regularization may only be needed in more densely vegetated792

regions. A more naïve approach such as the MTDCA or793

Sobolev-norm regularization that does not require an a priori794

VOD time series may be sufficient for regions with low-density795

vegetation.796

Ultimately, the high-frequency signals of the L3-DCA and797

MTDCA VOD time series positively correlate (except for798

tropical forests). Therefore, despite the differences in VOD799

retrieval approaches and potential for underregularization and800

overregularization in each product, the increases and decreases801

in VOD at subweekly timescales are in phase between the802

algorithms. This indicates that the amplitude of variability803

across different frequencies may be more impacted than the804

subweekly detection of increases and decreases in VOD. More805

confidence may therefore be exhibited in the use of VOD to806

detect plant rehydration and water loss rather than the magni-807

tude of these changes. These patterns emerge independent of808

the regularization approach.809

Altogether, from the results presented here, we first810

recommend the simultaneous application of SNR and DoI811

metrics for the evaluation of VOD robustness. Second, we sug-812

gest further assessing whether the degree of regularization813

within the SMAP L3-DCA’s Tikhonov approach is too high.814

If so, it can be reduced to capture VOD dynamics where815

adequate polarization information exists based on TBs, DoI, 816

and SNR. This reduction could be addressed by using a 817

spatially varying λ (instead of a global constant value) accord- 818

ing to a map of VOD noise [see [26, Fig. 2(a)]. Third, 819

we recommend potentially increasing the regularization in 820

the multitemporal retrievals or imposing a priori climatology 821

for noise-dominated regions (mainly tropical forests). Also, 822

future work should be addressed to evaluate the robustness of 823

VOD retrievals for other algorithms (e.g., CMCA [28]) and 824

sensors (the L3 algorithm of SMOS [40]), which are based 825

on time-aggregation approaches using a priori regularization. 826

We expect that the implementation of these changes can lead 827

to more accurately retrieving SM–VOD dynamics. 828
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