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Abstract— A flash flood is a rapid and intense response of a
drainage area to heavy rainfall events. In the arid and semiarid
parts of the Eastern Mediterranean (EM) region, the spatiotem-
poral distribution of rainfall is the most important factor for flash
flood generation. A possible precursor to heavy rainfall events
is the rise in tropospheric water vapor amount, which can be
remotely sensed using ground-based global navigation satellite
system (GNSS) stations. Here, we use the precipitable water
vapor (PWYV) derived from nine GNSS ground-based stations
in the arid part of the EM region in order to predict flash
floods. Our approach includes using three types of machine
learning (ML) models in a binary classification task, which
predicts whether a flash flood will occur given 24 h of PWV
data. We train our models with 107 unique flash flood events and
vigorously test them using a nested cross-validation technique.
The results indicate a good agreement between all three types of
models and across various score metrics. In addition, the models
are further improved by adding more features such as surface
pressure measurements. Finally, a feature importance analysis
shows that the most important features are the PWYV values
from 2 to 6 h prior to a flash flood. These promising results
indicate that it is possible to augment the current flash flood
warning systems with a near real-time GNSS ground-based data-
driven approach as demonstrated in this work.

Index Terms—Eastern Mediterranean (EM), flash floods,
global navigation satellite system (GNSS), machine learn-
ing (ML), path delays, precipitable water vapor (PWYV).

I. INTRODUCTION

LASH floods are rapid and high-intensity flooding events,

which are mainly caused by heavy rainfall. Since flash
floods have a short response time of several hours, they are
difficult to predict and cause damages and even casualties [1].
Among the factors that control the flash floods generation
(e.g., soil saturation and surface cover), the spatiotemporal
distribution of rainfall is the most significant one when
analyzing hydrological models output [2], [3], [4], [5]. The
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rainfall regime in the arid and semiarid parts of the Eastern
Mediterranean (EM) region is extremely variable and is mostly
comprised of short duration, high-intensity events [6], [7], [8].
Therefore, in order to predict flood events, one must first
account for the heavy rainfall events’ location and timing,
which can be achieved by remote sensing platforms (e.g.,
weather radar [9], [10], [11]). Another option is to measure the
water vapor (WV) amount in the atmosphere in order to detect
a mass moisture transport that is a perquisite to heavy rainfall
events. One such method is the global navigation satellite
system (GNSS) meteorology, which can continuously provide
a near real-time estimate of the precipitable WV (PWYV) above
the ground-based receiver’s location [12], [13].

GPS satellites that orbit the Earth at ~20200 km trans-
mit navigation messages via radio waves to ground-based
receivers. Each navigation message includes information that
allows the ground-based user to find its position up to
centimeter- or even millimeter-level accuracy [14], [15]. This
precise point positioning (PPP) method, as it is called, can
also be used to estimate the PWV content between each
GPS satellite and the ground-based receiver. As they reach
Earth, the transmitted radio waves are effectively dispersed by
the ionosphere and absorbed by the troposphere [16]. These
processes produce a measurable delay in the radio message
upon arrival in the ground-based receiver. The ionospheric
dispersion effect can be accounted for since GPS satellites
transmit the radio waves in at least two frequency bands
(e.g., L1 = 1575.42 MHz, L2 = 1227.6 MHz, and L5 =
1176.45 MHz) [17]. The tropospheric delay or the zenith
tropospheric delay (ZTD)' consists of two major sources of
absorption processes: hydrostatic delay or zenith hydrostatic
delay (ZHD),! which is mainly due to the effect of atmospheric
pressure [18] on the radio signal and wet delay that is due to
the radio signal’s interaction with water molecules [19]. The
wet delay can be estimated by subtracting the ZHD from the
ZTD.

In each ground-based receiver, the radio messages are stored
as text files called Receiver Independent Exchange Format
(RINEX) and can be processed by dedicated software such as
NASA’s JPL GipsyX [20]. The processing involves complex
inversion algorithms [21], [22] and is used in order to solve
the precise position of the ground-based receiver. From the
position solution of the receiver, the ZTD can be extracted,

IThe delay is given in zenith values by using mapping functions.
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Fig. 1.

PWYV at Yerucham (YRCM) GNSS station superimposed on the water discharge (flow) at the Mamsheet hydrometric station located 12 km east of

YRCM on April 24-27, 2018. Note the three major flash flood events on the 25th, the 26th, and the 27th. The PWV more than doubled during the second
half of the 24th as a low-pressure system provided large quantities of moisture to the region.

while the ZHD is provided with the empirical mapping func-
tion model files (global mapping function (GMF)/GPT2/GPT3
that are based on climatological means) or from numerical
weather data derived from, e.g., global six-hourly surface
pressure measurements (Vienna Mapping Function 1—VMF]1
data files) [23], [24]. Here, we used the GipsyX default
option that is the GMF along with GPT2 data files to obtain
the ZHD estimations. The obtained zenith wet delay (ZWD;
ZTD-ZHD) is proportional to the total amount of WV in a
vertical atmospheric column. Thus, the ZWD can be converted
into PWV by using a WV mean atmospheric temperature [18].

In the past 30 years, GNSSderived PWV has been exten-
sively compared to many other remote sensing platforms
(e.g., Sun photometers and radiometers), radiosonde in situ
measurements, and reanalysis products that resulted in an root
mean square error (RMSE) ranging from 1 to 3 mm [25],
[26], [27], [28], [29], [30], [31]. Furthermore, PWV maps can
also be assimilated into modern numerical weather prediction
models (e.g., WRF), which effectively lowers the WV predic-
tion RMSE by more than 30% when compared to radiosonde
measurements [32].

Using GNSS ground-based meteorology to monitor PWV
before, during, and after heavy rainfall events is not new.
Bonafoni et al. [33] reported at least six papers describing
the rise in PWV values when the weather system enters
the affected region. Moreover, the heavy precipitation begins
only when the PWV reaches its peak value (e.g., [34], [35]).
Moore et al. [36] showed that during the July 2013 sum-
mer monsoon in California, near real-time PWYV can detect
rapid moisture influx and issue a timely flood warning.
Huelsing et al. [37] found that prior to the 2013 Colorado
flood event, the PWV increased by about 10 mm and later
remained almost constant due to the saturated atmosphere.
These findings are consistent with our own analysis in the
arid area of the EM. For example, Fig. 1 shows the PWV
values for YRCM station located 12 km west of Mamsheet
hydrometric station for April 24-27, 2018.2 The PWV values
more than doubled during the second half of the 24th event
as a low-pressure system entered the region. Moreover, the
flood events’ peak discharges lag after the closest PWV peak
values for the 26th and 27th events, while the 25th double
peaked event shows a more complex behavior and can be the

These series of flash flood events claimed the lives of 15 people in Israel.

results of local and nonlocal coupled sources of humidity as
suggested by Lynn et al. [38].

GNSS technology is a powerful tool for geoscience remote
sensing and natural hazards forecasting, which requires per-
manent monitoring of the troposphere and ionosphere state on
different spatial scales. Several studies in the field of machine
learning (ML) associated with GNSS ionospheric total electron
content (TEC) were focused on TEC time series prediction
algorithms. Sun et al. [39] provided a long short-term memory
(LSTM)-based model for predicting ionospheric vertical TEC
above Beijing using a time sequence, consisting of the daily
TEC vectors for their model input, and the output was TEC
time series 24 h ahead. Liu et al. [40] used the LSTM with
several input data, including historical time series of spherical
harmonic (SH) coefficients, solar extreme ultra violet (EUV)
flux, disturbance storm time index, and hour of the day,
for predicting the 256 SH coefficients, traditionally used for
constructing global ionospheric maps. Asaly ef al. [41] used
GNSS TEC data along with support vector machine (SVM)
training set to build a solar flare X- and M-class predictor.
Later on, they also used GNSS TEC data along with the SVM
model for potentially predicting strong earthquake events [42].
Hsu [43] used an SVM classifier to separate the type of
GNSS pseudorange measurement into three categories: clean,
multipath, and nonline of sight, thus evaluating several features
which were estimated from the GNSS raw data, including
the received signal strength. In addition, he also proposed
a new feature to indicate the consistency between measure-
ments of pseudorange and Doppler shift. Linty et al. [44]
used an ML decision tree and random forest (RF) algorithms,
applied with big sets of 50-Hz postcorrelated GNSS data
for automatic, accurate, and early detection of amplitude
ionospheric scintillation events, reaching a detection accuracy
of 98%.

Our goal in this work is to investigate the ability of
GNSS-derived PWV to predict flash floods events in the
arid part of the EM region using three types of ML mod-
els. Accordingly, Section II describes the PWV data and
flood events used in this work along with all the ML
methodology [e.g., preprocessing, metrics, and cross validation
(CV)]. Section III presents the ML models’ performance
along with a feature importance analysis. We discuss the
results in Section IV and our concluding remarks follow in
Section V.
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(Left) PWYV data availability for each of the SOI-APN stations in the southern part of Israel. The flash floods’ unique events are plotted with x’s

under each nearest GNSS station. (Right) SOI-APN stations (black squares), Bet-Dagan IMS station (black x), and the hydrometric stations (pink) plotted on

a height-filled contour map of the study area.

II. DATA AND METHODOLOGY

The GNSS ground station receiver’s network used in this
work is the Survey Of Israel Active Permanent Network
(SOI-APN). We selected nine stations that are located in the
arid climate of southern Israel in the EM. Their names and
station IDs are presented in Table I and their locations are
indicated on the map in Fig. 2.

Recently, Ziv et al. [45] used the SOI-APN stations to
investigate the PWV diurnal variations in the EM region. They
processed the RINEX files and produced the PWYV time series
for each station. In this work, we use the aforementioned PWV
dataset and preprocess it along with the flood events database
for the ML classification task.

Thus, we briefly outline the PWV derivation methods
from ground-based receivers along with a description of the
flood events dataset in Section II-A. Section II-B describes
the insights we gather from analyzing and correlating the
flood events with the PWV time series dataset. Finally, in
Section II-C, we describe and elaborate upon the ML method-
ology used in this work, which includes data preprocessing,
test score metrics, and the nested cross-validation technique.

Furthermore, in the spirit of reproducible science,
we encourage the interested reader to explore the Python
repository hosted on GitHub.com (https://github.com/
ZiskinZiv/PW_from_GPS), which includes the procedures
and ML methodology used in this study.

A. Datasets

The PWYV dataset used in this work has been derived
from the SOI-APN GNSS ground receivers. Ziv et al. [45]

TABLE I

GEOGRAPHICAL COORDINATES, ALTITUDE ABOVE SEA LEVEL, AND THE
NAMES OF THE SOI-APN STATIONS IN THE STUDY AREA

GNSS Station name Station ID Latitude Longitude Altitude

[°N] [°E] [m a.s.]

Nizana NIZN 30.88 34.42 274
Kibutz Lahav KLHV 31.38 34.87 498
Yerucham YRCM 30.99 3493 516
Mitzpe Ramon RAMO  30.60 34.76 887
Metzoki dragot DRAG 31.59  35.39 32

Dead-Sea Manufactories DSEA 31.04 35.37 -361
Sapir SPIR 30.61 35.18 12

Kibutz Neve Harif NRIF 30.04 35.04 458
Eilat ELAT 29.51 34.92 30

processed the daily RINEX files downloaded from the
SOPAC/Garner GPS archive (http://garner.ucsd.edu/) using
NASA’s JPL GipsyX software [20]. The daily RINEX
processing is done using NASA’s JPL GipsyX [46] software
via the PPP solution. We use a minimum cutoff elevation
angle of 15°, GMF for the tropospheric model [24] and
ocean loading for all of the stations. The full parameter tree
used in this work is available at the Github.com repository
(https://github.com/ZiskinZiv/PW_from_GPS/blob/master/
my_trees/ISROcnld/ISROcnld_0.tree). The processing has
resulted in ZWD that was translated into PWV using the
following formula [13]:

PWV = IT x ZWD. (1)

IT is the dimensionless constant of proportionality and is
mainly the function of the atmospheric mean temperature.
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TABLE 11
GEOGRAPHICAL COORDINATES, ALTITUDE ABOVE SEA LEVEL, AND THE NAMES OF THE HYDROMETRIC STATIONS ANALYZED IN THIS WORK

Hydrometric station name Station ID Latitude[°N] Longitude[°E] Altitude[m a.s.]] Nearest

Distance to GNSS station[km] Flood

GNSS events
station near
GNSS
station
Lavan - new nizana road 25191 30.91 34.53 251 NIZN 10 4
Shikma - Tel milcha 21105 31.47 34.77 202 KLHV 14 25
Mamsheet 55165 30.96 35.05 295 YRCM 12 25
Ramon 56140 30.61 34.86 480 RAMO 9 11
Draga 48125 31.60 35.37 -19 DRAG 3 15
Chiemar - down the cliff 48192 31.14 35.35 -320 DSEA 11 8
Nekrot - Top 56150 30.58 35.05 226 SPIR 14 5
Yaelon - Kibutz Yahel 60105 30.09 35.12 216 NRIF 10 9
Solomon - Eilat 60190 29.53 3491 89 ELAT 2 5
Ziv et al. [45] used the Israeli Meteorological Service’s (IMS) station = DSEA (-361 m a.s.|)
automated stations and radiosonde measurements [12] in order 350
to estimate the atmospheric mean temperature, 7,,, relationship 300 31
to the surface temperature, Ty, in the study area: 7, = 0.69T,+ T 250
82. All of these steps along with the PWV validation using g 200
the Bet-Dagan radiosonde station are described extensively 2 150 29
in [45]. The final step in the PWV dataset preparation is B 100+
the removal of the mean diurnal and annual variations. For 50
each station, the resulting time series, which we call PWV Eosod : : : :
anomalies, contains only the interdaily variability. Fig. 3 shows ET
the mean diurnal and annual cycle for DSEA, RAMO, and §§2Z __\/
ELAT stations. We can clearly see the difference between ST 5 10 15 20 25
the stations’ climatology, where, e.g., DSEA has the highest station = RAMO (887 m a.s.1)
annual values since it is —361 m below sea level [47]. The 220
diurnal variations are much smaller than the annual variations, o Sa0 23
and however, we can still spot them during summer (day of b 230
year (DoY): 152-244) where they are the strongest since the % 200 B
sea breeze mechanism is a dominant factor on the diurnal time a0 21 E
scale [45]. The interested reader can refer to [45] or [47] for © 100 g
the full processing parameters and the PWV derivation and 20 o
validation methodology as well as the diurnal, interannual, and E 13.2 -19
long-term analysis. < 12.8 1
The floods database has been received from the Israeli Z 124 . : : T
Water Authority (IWA, https://www.gov.il/en/departments/ 2 stat?on _ ElE AT ( 3(1)5m a SZT)
water_authority). The IWA manages and processes the mea- 350 =
sured data received from the hydrometric stations across Israel, 300 -
which include the flood occurrence date times along with 5 250 -
water level and water discharges for all recorded events. For g 200 -
each GNSS station, we searched for all available hydrometric 9 1504
stations located within a 15-km radius distance from the 3 100 13
GNSS station location. We then selected the station with 50
the highest amount of flood events, which we had the PWV = o]
data for, at least 24 h prior to the flood. Thus, we obtained E 19:2 ] -
an initial number of 151 flood events co-located with the 2 189
respective GNSS stations. In Section II-C1, we discuss the . 5 5 n 15 S0
data preprocessing and the subsequent trimming of the flood Hour of Day [UTC]
events to include only the unique events. i ) ) i
Fig. 3.  PWV annual and diurnal climatology for (Top) DSEA, (Middle)

B. Data Analysis

A first look at the left panel of Fig. 2 indicates that the
flood events are quite rare, while the PWV data are mostly

RAMO, and (Bottom) ELAT stations. The diurnal annual mean is plotted
under each filled contour panel.

continuous. In order to detect the effect that PWV has on
flood events, we averaged the PWV anomalies six days prior
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Fig. 4. (Top) PWV mean anomalies heatmap for the SOI-APN stations,
presented in Fig. 2, with respect to a mean flood event. The average was
calculated for various flood events (the rightmost column in Table II) per
each station, from a total number of 151 events. (Bottom) Averaged PWV
anomalies, along with its variability (indicated by the shaded gray strip), for
the nine GNSS stations with respect to a ten-day time window around all the
flood events (six days before and four days after the events, where the black
dashed line is positioned at t = 0).

and four days after a flood event. We repeated this step for all
the GNSS stations and also averaged all the PWV anomalies
stationwise. The top of Fig. 4 shows a heatmap for each
GNSS station describing the averaged PWV anomalies before
and after a co-located flood event. For example, we see that
ELAT has the largest amplitude of PWV, with an almost 8-mm
difference three days prior to a flood event. The bottom of
Fig. 4 shows the station averaged PWV anomalies and the
gray shading indicates its variability standard deviation (SD).
We can see that the averaged station’s PWV increases from
about 1 mm three days prior to a flood to a peak of 6 mm in the
flood event beginning. On average, the PWV doubles its value
24 h prior to a flood. After the flood event, we detect a drop
to preflood PWV levels lasting for about 24 h. Interestingly
enough, the PWV peak is reached almost exactly when the
flood event begins, and thus, the drainage area’s response to
the rain event is probably very fast.

Since our main approach to flash flood prediction is mostly
data-driven, we decided to add more features with a goal of
increasing our model’s performance. In particular, we added
long-term hourly surface pressure measurements from the
Bet-Dagan IMS station (see map in Fig. 2) and removed
the diurnal and long-term climatology in the same manner

5804017
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Fig. 5. Station averaged pressure anomalies with respect to a mean flood
event (black dashed line at x = 0).

304

Number of unique flood events [#]

month

Fig. 6.  Number of flood events per month in the arid climate of southern
Israel for events which we have PWYV data for.

as we did with the PWV data. Fig. 5 shows the mean
pressure anomalies at Bet-Dagan station prior and after a flood
event. As expected, the pressure drops before a flood event,
representing a low-pressure system that produces precipitation
events. The minimum pressure values are found about 6-8 h
prior to a flood event. However, the variability is quite higher
than the PWV dataset. This issue can be the result of using
pressure data from only one station, which represents all
the flood events. Unfortunately, we could not find enough
surface pressure records that are co-located with the selected
hydrometric stations for the same data period. Furthermore,
since summer rain is very rare in the EM [48], we also
added the DoY information as a feature to our PWV and
surface pressure features. Fig. 6 shows the flood event count
for each month of the year. It is clear that the most frequent
month is January, with 30 events, while February—April and
October—December have a mean of 11 events. May, June, and
September have only a few events, while July and August have
no flood events, as expected.
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Fig. 7. Main ML methodology block diagram. The features are the PWV,
surface pressure, and Doy, where the target is the flash floods datetimes.
Preprocesing involves standardizing the PWV and surface pressure measure-
ments, hourly resampling them, and colocating the GNSS and hydrometric
stations. Finally, 24-h sequences are generated with class balancing. In the
learning process, three general types of ML classifier models are optimized
using CV: MLP, SVM, and RF. The final output of each model is whether or
not a flash flood will occur in the 25th hour.

C. ML Methodology

Fig. 7 schematically describes all the ML methodological
steps from the data preprocessing to producing the best model.
We, therefore, elaborate on these steps in the following.

1) Preprocessing: Our data-driven approach to flood pre-
diction considers a supervised learning task using binary
classification. In particular, we ask the following question:
given 24 h of PWV anomalies, surface pressure anomalies, and
DoY, will there be a flood event in the following hour? When
termed this way, we regard the PWYV, surface pressure, and
DoY data as features and the flood/nonflood events datetimes
as the samples. Therefore, our preprocessing of the samples
and features is given as follows. First, we removed from the
flood database close events that are overlapping within a 24-h
window. The idea was to find unique flood events as much as
possible, without losing too many samples. This step leaves us
with 107 flood events from an original 151 GNSS co-located
events. The flood events are the positive class in our classifi-
cation task. We then continued with the positive features, i.e.,

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

PWYV and surface pressure that are resampled to hourly means.
We then co-located each GNSS and hydrometric station and
found 24 data points of PWV prior to each flood event. If half
or more of the PWV data was missing, we dropped this
event from our analysis. We used cubic interpolation to fill in
the missing data points otherwise. We repeated this process
with the surface pressure data, and however, in this case,
we had only one surface pressure station (Bet Dagan) with
the necessary data period and resolution. This step leaves us
with 49 features (48 for PWV and pressure along with one
for DoY). As for the negative class, we randomly searched
for 24 h of PWV and pressure, which do not overlap the
positive features, and we repeat this step only once for each
flood event in each station, thus ensuring that the binary
classification task is balanced. Our resulting matrix of features
and samples is 214 (107 for each class) by 49. Finally, since
two of our classifiers are sensitive to feature normalization,
we use the standardized® version of the PWV and surface
pressure anomalies for all the classifiers.

Our main goal is to use supervised learning classifiers
in order to predict flash floods using PWV as the main
input. Accordingly, we chose three common types of ML
models: SVM, RF, and multilayered perceptron (MLP). All
the models were implemented using the Scikit-Learn Python
package [49].

The SVM classifier utilizes a linear hyperplane to separate
each sample class [50]. Using the kernel trick, the hyperplane
is transformed into a higher dimension, which gives the SVM
more flexibility; however, the cost is a larger generalization
error [51]. The RF classifier is a metaclassifier, which uses a
number of decision trees on randomized selections of subset
of features. The final output is produced by averaging all the
individual decision tree classifiers [52]. The MLP classifier
is a neural network algorithm, which includes multilayered
nodes with weights [53]. Typically, the network architecture
includes an input layer, any number of hidden layer, and an
output layer where each layer’s nodes are connected via activa-
tion functions (a so-called feedforward propagation). During
the learning process, the weights are reevaluated using the
backpropagation iterative algorithm [54] in order to decrease
the cost function.

2) Score Metrics: We use six different metrics to evaluate
the models’ performance [55]. These metrics are: precision,
recall, F1, accuracy, Heidke skill score (HSS), and true skill
statistics (TSS). These metrics are defined in (2) and are a
combination of the four possible outcomes of our classifier.

1) True positive (TP) is the correct prediction of a flood
event.

True negative (TN) is the correct prediction of a no-flood
situation.

False positive (FP or type I error or false alarm) is when
the classifier predicts a flood but there was not any.
False negative (FN or type II error or simply miss) is
when the classifier does not predict a flood but a flood

2)
3)

4)

3Standardized anomalies are the removal of the long-term monthly mean
from a time series and dividing it by the long-term monthly standard deviation.
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occurs, hence the miss

FP
Fallout = FPR = ——— (2a)
FP + TN
.. TP
Precision = PPV = —— (2b)
TP + FP
TP
Recall = TPR = —— (2¢)
TP + FN
Precision x Recall
Fl1 =2 x — (2d)
Precision + Recall
TP + TN
Accuracy = (2e)
TP + TN + FP + FN
TP FP
TSS = — = Recall — Fallout
TP+FN FP-+ TN
(21)
HSS 2 x [TP x TN — FN x FP]

~ (TP + EN)x (EN + TN) + (TP + EN) x (FP + TN)
(22)

The fallout or false positive rate (FPR), see (2a), measures
the probability of false alarm (FPs). The precision or positive
predictive value [see (2b)] measures the ability of the classifier
not to produce false alarms. The recall also known as true
positive rate (TPR), sensitivity, or hit rate [see (2c)] measures
how successful the classifier is in predicting the positive class
without missing (FN).

Unfortunately, precision and recall are always at tension
with each other, where improving recall reduces the precision
and vice versa. One way of dealing with this issue is to
use the F1 score, which is the harmonic mean of the pre-
cision and recall [see (2d)]. The accuracy score [see (2e)]
quantifies how well a classification test correctly identifies
or excludes a condition (i.e., whether it is a TP or TN).
The TSS [see (2f] [56] compares the probability of the true
prediction, to the probability of false prediction or simply
recall minus the fallout. Thus, a TSS no skill score is 0,
while —1 means that the prediction labels should be reversed.
The HSS [see (2g)], which is often used in weather and
solar events prediction (e.g., [41]), quantifies the fractional
improvement of the prediction accuracy relative to some set
of control or reference predictions. It is normalized by the
total range of possible improvement over the standard (i.e.,
it can be compared with different datasets). A perfect HSS
score is 1, and a no skill score is 0, while an infinitely
negative score is possible, suggesting that the prediction is
worse than the reference prediction. An easy to implement
and use formulation as presented here is available in [57].

Another widely used performance measurement visualiza-
tion method is the receiver operating characteristics (ROC)
curve, which illustrates the diagnostic ability of a binary
classifier as its classification threshold is varied. The ROC
curve is actually the recall or TPR plotted versus the fallout
or FPR where, ideally, the TPR is maximized, while the FPR
is minimized. The area under the ROC curve (ROC-AUC) can
be used as a score metric where a no skill score is 0.5, while
a perfect score is 1.

3) CV Strategy: Traditional CV or k-fold CV is a technique,
which is often used to estimate the performance of ML
models when making predictions with data not seen during
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training [58]. The data are divided into k segments or folds
with the same size where each fold is being tested by the
model and the other k — 1 folds are used as training data. The
process repeats k times, where the best score of each fold’s
validation procedure is used to select the best model. Since
most ML models have hyperparameters (e.g., regularization
coefficient) which need tuning, the CV step is often performed
together with the hyperparameters tuning, a practice that can
lead to overfitting [59]. A useful way of dealing with this
issue is to separate the CV into two k-fold CV steps, which
first tunes the model’s hyperparameters and then evaluates the
model’s performance by estimating the generalization error.
This procedure is called double CV or nested CV and is often
implemented by using a nested loop, i.e., an inner loop that
optimizes the hyperparameter space and an outer loop that
estimates the generalization error [60]. Since nested CV uses a
lot of computational time, we must balance the recommended
number of folds [61] and the hyperparameter space with the
computational time. Nevertheless, in order to quantify the bias
that a particular selection of k can enter our generalization
error, we run two nested CV configurations, one with four
inner/outer folds and another with five inner/outer folds. This
verification procedure is outlined in Section IV-A and con-
cludes that there is little bias in selecting either k = 4 or k = 5.
Thus, as shown in Fig. 8, we use five folds for hyperparameter
tuning and validation (inner folds) and five folds for model
selection (outer folds). The six scoring metrics are reported for
each inner fold, where the model’s hyperparameters are tuned,
and for each outer fold, where the best model is chosen, thus
estimating the model performance. Finally, since for each outer
fold, we get a set of unique hyperparameters (i.e., essentially
a different model), we plot the chosen hyperparameters as a
function of a particular fold and metric in order to choose the
best “mean” hyperparameters. This step measures the model
sensitivity to the hyperparameters optimization and is also
outlined in Section IV-A. These best “mean” hyperparameter
sets, as will be shown in Section III, produce high enough
scores and low k-fold variability in all models.

4) Permutation Test: We also subject our classifiers to the
permutation test for labeled data [62]. This test, which has
been extensively used in the field of computational biology,
aims to address the following question: does the classifier
detect a significant class structure, i.e., a real connection
between the data and the class labels? We use a standard
fivefold CV to estimate a null distribution by permuting the
labels in the data and produce a “true” score without the
permutations. The experimental p-value from these tests is
calculated as follows:

p — value = _ S+t 3)
M permutations 1 1
where S is the number of permutations whose score > the
“true” score. Since ideally, S should be 0, the best possible
p-value is 1/(n permutations + 1), and since we use 100 per-
mutations, it is 1/101 = 0.0099, while the worst p-value is
when S = npermutations» 1-€., p-value = 1.0.

5) Imbalanced Dataset Test: Since flash floods are very rare

events, we thus require a more realistic scenario for testing
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Fig. 8. Nested cross-validation strategy diagram used in the classification task in this work. It includes five splits in the outer loop for testing and five splits
in the inner loop for hyperparameter tuning. For each fold, the samples are selected randomly from all the available data for training and testing/validating,
and thus, the diagram oversimplifies the fold separation process for visualization purposes.

our classifier, which is trained with a balanced dataset. There-
fore, we need to generate more negative samples from the
PWV/pressure time series. From Fig. 2, we see that for all the
stations (except ELAT), the minimum flash flood record (x’s)
starts approximately with the beginning of the PWV record
(we simply have no earlier records for ELAT before 2012).
Furthermore, there is a varying degree of flash flood events
frequency within the stations. As a rough estimate, we divide
the number of the total flash flood events (100) with the total
number of days of the largest time series (RAMO: ~7500
days or ~20.5 years) and reach a ratio of 1 flash flood event
in 75 days or 1.3% positive ratio. Thus, we need to produce
negative samples for each station that is complete (24 h) and do
not coincide with a positive event. Unfortunately, with these
constraints, we were able to find only 25 negative samples
per a positive one or 4% positive ratio that is three times
more frequent than the rough estimate. Nevertheless, we can
use a specific data split in order to overcome this obstacle.
The testing procedure for the imbalanced dataset is given as
follows.

1) For each ML model, we train our classifiers with 66.66%
of the balanced training set (71 positives and 71 nega-
tives).

2) We evaluate the classifiers with the remaining 33.33% of
the balanced dataset concatenated with all the remaining
negative samples produced (36 positives and 2639 neg-
atives) to receive a positive ratio of 1:73.3 or 1.36%,
which is very close to our estimate.

3) We repeat the evaluation for each of the score metrics.

III. EXPERIMENTAL RESULTS

Table III shows the best “mean” hyperparameters chosen
for each model (e.g., SVM and RF). All the results shown

TABLE III

BEST HYPERPARAMETERS FOUND USING CV FOR THE SVM, RF, AND
MLP CLASSIFIERS USED IN THIS WORK. OTHER HYPERPARAMETERS
ASIDE FROM THE ONES LISTED IN THE TABLE WERE USED IN
THEIR DEFAULT VALUES (PYTHON SCIKIT-LEARN VER 0.23.2)

SVM Classifier | RF Classifier [

Parameter | Best | Parameter

MLP Classifier

| Best | Parameter | Best

kernel rbf | n estimators 400 | activation relu

degree NR* | max features auto | hidden layer sizes | (10, 10, 10)
coefO NR* | min samples leaf | 1 learning rate constant

C 1 min samples split | 2 solver Ibfgs
gamma | 0.02 | max depth 5 alpha 0.1

* Not Relevant since degree and coef0 are only relevant for the poly kernel.

in this section use the aforementioned set of hyperparameters.
We encourage the interested reader to look at Section IV-A
where the process of hyperparameters selection is outlined and
discussed.

Fig. 9 shows the mean test scores and variability due to
data splits selection for the SVM, RF, and MLP classifiers
and for each metric. For most metrics, MLP has generally
slightly worse scores than SVM and RF. For the feature
groups, DoY performs poorly, followed by surface pressure
that is only second to PWV, which has the highest scores for
a single feature group. Adding pressure and DoY only slightly
improves the scores for most models and metrics. DoY as a
single feature has the highest fold selection variability, while
all other features have lower variability.

Fig. 10 shows the mean ROC curves for the SVM, RF, and
MLP classifiers where the variability due to fold selection is
shown in shaded colors. The mean AUC scores and variability
is shown in each panel’s legend. The left panels show the mean
ROC curves for only five data splits and the right panels show
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Mean test scores for the SVM, RF, and MLP classifiers (row) and for each metric (column). The feature groups consist of DoY (purple), surface

pressure (brown), PWV (blue), surface pressure and DoY (red), PWV and surface pressure (orange), and all three together (green). The mean scores are
indicated to the top left of each bar and the SD of five data splits is represented by the error bar length.

the mean ROC curves where the negative class was resampled
25 times. For both panels, SVM and RF outperform MLP,
where the left panels have slightly better AUC scores and
lower variability than the right panels, as expected. Adding
more features to PWV improves the AUC scores, although
adding DoY to PWV + pressure is within the score variability,
and thus, its effect cannot be distinguished.

Fig. 11 shows the null distribution, best models scores, and
p-values for the SVM, RF, and MLP classifier permutation
tests for each metric. For all the models and nearly all metrics,
the p-value is 0.0099, which is the highest score available (see
Section II-C4 for definition), indicating that the models do a
good job at detecting a class structure. However, looking at the
MLP model, we can see that the best scores are lower than for
the SVM and RF models, and for the recall metric, the MLP
model almost fails completely with p-values of 0.06-0.11 for
all feature groups (worst possible p-value is 1.0).

Which feature is useful for predicting flash floods? One
way of understating which feature group is important to
a classifier is to use the Scikit-Learn RF model’s built-in
feature importance’s attribute, which is based on averaging
the decrease in impurity over trees [63]. Fig. 12 shows the
feature importance based on mean decrease impurity (MDI)
for PWYV, surface pressure, and DoY as the model uses all
of them together. For all metrics, the RF classifier finds the
PWYV the most important feature with about 72% of the score,
followed by surface pressure at about 27% and finally DoY
with less than 1%. Interestingly enough, Fig. 12 also shows an
hourly breakdown of the MDI-based feature importance where
the highest PWV’s hourly contribution is from 2 to 5 h prior

a flood (totaling in roughly 20%). This finding is not very
surprising since we expect that the PWV values close to the
time of the flood would be the most relevant in the prediction
of the flood. There are two more minor importance peaks that
reside in around 13 and 20 h prior to a flood. However, their
significance remains unclear and requires further investigation.

In many data scenarios, the MDI-based feature importance
method contains biases and should not be relied upon [64];
however, it is not clear if this is the case in our work.
Nevertheless, we decide to validate our findings using a game-
theory-inspired method of feature importance based on the
Shapley values [65]. We use the SHAP Python package [66]
and calculate the mean SHAP values for the three feature
groups where the RF is trained with its best HPs. The result
is in Fig. 13, showing an almost similar picture as in Fig. 12,
where the most important PWV values are from 2 to 6 h prior
to a flood with two more smaller peaks in 14 and 19 h prior
to a flood.

The imbalanced dataset test scores, as presented in Fig. 14,
yield a drop in the precision and F1 metrics for all feature
groups; however, for all other metrics, i.e., accuracy, TSS,
HSS, and most importantly recall, the scores compared to the
balanced test (Fig. 9) remain almost unchanged.

IV. DISCUSSION

As to date and to the best of our knowledge, this work
demonstrates for the first time the ability to directly pre-
dict flash flood events from GNSS-derived PWV using ML
methodology. Thus, the first part of this discussion, which is
presented in Section IV-A, is about the technical validity or
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TABLE IV
HYPERPARAMETERS SEARCH SPACE FOR THE SVM, RF, AND MLP CLASSIFIERS USED IN THIS WORK

SVM Classifier |

RF Classifier

| MLP Classifier

Parameter | Options | Parameter

| Options

| Parameter | Options

kernel rbf, sigmoid, linear, poly |n estimators 100 to 1200 | activation identity, logistic, tanh, relu
degree 1,2,3,4,5 max features auto, sqrt hidden layer sizes | (10, 20, 10), (10, 10, 10), (10,)
coef0 0,1,2,3,4 min samples leaf |1 to 10 learning rate constant, adaptive
C 0.01 to 100 min samples split |2 to 50 solver adam, Ibfgs, sgd
gamma |10~ 5 to 1 max depth 5 to 100 alpha 1075 to 10
. ROC curves, and permutation testing. This set of hyperpa-
P pwv+pressure+doy rameters was selected using a grid search for the various
—— pwv+pressure == chance hyperparameters range, as shown in Table IV. The basic
idea is to search for the best hyperparameters per each data
SVM | Neg=1 SVM | Neg=25 ) aren yperp P
o split by using different metrics. If we select one set of
45 1.00 . hyperparameters for all of the data splits and show that the test
o ) scores do not vary too much, then we can justify our choice
@ 0.75 P . o
> .-” empirically. In addition, if we can also show that the same
050 AUCs AUCs results hold for different score metrics, it will increase their
& 025 Lo~ 0.92x0.02 .—— 0.92+0.04 robustness.
* ts
G o »7 — 098x002 »7 — 0595x003 Figs. 15-17 show the optimal hyperparameters with a data
S LR il A split and metric breakdown for the SVM, RF, and MLP
RF | Neg=1 RF | Neg=25 classiﬁer's, respectively. For all the classifiers, we cap detegt a
& change in the hyperparameters for the recall metric, which
E 1.00 A raises a red flag over its usage. For the SVM classifier,
@ 0.75 i except for the recall metric, the best kernel is radial basis
.E 050 - > function (rbf) with good estimates of gamma and C values
@ AUCs AUCs of 0.02 and 1 respectively. For the RF classifier, min samples
a- 0.25 ’ e ] et split parameter is very high for the recall metric compared to
cu " — 094+001 L7 |— 0.92+0.04 the oth i hile all oth ters d ¢ sh
3 0.00 e el e other metrics, while all other parameters do not show any
= reaction when being optimized by recall. Interestingly, min
MLP | Neg=1 MLP | Neg=25 samples leaf changes in some splits when the CV strategy is
i) four inner folds as opposed to five inner folds. Finally, for
= L0 the MLP classifier, the hidden layer sizes (NN architecture)
@ 0.75 parameter is almost evenly distributed, suggesting that this
= 050 pfu’c s parameter is not important or our search grid is not large
3 N > enough. For the activation parameter (activation function), the
& 0.5 .—— 0.88+0.03 .—— 0.89+0.05 . -~ ) .
3 ,#7 — 093006 L #7 — 091004 recall metric optimizes this parameter to be logistic as opposed
é 0.00 — 0.92+0.06 — 5004 to rectified linear unit (relu) for all other metrics.
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False Positive Rate
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Fig. 10. Mean ROC curves for the SVM, RF, and MLP classifiers (row) with
the best hyperparameters where the positive and negative classes are balanced
(Neg = 1, left column). The feature groups consist PWV (blue), PWV and
surface pressure (orange), and PWV + surface pressure + DoY (green) where
the chance curve indicates a no skill curve (red dashed line). The right column
is the same as the left except that we resampled the negative class 25 times
(Neg = 25). The shaded area is the SD of 5 X Neg folds for each point in
the ROC curve. The area under the curve is denoted in the legend with the
SD of 5 X Neg folds as variability.

our results or, more specifically, the hyperparameter tuning
and selection procedure. A comparison with other flash floods
predicting works in the EM is discussed in Section IV-C.

A. Hyperparameters Tuning and Selection

Table III shows the best hyperparameters that were used
in testing the models using different score metrics, producing

In order to test how the hyperparameter optimization for
each inner fold fares on the test fold, we use the same metrics
on each inner fold optimized with the same metric. The results
are shown in Figs. 18 and 19 for the four and five inner folds’
CV strategies, respectively.

If we compare these figures to Fig. 9, we can see that
for all metrics except recall, the mean test scores are within
their data split variability (the error bars in the bar plot). For
recall, SVM finds perfect scores for most features, while MLP
finds a perfect score for some features and large variability
for others. This apparent instability further lowers the recall
metric’s reliability in this task.

As with the score test, we can make ROC curves along with
their AUC scores for each fold individually. Figs. 20 and 21
show the ROC curves for the four and five inner folds’ CV
strategies, respectively.

Most of the ROC curves and the accompanying AUCs
are consistent throughout the metrics except for recall. SVM
and MLP perform poorly for all features with regard to this
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Mean SHAP values for the PWYV, surface pressure, and DoY features as
and thus, only the contribution to the positive is plotted.

metric with AUC scores of roughly 0.5 (random choice). Thus,
we must conclude that for the purposes of hyperparameter
optimization in our datasets, recall should not be used as a
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run together in the RF classifier. The effect is symmetrical to each class,

metric. Comparing these figures to the left column of Fig. 10
shows similar results, thus empirically justifying our choice in
one best set of hyperparameters.
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Fig. 15. Panel showing the optimal hyperparameters that were found using grid search CV for the SVM classifier. Each set of hyperparameters was found
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B. Realistic Flash Flood Scenario Test

The imbalanced dataset test, which simulates a more rare
flash flood occurrence than previously examined, is presented
in Fig. 14. As estimated in Section II-C5, this scenario
simulates a 1 in 75 days flash flood frequency and represents
a flash flood occurrence for the study terrain in the EM
area. For most metrics, the classifiers performed admirably,
and however, there is a significant drop in the precision and
the F1 metrics’ performances. For a more moderate imbal-
anced dataset (1 in 40), the metric scores, e.g., SVM model,
show a 30% mean improvement (not shown), suggesting that

increasing the dataset for both training and testing might
improve the classifier’s performance for possibly more rare
event occurrence. Furthermore, since the F1 metric is very
sensitive to both the recall and the precision metrics, a drop
in either lowers F1 considerably, and thus, the F1 scores are
expected since our precision dropped as well. As expected,
the recall metric did not suffer the same decrease as the
precision, and thus, we conclude that the classifier performs
well at minimizing FNs, i.e., when flash floods occur but no
warning has been issued. This low miss rate is extremely
important for an early warning system which our classifiers
have demonstrated through this test.
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C. Comparison With Other Studies in the EM

In the EM area, we found two major studies, which
aim to predict flash floods and produce results that can be
translated into the metrics reported in this work. However,
both studies have used hydrological-based models without
PWYV as input and thus consist of different datasets and,
as such, are not considered a valid comparison to our work.
Nevertheless, reporting their results should give us a rough
estimate of the current flash flood prediction ability in the
EM area.

Morin et al. [10] used rainfall radar data along with a
hydrological model in order to predict flash floods in two
catchments that drain into the Dead Sea area that is located
in the arid part of the EM. They achieved a TPR [also
known as recall, see (2c¢)] ranging from 0.41 to 0.82 and
an FPR [also known as fallout, see (2a)] ranging from
0.21 to 0.25.

Rozalis et al. [3] used somewhat similar methodology as
in [10]; however, the study area is located ~117 km north
of the Dead Sea and large enough (27> km) to include the
Mediterranean, semiarid, and arid climates. Furthermore, the
prediction algorithm they used was made to predict three levels

of peak discharge (<14 m’/s, 14-50 m’/s, and >50 m?/s),
which can be translated into ML terms as a multiclass
classification task. Since in this work, we solve a binary clas-
sification task, we will present the aggregated results from [3]
to get an estimate of their model’s performance. Thus, from a
total of 20 events, 12 are correctly predicted (TP), 1 is missed
(FN), and 7 were false alarms (FP). Since Rozalis et al. [3]
did not include the TNs, we can only consider their TPR that
is 0.92.

Finally, hydrological models are not meant only for flood
prediction but rather a deeper understanding of the underlying
physics that drive the flash floods. Unfortunately, our approach
here is mostly data-driven and does not present a clear and
better understanding of the flash floods phenomenon. Never-
theless, by using ML methodology, we were able to maximize
the impact of the small amount of physics that is hidden in
the PWV time series and produce a successful flash flood
predictor, which can be used as the basis of an early warning
system.

V. SUMMARY AND CONCLUSION
We have used nine GNSS ground stations in order to obtain
PWYV and use it in order to train, test, and validate a classifier
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for predicting flash floods in the arid part of the EM region.
The conclusions are given as follows.
1) Forning them together shows only a slight improvement.
2) The ROC curves showed that the SVM model achieved
the highest mean AUC and the lowest AUC variability
compared to the RF and MLP models.

3) The feature importance plots from the RF model showed
that the PWV predictor is the most important one (72%),
followed by surface pressure (27%) and DoY (<1%).
An hourly breakdown of the PWV predictor shows a
major peak from 2 to 6 h prior to a flood, with two
smaller peaks on 14 and 19 h prior to a flood.
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4)

5)

6)

7

8)

9)

17

The nested CV technique is very informative and can
quantify the model’s performance variability due to data
split selection. Furthermore, we show that for this dataset
that is composed of 214 samples (balanced classes),
a CV of five or five folds is either acceptable and
produces similar results.

From all the score metrics that were used to find the
optimal hyperparameters in this analysis, only recall was
found unstable and resulted in poor ROC curves.

The permutation tests showed a clear class structure
for the RF and SVM models, and however, the MLP
achieved less than desirable results in these series of
tests.

All the models have been tested with a highly imbal-
anced dataset, which simulates a more realistic flash
flood occurrence scenario. The models show a drop in
the false alarm rate (precision) with the hit rate (recall)
remaining high.

A possible improvement to the flash flood prediction
approach is to solve a multiclass classification task
where the peak discharge can be used as a threshold
parameter, i.e., predict whether the flood will be large,
medium, or small.

The flash floods prediction approach as demonstrated in
this work can be used to develop a near real-time flash
floods early warning system.
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