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Flash Floods Prediction Using Precipitable Water
Vapor Derived From GPS Tropospheric Path

Delays Over the Eastern Mediterranean
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Abstract— A flash flood is a rapid and intense response of a1

drainage area to heavy rainfall events. In the arid and semiarid2

parts of the Eastern Mediterranean (EM) region, the spatiotem-3

poral distribution of rainfall is the most important factor for flash4

flood generation. A possible precursor to heavy rainfall events5

is the rise in tropospheric water vapor amount, which can be6

remotely sensed using ground-based global navigation satellite7

system (GNSS) stations. Here, we use the precipitable water8

vapor (PWV) derived from nine GNSS ground-based stations9

in the arid part of the EM region in order to predict flash10

floods. Our approach includes using three types of machine11

learning (ML) models in a binary classification task, which12

predicts whether a flash flood will occur given 24 h of PWV13

data. We train our models with 107 unique flash flood events and14

vigorously test them using a nested cross-validation technique.15

The results indicate a good agreement between all three types of16

models and across various score metrics. In addition, the models17

are further improved by adding more features such as surface18

pressure measurements. Finally, a feature importance analysis19

shows that the most important features are the PWV values20

from 2 to 6 h prior to a flash flood. These promising results21

indicate that it is possible to augment the current flash flood22

warning systems with a near real-time GNSS ground-based data-23

driven approach as demonstrated in this work.24

Index Terms— Eastern Mediterranean (EM), flash floods,25

global navigation satellite system (GNSS), machine learn-26

ing (ML), path delays, precipitable water vapor (PWV).27

I. INTRODUCTION28

FLASH floods are rapid and high-intensity flooding events,29

which are mainly caused by heavy rainfall. Since flash30

floods have a short response time of several hours, they are31

difficult to predict and cause damages and even casualties [1].32

Among the factors that control the flash floods generation33

(e.g., soil saturation and surface cover), the spatiotemporal34

distribution of rainfall is the most significant one when35

analyzing hydrological models output [2], [3], [4], [5]. The36
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rainfall regime in the arid and semiarid parts of the Eastern 37

Mediterranean (EM) region is extremely variable and is mostly 38

comprised of short duration, high-intensity events [6], [7], [8]. 39

Therefore, in order to predict flood events, one must first 40

account for the heavy rainfall events’ location and timing, 41

which can be achieved by remote sensing platforms (e.g., 42

weather radar [9], [10], [11]). Another option is to measure the 43

water vapor (WV) amount in the atmosphere in order to detect 44

a mass moisture transport that is a perquisite to heavy rainfall 45

events. One such method is the global navigation satellite 46

system (GNSS) meteorology, which can continuously provide 47

a near real-time estimate of the precipitable WV (PWV) above 48

the ground-based receiver’s location [12], [13]. 49

GPS satellites that orbit the Earth at ≈20 200 km trans- 50

mit navigation messages via radio waves to ground-based 51

receivers. Each navigation message includes information that 52

allows the ground-based user to find its position up to 53

centimeter- or even millimeter-level accuracy [14], [15]. This 54

precise point positioning (PPP) method, as it is called, can 55

also be used to estimate the PWV content between each 56

GPS satellite and the ground-based receiver. As they reach 57

Earth, the transmitted radio waves are effectively dispersed by 58

the ionosphere and absorbed by the troposphere [16]. These 59

processes produce a measurable delay in the radio message 60

upon arrival in the ground-based receiver. The ionospheric 61

dispersion effect can be accounted for since GPS satellites 62

transmit the radio waves in at least two frequency bands 63

(e.g., L1 = 1575.42 MHz, L2 = 1227.6 MHz, and L5 = 64

1176.45 MHz) [17]. The tropospheric delay or the zenith 65

tropospheric delay (ZTD)1 consists of two major sources of 66

absorption processes: hydrostatic delay or zenith hydrostatic 67

delay (ZHD),1 which is mainly due to the effect of atmospheric 68

pressure [18] on the radio signal and wet delay that is due to 69

the radio signal’s interaction with water molecules [19]. The 70

wet delay can be estimated by subtracting the ZHD from the 71

ZTD. 72

In each ground-based receiver, the radio messages are stored 73

as text files called Receiver Independent Exchange Format 74

(RINEX) and can be processed by dedicated software such as 75

NASA’s JPL GipsyX [20]. The processing involves complex 76

inversion algorithms [21], [22] and is used in order to solve 77

the precise position of the ground-based receiver. From the 78

position solution of the receiver, the ZTD can be extracted, 79

1The delay is given in zenith values by using mapping functions.
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Fig. 1. PWV at Yerucham (YRCM) GNSS station superimposed on the water discharge (flow) at the Mamsheet hydrometric station located 12 km east of
YRCM on April 24–27, 2018. Note the three major flash flood events on the 25th, the 26th, and the 27th. The PWV more than doubled during the second
half of the 24th as a low-pressure system provided large quantities of moisture to the region.

while the ZHD is provided with the empirical mapping func-80

tion model files (global mapping function (GMF)/GPT2/GPT381

that are based on climatological means) or from numerical82

weather data derived from, e.g., global six-hourly surface83

pressure measurements (Vienna Mapping Function 1—VMF184

data files) [23], [24]. Here, we used the GipsyX default85

option that is the GMF along with GPT2 data files to obtain86

the ZHD estimations. The obtained zenith wet delay (ZWD;87

ZTD-ZHD) is proportional to the total amount of WV in a88

vertical atmospheric column. Thus, the ZWD can be converted89

into PWV by using a WV mean atmospheric temperature [18].90

In the past 30 years, GNSSderived PWV has been exten-91

sively compared to many other remote sensing platforms92

(e.g., Sun photometers and radiometers), radiosonde in situ93

measurements, and reanalysis products that resulted in an root94

mean square error (RMSE) ranging from 1 to 3 mm [25],95

[26], [27], [28], [29], [30], [31]. Furthermore, PWV maps can96

also be assimilated into modern numerical weather prediction97

models (e.g., WRF), which effectively lowers the WV predic-98

tion RMSE by more than 30% when compared to radiosonde99

measurements [32].100

Using GNSS ground-based meteorology to monitor PWV101

before, during, and after heavy rainfall events is not new.102

Bonafoni et al. [33] reported at least six papers describing103

the rise in PWV values when the weather system enters104

the affected region. Moreover, the heavy precipitation begins105

only when the PWV reaches its peak value (e.g., [34], [35]).106

Moore et al. [36] showed that during the July 2013 sum-107

mer monsoon in California, near real-time PWV can detect108

rapid moisture influx and issue a timely flood warning.109

Huelsing et al. [37] found that prior to the 2013 Colorado110

flood event, the PWV increased by about 10 mm and later111

remained almost constant due to the saturated atmosphere.112

These findings are consistent with our own analysis in the113

arid area of the EM. For example, Fig. 1 shows the PWV114

values for YRCM station located 12 km west of Mamsheet115

hydrometric station for April 24–27, 2018.2 The PWV values116

more than doubled during the second half of the 24th event117

as a low-pressure system entered the region. Moreover, the118

flood events’ peak discharges lag after the closest PWV peak119

values for the 26th and 27th events, while the 25th double120

peaked event shows a more complex behavior and can be the121

2These series of flash flood events claimed the lives of 15 people in Israel.

results of local and nonlocal coupled sources of humidity as 122

suggested by Lynn et al. [38]. 123

GNSS technology is a powerful tool for geoscience remote 124

sensing and natural hazards forecasting, which requires per- 125

manent monitoring of the troposphere and ionosphere state on 126

different spatial scales. Several studies in the field of machine 127

learning (ML) associated with GNSS ionospheric total electron 128

content (TEC) were focused on TEC time series prediction 129

algorithms. Sun et al. [39] provided a long short-term memory 130

(LSTM)-based model for predicting ionospheric vertical TEC 131

above Beijing using a time sequence, consisting of the daily 132

TEC vectors for their model input, and the output was TEC 133

time series 24 h ahead. Liu et al. [40] used the LSTM with 134

several input data, including historical time series of spherical 135

harmonic (SH) coefficients, solar extreme ultra violet (EUV) 136

flux, disturbance storm time index, and hour of the day, 137

for predicting the 256 SH coefficients, traditionally used for 138

constructing global ionospheric maps. Asaly et al. [41] used 139

GNSS TEC data along with support vector machine (SVM) 140

training set to build a solar flare X- and M-class predictor. 141

Later on, they also used GNSS TEC data along with the SVM 142

model for potentially predicting strong earthquake events [42]. 143

Hsu [43] used an SVM classifier to separate the type of 144

GNSS pseudorange measurement into three categories: clean, 145

multipath, and nonline of sight, thus evaluating several features 146

which were estimated from the GNSS raw data, including 147

the received signal strength. In addition, he also proposed 148

a new feature to indicate the consistency between measure- 149

ments of pseudorange and Doppler shift. Linty et al. [44] 150

used an ML decision tree and random forest (RF) algorithms, 151

applied with big sets of 50-Hz postcorrelated GNSS data 152

for automatic, accurate, and early detection of amplitude 153

ionospheric scintillation events, reaching a detection accuracy 154

of 98%. 155

Our goal in this work is to investigate the ability of 156

GNSS-derived PWV to predict flash floods events in the 157

arid part of the EM region using three types of ML mod- 158

els. Accordingly, Section II describes the PWV data and 159

flood events used in this work along with all the ML 160

methodology [e.g., preprocessing, metrics, and cross validation 161

(CV)]. Section III presents the ML models’ performance 162

along with a feature importance analysis. We discuss the 163

results in Section IV and our concluding remarks follow in 164

Section V. 165
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Fig. 2. (Left) PWV data availability for each of the SOI-APN stations in the southern part of Israel. The flash floods’ unique events are plotted with x’s
under each nearest GNSS station. (Right) SOI-APN stations (black squares), Bet-Dagan IMS station (black x), and the hydrometric stations (pink) plotted on
a height-filled contour map of the study area.

II. DATA AND METHODOLOGY166

The GNSS ground station receiver’s network used in this167

work is the Survey Of Israel Active Permanent Network168

(SOI-APN). We selected nine stations that are located in the169

arid climate of southern Israel in the EM. Their names and170

station IDs are presented in Table I and their locations are171

indicated on the map in Fig. 2.172

Recently, Ziv et al. [45] used the SOI-APN stations to173

investigate the PWV diurnal variations in the EM region. They174

processed the RINEX files and produced the PWV time series175

for each station. In this work, we use the aforementioned PWV176

dataset and preprocess it along with the flood events database177

for the ML classification task.178

Thus, we briefly outline the PWV derivation methods179

from ground-based receivers along with a description of the180

flood events dataset in Section II-A. Section II-B describes181

the insights we gather from analyzing and correlating the182

flood events with the PWV time series dataset. Finally, in183

Section II-C, we describe and elaborate upon the ML method-184

ology used in this work, which includes data preprocessing,185

test score metrics, and the nested cross-validation technique.186

Furthermore, in the spirit of reproducible science,187

we encourage the interested reader to explore the Python188

repository hosted on GitHub.com (https://github.com/189

ZiskinZiv/PW_from_GPS), which includes the procedures190

and ML methodology used in this study.191

A. Datasets192

The PWV dataset used in this work has been derived193

from the SOI-APN GNSS ground receivers. Ziv et al. [45]194

TABLE I

GEOGRAPHICAL COORDINATES, ALTITUDE ABOVE SEA LEVEL, AND THE
NAMES OF THE SOI-APN STATIONS IN THE STUDY AREA

processed the daily RINEX files downloaded from the 195

SOPAC/Garner GPS archive (http://garner.ucsd.edu/) using 196

NASA’s JPL GipsyX software [20]. The daily RINEX 197

processing is done using NASA’s JPL GipsyX [46] software 198

via the PPP solution. We use a minimum cutoff elevation 199

angle of 15◦, GMF for the tropospheric model [24] and 200

ocean loading for all of the stations. The full parameter tree 201

used in this work is available at the Github.com repository 202

(https://github.com/ZiskinZiv/PW_from_GPS/blob/master/ 203

my_trees/ISROcnld/ISROcnld_0.tree). The processing has 204

resulted in ZWD that was translated into PWV using the 205

following formula [13]: 206

PWV = � × ZWD. (1) 207

� is the dimensionless constant of proportionality and is 208

mainly the function of the atmospheric mean temperature. 209
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TABLE II

GEOGRAPHICAL COORDINATES, ALTITUDE ABOVE SEA LEVEL, AND THE NAMES OF THE HYDROMETRIC STATIONS ANALYZED IN THIS WORK

Ziv et al. [45] used the Israeli Meteorological Service’s (IMS)210

automated stations and radiosonde measurements [12] in order211

to estimate the atmospheric mean temperature, Tm , relationship212

to the surface temperature, Ts , in the study area: Tm = 0.69Ts+213

82. All of these steps along with the PWV validation using214

the Bet-Dagan radiosonde station are described extensively215

in [45]. The final step in the PWV dataset preparation is216

the removal of the mean diurnal and annual variations. For217

each station, the resulting time series, which we call PWV218

anomalies, contains only the interdaily variability. Fig. 3 shows219

the mean diurnal and annual cycle for DSEA, RAMO, and220

ELAT stations. We can clearly see the difference between221

the stations’ climatology, where, e.g., DSEA has the highest222

annual values since it is −361 m below sea level [47]. The223

diurnal variations are much smaller than the annual variations,224

and however, we can still spot them during summer (day of225

year (DoY): 152–244) where they are the strongest since the226

sea breeze mechanism is a dominant factor on the diurnal time227

scale [45]. The interested reader can refer to [45] or [47] for228

the full processing parameters and the PWV derivation and229

validation methodology as well as the diurnal, interannual, and230

long-term analysis.231

The floods database has been received from the Israeli232

Water Authority (IWA, https://www.gov.il/en/departments/233

water_authority). The IWA manages and processes the mea-234

sured data received from the hydrometric stations across Israel,235

which include the flood occurrence date times along with236

water level and water discharges for all recorded events. For237

each GNSS station, we searched for all available hydrometric238

stations located within a 15-km radius distance from the239

GNSS station location. We then selected the station with240

the highest amount of flood events, which we had the PWV241

data for, at least 24 h prior to the flood. Thus, we obtained242

an initial number of 151 flood events co-located with the243

respective GNSS stations. In Section II-C1, we discuss the244

data preprocessing and the subsequent trimming of the flood245

events to include only the unique events.246

B. Data Analysis247

A first look at the left panel of Fig. 2 indicates that the248

flood events are quite rare, while the PWV data are mostly249

Fig. 3. PWV annual and diurnal climatology for (Top) DSEA, (Middle)
RAMO, and (Bottom) ELAT stations. The diurnal annual mean is plotted
under each filled contour panel.

continuous. In order to detect the effect that PWV has on 250

flood events, we averaged the PWV anomalies six days prior 251
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Fig. 4. (Top) PWV mean anomalies heatmap for the SOI-APN stations,
presented in Fig. 2, with respect to a mean flood event. The average was
calculated for various flood events (the rightmost column in Table II) per
each station, from a total number of 151 events. (Bottom) Averaged PWV
anomalies, along with its variability (indicated by the shaded gray strip), for
the nine GNSS stations with respect to a ten-day time window around all the
flood events (six days before and four days after the events, where the black
dashed line is positioned at t = 0).

and four days after a flood event. We repeated this step for all252

the GNSS stations and also averaged all the PWV anomalies253

stationwise. The top of Fig. 4 shows a heatmap for each254

GNSS station describing the averaged PWV anomalies before255

and after a co-located flood event. For example, we see that256

ELAT has the largest amplitude of PWV, with an almost 8-mm257

difference three days prior to a flood event. The bottom of258

Fig. 4 shows the station averaged PWV anomalies and the259

gray shading indicates its variability standard deviation (SD).260

We can see that the averaged station’s PWV increases from261

about 1 mm three days prior to a flood to a peak of 6 mm in the262

flood event beginning. On average, the PWV doubles its value263

24 h prior to a flood. After the flood event, we detect a drop264

to preflood PWV levels lasting for about 24 h. Interestingly265

enough, the PWV peak is reached almost exactly when the266

flood event begins, and thus, the drainage area’s response to267

the rain event is probably very fast.268

Since our main approach to flash flood prediction is mostly269

data-driven, we decided to add more features with a goal of270

increasing our model’s performance. In particular, we added271

long-term hourly surface pressure measurements from the272

Bet-Dagan IMS station (see map in Fig. 2) and removed273

the diurnal and long-term climatology in the same manner274

Fig. 5. Station averaged pressure anomalies with respect to a mean flood
event (black dashed line at x = 0).

Fig. 6. Number of flood events per month in the arid climate of southern
Israel for events which we have PWV data for.

as we did with the PWV data. Fig. 5 shows the mean 275

pressure anomalies at Bet-Dagan station prior and after a flood 276

event. As expected, the pressure drops before a flood event, 277

representing a low-pressure system that produces precipitation 278

events. The minimum pressure values are found about 6–8 h 279

prior to a flood event. However, the variability is quite higher 280

than the PWV dataset. This issue can be the result of using 281

pressure data from only one station, which represents all 282

the flood events. Unfortunately, we could not find enough 283

surface pressure records that are co-located with the selected 284

hydrometric stations for the same data period. Furthermore, 285

since summer rain is very rare in the EM [48], we also 286

added the DoY information as a feature to our PWV and 287

surface pressure features. Fig. 6 shows the flood event count 288

for each month of the year. It is clear that the most frequent 289

month is January, with 30 events, while February–April and 290

October–December have a mean of 11 events. May, June, and 291

September have only a few events, while July and August have 292

no flood events, as expected. 293
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Fig. 7. Main ML methodology block diagram. The features are the PWV,
surface pressure, and Doy, where the target is the flash floods datetimes.
Preprocesing involves standardizing the PWV and surface pressure measure-
ments, hourly resampling them, and colocating the GNSS and hydrometric
stations. Finally, 24-h sequences are generated with class balancing. In the
learning process, three general types of ML classifier models are optimized
using CV: MLP, SVM, and RF. The final output of each model is whether or
not a flash flood will occur in the 25th hour.

C. ML Methodology294

Fig. 7 schematically describes all the ML methodological295

steps from the data preprocessing to producing the best model.296

We, therefore, elaborate on these steps in the following.297

1) Preprocessing: Our data-driven approach to flood pre-298

diction considers a supervised learning task using binary299

classification. In particular, we ask the following question:300

given 24 h of PWV anomalies, surface pressure anomalies, and301

DoY, will there be a flood event in the following hour? When302

termed this way, we regard the PWV, surface pressure, and303

DoY data as features and the flood/nonflood events datetimes304

as the samples. Therefore, our preprocessing of the samples305

and features is given as follows. First, we removed from the306

flood database close events that are overlapping within a 24-h307

window. The idea was to find unique flood events as much as308

possible, without losing too many samples. This step leaves us309

with 107 flood events from an original 151 GNSS co-located310

events. The flood events are the positive class in our classifi-311

cation task. We then continued with the positive features, i.e.,312

PWV and surface pressure that are resampled to hourly means. 313

We then co-located each GNSS and hydrometric station and 314

found 24 data points of PWV prior to each flood event. If half 315

or more of the PWV data was missing, we dropped this 316

event from our analysis. We used cubic interpolation to fill in 317

the missing data points otherwise. We repeated this process 318

with the surface pressure data, and however, in this case, 319

we had only one surface pressure station (Bet Dagan) with 320

the necessary data period and resolution. This step leaves us 321

with 49 features (48 for PWV and pressure along with one 322

for DoY). As for the negative class, we randomly searched 323

for 24 h of PWV and pressure, which do not overlap the 324

positive features, and we repeat this step only once for each 325

flood event in each station, thus ensuring that the binary 326

classification task is balanced. Our resulting matrix of features 327

and samples is 214 (107 for each class) by 49. Finally, since 328

two of our classifiers are sensitive to feature normalization, 329

we use the standardized3 version of the PWV and surface 330

pressure anomalies for all the classifiers. 331

Our main goal is to use supervised learning classifiers 332

in order to predict flash floods using PWV as the main 333

input. Accordingly, we chose three common types of ML 334

models: SVM, RF, and multilayered perceptron (MLP). All 335

the models were implemented using the Scikit-Learn Python 336

package [49]. 337

The SVM classifier utilizes a linear hyperplane to separate 338

each sample class [50]. Using the kernel trick, the hyperplane 339

is transformed into a higher dimension, which gives the SVM 340

more flexibility; however, the cost is a larger generalization 341

error [51]. The RF classifier is a metaclassifier, which uses a 342

number of decision trees on randomized selections of subset 343

of features. The final output is produced by averaging all the 344

individual decision tree classifiers [52]. The MLP classifier 345

is a neural network algorithm, which includes multilayered 346

nodes with weights [53]. Typically, the network architecture 347

includes an input layer, any number of hidden layer, and an 348

output layer where each layer’s nodes are connected via activa- 349

tion functions (a so-called feedforward propagation). During 350

the learning process, the weights are reevaluated using the 351

backpropagation iterative algorithm [54] in order to decrease 352

the cost function. 353

2) Score Metrics: We use six different metrics to evaluate 354

the models’ performance [55]. These metrics are: precision, 355

recall, F1, accuracy, Heidke skill score (HSS), and true skill 356

statistics (TSS). These metrics are defined in (2) and are a 357

combination of the four possible outcomes of our classifier. 358

1) True positive (TP) is the correct prediction of a flood 359

event. 360

2) True negative (TN) is the correct prediction of a no-flood 361

situation. 362

3) False positive (FP or type I error or false alarm) is when 363

the classifier predicts a flood but there was not any. 364

4) False negative (FN or type II error or simply miss) is 365

when the classifier does not predict a flood but a flood 366

3Standardized anomalies are the removal of the long-term monthly mean
from a time series and dividing it by the long-term monthly standard deviation.
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occurs, hence the miss367

Fallout = FPR = FP

FP + TN
(2a)368

Precision = PPV = TP

TP + FP
(2b)369

Recall = TPR = TP

TP + FN
(2c)370

F1 = 2 × Precision × Recall

Precision + Recall
(2d)371

Accuracy = TP + TN

TP + TN + FP + FN
(2e)372

TSS = TP

TP + FN
− FP

FP + TN
= Recall − Fallout373

(2f)374

HSS = 2 × [TP × TN − FN × FP]
(TP + FN)×(FN + TN) + (TP + FN) × (FP + TN)

.375

(2g)376

The fallout or false positive rate (FPR), see (2a), measures377

the probability of false alarm (FPs). The precision or positive378

predictive value [see (2b)] measures the ability of the classifier379

not to produce false alarms. The recall also known as true380

positive rate (TPR), sensitivity, or hit rate [see (2c)] measures381

how successful the classifier is in predicting the positive class382

without missing (FN).383

Unfortunately, precision and recall are always at tension384

with each other, where improving recall reduces the precision385

and vice versa. One way of dealing with this issue is to386

use the F1 score, which is the harmonic mean of the pre-387

cision and recall [see (2d)]. The accuracy score [see (2e)]388

quantifies how well a classification test correctly identifies389

or excludes a condition (i.e., whether it is a TP or TN).390

The TSS [see (2f] [56] compares the probability of the true391

prediction, to the probability of false prediction or simply392

recall minus the fallout. Thus, a TSS no skill score is 0,393

while −1 means that the prediction labels should be reversed.394

The HSS [see (2g)], which is often used in weather and395

solar events prediction (e.g., [41]), quantifies the fractional396

improvement of the prediction accuracy relative to some set397

of control or reference predictions. It is normalized by the398

total range of possible improvement over the standard (i.e.,399

it can be compared with different datasets). A perfect HSS400

score is 1, and a no skill score is 0, while an infinitely401

negative score is possible, suggesting that the prediction is402

worse than the reference prediction. An easy to implement403

and use formulation as presented here is available in [57].404

Another widely used performance measurement visualiza-405

tion method is the receiver operating characteristics (ROC)406

curve, which illustrates the diagnostic ability of a binary407

classifier as its classification threshold is varied. The ROC408

curve is actually the recall or TPR plotted versus the fallout409

or FPR where, ideally, the TPR is maximized, while the FPR410

is minimized. The area under the ROC curve (ROC-AUC) can411

be used as a score metric where a no skill score is 0.5, while412

a perfect score is 1.413

3) CV Strategy: Traditional CV or k-fold CV is a technique,414

which is often used to estimate the performance of ML415

models when making predictions with data not seen during416

training [58]. The data are divided into k segments or folds 417

with the same size where each fold is being tested by the 418

model and the other k − 1 folds are used as training data. The 419

process repeats k times, where the best score of each fold’s 420

validation procedure is used to select the best model. Since 421

most ML models have hyperparameters (e.g., regularization 422

coefficient) which need tuning, the CV step is often performed 423

together with the hyperparameters tuning, a practice that can 424

lead to overfitting [59]. A useful way of dealing with this 425

issue is to separate the CV into two k-fold CV steps, which 426

first tunes the model’s hyperparameters and then evaluates the 427

model’s performance by estimating the generalization error. 428

This procedure is called double CV or nested CV and is often 429

implemented by using a nested loop, i.e., an inner loop that 430

optimizes the hyperparameter space and an outer loop that 431

estimates the generalization error [60]. Since nested CV uses a 432

lot of computational time, we must balance the recommended 433

number of folds [61] and the hyperparameter space with the 434

computational time. Nevertheless, in order to quantify the bias 435

that a particular selection of k can enter our generalization 436

error, we run two nested CV configurations, one with four 437

inner/outer folds and another with five inner/outer folds. This 438

verification procedure is outlined in Section IV-A and con- 439

cludes that there is little bias in selecting either k = 4 or k = 5. 440

Thus, as shown in Fig. 8, we use five folds for hyperparameter 441

tuning and validation (inner folds) and five folds for model 442

selection (outer folds). The six scoring metrics are reported for 443

each inner fold, where the model’s hyperparameters are tuned, 444

and for each outer fold, where the best model is chosen, thus 445

estimating the model performance. Finally, since for each outer 446

fold, we get a set of unique hyperparameters (i.e., essentially 447

a different model), we plot the chosen hyperparameters as a 448

function of a particular fold and metric in order to choose the 449

best “mean” hyperparameters. This step measures the model 450

sensitivity to the hyperparameters optimization and is also 451

outlined in Section IV-A. These best “mean” hyperparameter 452

sets, as will be shown in Section III, produce high enough 453

scores and low k-fold variability in all models. 454

4) Permutation Test: We also subject our classifiers to the 455

permutation test for labeled data [62]. This test, which has 456

been extensively used in the field of computational biology, 457

aims to address the following question: does the classifier 458

detect a significant class structure, i.e., a real connection 459

between the data and the class labels? We use a standard 460

fivefold CV to estimate a null distribution by permuting the 461

labels in the data and produce a “true” score without the 462

permutations. The experimental p-value from these tests is 463

calculated as follows: 464

p − value = S + 1

npermutations + 1
(3) 465

where S is the number of permutations whose score ≥ the 466

“true” score. Since ideally, S should be 0, the best possible 467

p-value is 1/(n permutations + 1), and since we use 100 per- 468

mutations, it is 1/101 = 0.0099, while the worst p-value is 469

when S = npermutations, i.e., p-value = 1.0. 470

5) Imbalanced Dataset Test: Since flash floods are very rare 471

events, we thus require a more realistic scenario for testing 472
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Fig. 8. Nested cross-validation strategy diagram used in the classification task in this work. It includes five splits in the outer loop for testing and five splits
in the inner loop for hyperparameter tuning. For each fold, the samples are selected randomly from all the available data for training and testing/validating,
and thus, the diagram oversimplifies the fold separation process for visualization purposes.

our classifier, which is trained with a balanced dataset. There-473

fore, we need to generate more negative samples from the474

PWV/pressure time series. From Fig. 2, we see that for all the475

stations (except ELAT), the minimum flash flood record (x’s)476

starts approximately with the beginning of the PWV record477

(we simply have no earlier records for ELAT before 2012).478

Furthermore, there is a varying degree of flash flood events479

frequency within the stations. As a rough estimate, we divide480

the number of the total flash flood events (≈100) with the total481

number of days of the largest time series (RAMO: ≈7500482

days or ≈20.5 years) and reach a ratio of 1 flash flood event483

in 75 days or 1.3% positive ratio. Thus, we need to produce484

negative samples for each station that is complete (24 h) and do485

not coincide with a positive event. Unfortunately, with these486

constraints, we were able to find only 25 negative samples487

per a positive one or 4% positive ratio that is three times488

more frequent than the rough estimate. Nevertheless, we can489

use a specific data split in order to overcome this obstacle.490

The testing procedure for the imbalanced dataset is given as491

follows.492

1) For each ML model, we train our classifiers with 66.66%493

of the balanced training set (71 positives and 71 nega-494

tives).495

2) We evaluate the classifiers with the remaining 33.33% of496

the balanced dataset concatenated with all the remaining497

negative samples produced (36 positives and 2639 neg-498

atives) to receive a positive ratio of 1:73.3 or 1.36%,499

which is very close to our estimate.500

3) We repeat the evaluation for each of the score metrics.501

III. EXPERIMENTAL RESULTS502

Table III shows the best “mean” hyperparameters chosen503

for each model (e.g., SVM and RF). All the results shown504

TABLE III

BEST HYPERPARAMETERS FOUND USING CV FOR THE SVM, RF, AND

MLP CLASSIFIERS USED IN THIS WORK. OTHER HYPERPARAMETERS

ASIDE FROM THE ONES LISTED IN THE TABLE WERE USED IN
THEIR DEFAULT VALUES (PYTHON SCIKIT-LEARN VER 0.23.2)

in this section use the aforementioned set of hyperparameters. 505

We encourage the interested reader to look at Section IV-A 506

where the process of hyperparameters selection is outlined and 507

discussed. 508

Fig. 9 shows the mean test scores and variability due to 509

data splits selection for the SVM, RF, and MLP classifiers 510

and for each metric. For most metrics, MLP has generally 511

slightly worse scores than SVM and RF. For the feature 512

groups, DoY performs poorly, followed by surface pressure 513

that is only second to PWV, which has the highest scores for 514

a single feature group. Adding pressure and DoY only slightly 515

improves the scores for most models and metrics. DoY as a 516

single feature has the highest fold selection variability, while 517

all other features have lower variability. 518

Fig. 10 shows the mean ROC curves for the SVM, RF, and 519

MLP classifiers where the variability due to fold selection is 520

shown in shaded colors. The mean AUC scores and variability 521

is shown in each panel’s legend. The left panels show the mean 522

ROC curves for only five data splits and the right panels show 523
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Fig. 9. Mean test scores for the SVM, RF, and MLP classifiers (row) and for each metric (column). The feature groups consist of DoY (purple), surface
pressure (brown), PWV (blue), surface pressure and DoY (red), PWV and surface pressure (orange), and all three together (green). The mean scores are
indicated to the top left of each bar and the SD of five data splits is represented by the error bar length.

the mean ROC curves where the negative class was resampled524

25 times. For both panels, SVM and RF outperform MLP,525

where the left panels have slightly better AUC scores and526

lower variability than the right panels, as expected. Adding527

more features to PWV improves the AUC scores, although528

adding DoY to PWV + pressure is within the score variability,529

and thus, its effect cannot be distinguished.530

Fig. 11 shows the null distribution, best models scores, and531

p-values for the SVM, RF, and MLP classifier permutation532

tests for each metric. For all the models and nearly all metrics,533

the p-value is 0.0099, which is the highest score available (see534

Section II-C4 for definition), indicating that the models do a535

good job at detecting a class structure. However, looking at the536

MLP model, we can see that the best scores are lower than for537

the SVM and RF models, and for the recall metric, the MLP538

model almost fails completely with p-values of 0.06–0.11 for539

all feature groups (worst possible p-value is 1.0).540

Which feature is useful for predicting flash floods? One541

way of understating which feature group is important to542

a classifier is to use the Scikit-Learn RF model’s built-in543

feature importance’s attribute, which is based on averaging544

the decrease in impurity over trees [63]. Fig. 12 shows the545

feature importance based on mean decrease impurity (MDI)546

for PWV, surface pressure, and DoY as the model uses all547

of them together. For all metrics, the RF classifier finds the548

PWV the most important feature with about 72% of the score,549

followed by surface pressure at about 27% and finally DoY550

with less than 1%. Interestingly enough, Fig. 12 also shows an551

hourly breakdown of the MDI-based feature importance where552

the highest PWV’s hourly contribution is from 2 to 5 h prior553

a flood (totaling in roughly 20%). This finding is not very 554

surprising since we expect that the PWV values close to the 555

time of the flood would be the most relevant in the prediction 556

of the flood. There are two more minor importance peaks that 557

reside in around 13 and 20 h prior to a flood. However, their 558

significance remains unclear and requires further investigation. 559

In many data scenarios, the MDI-based feature importance 560

method contains biases and should not be relied upon [64]; 561

however, it is not clear if this is the case in our work. 562

Nevertheless, we decide to validate our findings using a game- 563

theory-inspired method of feature importance based on the 564

Shapley values [65]. We use the SHAP Python package [66] 565

and calculate the mean SHAP values for the three feature 566

groups where the RF is trained with its best HPs. The result 567

is in Fig. 13, showing an almost similar picture as in Fig. 12, 568

where the most important PWV values are from 2 to 6 h prior 569

to a flood with two more smaller peaks in 14 and 19 h prior 570

to a flood. 571

The imbalanced dataset test scores, as presented in Fig. 14, 572

yield a drop in the precision and F1 metrics for all feature 573

groups; however, for all other metrics, i.e., accuracy, TSS, 574

HSS, and most importantly recall, the scores compared to the 575

balanced test (Fig. 9) remain almost unchanged. 576

IV. DISCUSSION 577

As to date and to the best of our knowledge, this work 578

demonstrates for the first time the ability to directly pre- 579

dict flash flood events from GNSS-derived PWV using ML 580

methodology. Thus, the first part of this discussion, which is 581

presented in Section IV-A, is about the technical validity or 582
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TABLE IV

HYPERPARAMETERS SEARCH SPACE FOR THE SVM, RF, AND MLP CLASSIFIERS USED IN THIS WORK

Fig. 10. Mean ROC curves for the SVM, RF, and MLP classifiers (row) with
the best hyperparameters where the positive and negative classes are balanced
(Neg = 1, left column). The feature groups consist PWV (blue), PWV and
surface pressure (orange), and PWV + surface pressure + DoY (green) where
the chance curve indicates a no skill curve (red dashed line). The right column
is the same as the left except that we resampled the negative class 25 times
(Neg = 25). The shaded area is the SD of 5 X Neg folds for each point in
the ROC curve. The area under the curve is denoted in the legend with the
SD of 5 X Neg folds as variability.

our results or, more specifically, the hyperparameter tuning583

and selection procedure. A comparison with other flash floods584

predicting works in the EM is discussed in Section IV-C.585

A. Hyperparameters Tuning and Selection586

Table III shows the best hyperparameters that were used587

in testing the models using different score metrics, producing588

ROC curves, and permutation testing. This set of hyperpa- 589

rameters was selected using a grid search for the various 590

hyperparameters range, as shown in Table IV. The basic 591

idea is to search for the best hyperparameters per each data 592

split by using different metrics. If we select one set of 593

hyperparameters for all of the data splits and show that the test 594

scores do not vary too much, then we can justify our choice 595

empirically. In addition, if we can also show that the same 596

results hold for different score metrics, it will increase their 597

robustness. 598

Figs. 15–17 show the optimal hyperparameters with a data 599

split and metric breakdown for the SVM, RF, and MLP 600

classifiers, respectively. For all the classifiers, we can detect a 601

change in the hyperparameters for the recall metric, which 602

raises a red flag over its usage. For the SVM classifier, 603

except for the recall metric, the best kernel is radial basis 604

function (rbf) with good estimates of gamma and C values 605

of 0.02 and 1 respectively. For the RF classifier, min samples 606

split parameter is very high for the recall metric compared to 607

the other metrics, while all other parameters do not show any 608

reaction when being optimized by recall. Interestingly, min 609

samples leaf changes in some splits when the CV strategy is 610

four inner folds as opposed to five inner folds. Finally, for 611

the MLP classifier, the hidden layer sizes (NN architecture) 612

parameter is almost evenly distributed, suggesting that this 613

parameter is not important or our search grid is not large 614

enough. For the activation parameter (activation function), the 615

recall metric optimizes this parameter to be logistic as opposed 616

to rectified linear unit (relu) for all other metrics. 617

In order to test how the hyperparameter optimization for 618

each inner fold fares on the test fold, we use the same metrics 619

on each inner fold optimized with the same metric. The results 620

are shown in Figs. 18 and 19 for the four and five inner folds’ 621

CV strategies, respectively. 622

If we compare these figures to Fig. 9, we can see that 623

for all metrics except recall, the mean test scores are within 624

their data split variability (the error bars in the bar plot). For 625

recall, SVM finds perfect scores for most features, while MLP 626

finds a perfect score for some features and large variability 627

for others. This apparent instability further lowers the recall 628

metric’s reliability in this task. 629

As with the score test, we can make ROC curves along with 630

their AUC scores for each fold individually. Figs. 20 and 21 631

show the ROC curves for the four and five inner folds’ CV 632

strategies, respectively. 633

Most of the ROC curves and the accompanying AUCs 634

are consistent throughout the metrics except for recall. SVM 635

and MLP perform poorly for all features with regard to this 636
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Fig. 11. Histogram panel of permutations, along with test scores and their experimental p-values for the SVM, RF, and MLP classifiers with the best
hyperparameters. The histogram was obtained by permuting the labels for each feature 100 times.

Fig. 12. Feature importance for the PWV, surface pressure, and DoY features as run together in the RF classifier. Each metric is presented in different colors.
The importance is given in percent, when combined (per metric), they are equal to 100%.

Fig. 13. Mean SHAP values for the PWV, surface pressure, and DoY features as run together in the RF classifier. The effect is symmetrical to each class,
and thus, only the contribution to the positive is plotted.

metric with AUC scores of roughly 0.5 (random choice). Thus,637

we must conclude that for the purposes of hyperparameter638

optimization in our datasets, recall should not be used as a639

metric. Comparing these figures to the left column of Fig. 10 640

shows similar results, thus empirically justifying our choice in 641

one best set of hyperparameters. 642
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Fig. 14. Imbalanced dataset test scores for the SVM, RF, and MLP classifiers (row) and for each metric (column). The feature groups consist of DoY
(purple), surface pressure (brown), PWV (blue), surface pressure and DoY (red), PWV and surface pressure (orange), and all three together (green). The
scores are indicated above each bar for better readability.

Fig. 15. Panel showing the optimal hyperparameters that were found using grid search CV for the SVM classifier. Each set of hyperparameters was found
for each outer split (row) and each metric (column). Moreover, the hyperparameters are also optimized when considering (Top) four and (Bottom) five inner
folds. Each hyperparameter name is denoted in the title of each top panel and its values are indicated in the accompanied colorbar. NR means not relevant
since degree and coef0 hyperparameters are relevant only when the kernel is poly.

B. Realistic Flash Flood Scenario Test643

The imbalanced dataset test, which simulates a more rare644

flash flood occurrence than previously examined, is presented645

in Fig. 14. As estimated in Section II-C5, this scenario646

simulates a 1 in 75 days flash flood frequency and represents647

a flash flood occurrence for the study terrain in the EM648

area. For most metrics, the classifiers performed admirably,649

and however, there is a significant drop in the precision and650

the F1 metrics’ performances. For a more moderate imbal-651

anced dataset (1 in 40), the metric scores, e.g., SVM model,652

show a 30% mean improvement (not shown), suggesting that653

increasing the dataset for both training and testing might 654

improve the classifier’s performance for possibly more rare 655

event occurrence. Furthermore, since the F1 metric is very 656

sensitive to both the recall and the precision metrics, a drop 657

in either lowers F1 considerably, and thus, the F1 scores are 658

expected since our precision dropped as well. As expected, 659

the recall metric did not suffer the same decrease as the 660

precision, and thus, we conclude that the classifier performs 661

well at minimizing FNs, i.e., when flash floods occur but no 662

warning has been issued. This low miss rate is extremely 663

important for an early warning system which our classifiers 664

have demonstrated through this test. 665
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Fig. 16. Panel showing the optimal hyperparameters that were found using grid search CV for the RF classifier and its hyperparameters. Each set of
hyperparameters was found for each outer split (row) and each metric (column). Moreover, the hyperparameters are also optimized when considering (Top)
four and (Bottom) five inner folds. Each hyperparameter name is denoted in the title of each top panel and its values are indicated in the accompanied colorbar.

Fig. 17. Panel showing the optimal hyperparameters that were found using grid search CV for the MLP classifier and its hyperparameters. Each set of
hyperparameters was found for each outer split (row) and each metric (column). Moreover, the hyperparameters are also optimized when considering (Top)
four and (Bottom) five inner folds. Each hyperparameter name is denoted in the title of each top panel and its values are indicated in the accompanied colorbar.

C. Comparison With Other Studies in the EM666

In the EM area, we found two major studies, which667

aim to predict flash floods and produce results that can be668

translated into the metrics reported in this work. However,669

both studies have used hydrological-based models without670

PWV as input and thus consist of different datasets and,671

as such, are not considered a valid comparison to our work.672

Nevertheless, reporting their results should give us a rough673

estimate of the current flash flood prediction ability in the674

EM area.675

Morin et al. [10] used rainfall radar data along with a676

hydrological model in order to predict flash floods in two677

catchments that drain into the Dead Sea area that is located678

in the arid part of the EM. They achieved a TPR [also679

known as recall, see (2c)] ranging from 0.41 to 0.82 and680

an FPR [also known as fallout, see (2a)] ranging from681

0.21 to 0.25.682

Rozalis et al. [3] used somewhat similar methodology as683

in [10]; however, the study area is located ≈117 km north684

of the Dead Sea and large enough (272 km) to include the685

Mediterranean, semiarid, and arid climates. Furthermore, the686

prediction algorithm they used was made to predict three levels687

of peak discharge (<14 m3/s, 14–50 m3/s, and >50 m3/s), 688

which can be translated into ML terms as a multiclass 689

classification task. Since in this work, we solve a binary clas- 690

sification task, we will present the aggregated results from [3] 691

to get an estimate of their model’s performance. Thus, from a 692

total of 20 events, 12 are correctly predicted (TP), 1 is missed 693

(FN), and 7 were false alarms (FP). Since Rozalis et al. [3] 694

did not include the TNs, we can only consider their TPR that 695

is 0.92. 696

Finally, hydrological models are not meant only for flood 697

prediction but rather a deeper understanding of the underlying 698

physics that drive the flash floods. Unfortunately, our approach 699

here is mostly data-driven and does not present a clear and 700

better understanding of the flash floods phenomenon. Never- 701

theless, by using ML methodology, we were able to maximize 702

the impact of the small amount of physics that is hidden in 703

the PWV time series and produce a successful flash flood 704

predictor, which can be used as the basis of an early warning 705

system. 706

V. SUMMARY AND CONCLUSION 707

We have used nine GNSS ground stations in order to obtain 708

PWV and use it in order to train, test, and validate a classifier 709
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Fig. 18. Mean test scores for the SVM, RF, and MLP classifiers (row) and each metric (column). The feature groups consist of DoY (purple), surface
pressure (brown), PWV (blue), PWV and surface pressure (orange), and all three together (green). The mean scores are indicated in the top left of each bar
and the SD of four data splits is represented by the error bar length. The difference from this figure and Fig. 9 is that in this figure, the hyperparameters were
optimized for each inner fold, and thus, there is a different set of hyperparameters for each fold (e.g., Fig. 16) as opposed to one set of hyperparameters in
used in Fig. 9 (Table III).

Fig. 19. Mean test scores for the SVM, RF, and MLP classifiers (row) and each metric (column). The feature groups consist of DoY (purple), surface
pressure (brown), PWV (blue), PWV and surface pressure (orange), and all three together (green). The mean scores are indicated in the top left of each bar
and the SD of five data splits is represented by the error bar length. The difference from this figure and Fig. 9 is that in this figure, the hyperparameters
were optimized for five inner folds’ CV strategy, and thus, there is a different set of hyperparameters for each fold (e.g., Fig. 16) as opposed to one set of
hyperparameters in used in Fig. 9 (Table III).
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Fig. 20. Mean ROC curves for the SVM, RF, and MLP classifiers (row) with optimized hyperparameters for each fold individually where the positive and
negative classes are balanced. Each set of hyperparameters was selected using a different metric (column). The feature groups consist of PWV (blue), PWV
and surface pressure (orange), and PWV + surface pressure + DoY (green), where the chance curve indicates a no skill curve (red dashed line). The shaded
area is the SD of four folds for each point in the ROC curve. The area under the curve is denoted in the legend with the SD of four fold as variability.

Fig. 21. Mean ROC curves for the SVM, RF, and MLP classifiers (row) with optimized hyperparameters for five inner folds’ CV strategy where the positive
and negative classes are balanced. Each set of hyperparameters was selected using a different metric (column). The feature groups consist of PWV (blue),
PWV and surface pressure (orange), and PWV + surface pressure + DoY (green), where the chance curve indicates a no skill curve (red dashed line). The
shaded area is the SD of five folds for each point in the ROC curve. The area under the curve is denoted in the legend with the SD of five fold as variability.

for predicting flash floods in the arid part of the EM region.710

The conclusions are given as follows.711

1) Forning them together shows only a slight improvement.712

2) The ROC curves showed that the SVM model achieved713

the highest mean AUC and the lowest AUC variability714

compared to the RF and MLP models.715

3) The feature importance plots from the RF model showed 716

that the PWV predictor is the most important one (72%), 717

followed by surface pressure (27%) and DoY (<1%). 718

An hourly breakdown of the PWV predictor shows a 719

major peak from 2 to 6 h prior to a flood, with two 720

smaller peaks on 14 and 19 h prior to a flood. 721
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4) The nested CV technique is very informative and can722

quantify the model’s performance variability due to data723

split selection. Furthermore, we show that for this dataset724

that is composed of 214 samples (balanced classes),725

a CV of five or five folds is either acceptable and726

produces similar results.727

5) From all the score metrics that were used to find the728

optimal hyperparameters in this analysis, only recall was729

found unstable and resulted in poor ROC curves.730

6) The permutation tests showed a clear class structure731

for the RF and SVM models, and however, the MLP732

achieved less than desirable results in these series of733

tests.734

7) All the models have been tested with a highly imbal-735

anced dataset, which simulates a more realistic flash736

flood occurrence scenario. The models show a drop in737

the false alarm rate (precision) with the hit rate (recall)738

remaining high.739

8) A possible improvement to the flash flood prediction740

approach is to solve a multiclass classification task741

where the peak discharge can be used as a threshold742

parameter, i.e., predict whether the flood will be large,743

medium, or small.744

9) The flash floods prediction approach as demonstrated in745

this work can be used to develop a near real-time flash746

floods early warning system.747
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