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Abstract— Due to the complexity of backscattering mechanisms
in built-up areas, the synthetic aperture radar (SAR)-based
mapping of floodwater in urban areas remains challenging. Open
areas affected by flooding have low backscatter due to the
specular reflection of calm water surfaces. Floodwater within
built-up areas leads to double-bounce effects, the complexity of
which depends on the configuration of floodwater concerning
the facades of the surrounding buildings. Hence, it has been
shown that the analysis of interferometric SAR coherence reduces
the underdetection of floods in urbanized areas. Moreover,
the high potential of deep convolutional neural networks for
advancing SAR-based flood mapping is widely acknowledged.
Therefore, we introduce an urban-aware U-Net model using dual-
polarization Sentinel-1 multitemporal intensity and coherence
data to map the extent of flooding in urban environments.
It uses a priori information (i.e., an SAR-derived probabilistic
urban mask) in the proposed urban-aware module, consisting
of channel-wise attention and urban-aware normalization sub-
modules to calibrate features and improve the final predictions.
In this study, Sentinel-1 single-look complex data acquired over
four study sites from three continents have been considered. The
qualitative evaluation and quantitative analysis have been carried
out using six urban flood cases. A comparison with previous
methods reveals a significant enhancement in the accuracy of
urban flood mapping: the F1 score of flooded urban increased
from 0.3 to 0.6 with few false alarms in urban area using our
method. Experimental results indicate that the proposed model
trained with limited datasets has strong potential for near-real-
time urban flood mapping.

Index Terms— Deep learning (DL), multitemporal syn-
thetic aperture radar (SAR), U-Net, urban flood mapping,
urban-aware.
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I. INTRODUCTION

FLOOD inundation is one of the most costly and world-
wide natural disasters, having a profound impact on the

global population in terms of lives and property [1], [2].
It is estimated that between 2000 and 2018, about
2.23 million square kilometers of land were flooded and
255–290 million people were directly affected [2]. Mean-
while, the losses caused by floods are projected at US$597
billion from 2016 to 2035 by Willner et al. [3]. Spaceborne
synthetic aperture radars (SARs) are the optimal sensors
for detecting floodwater due to their capability to pene-
trate clouds and their quasi-independence from sun illu-
mination and weather conditions. In recent decades, the
application of SAR-based flood mapping has increased
rapidly, thanks to the growing number of SAR satellite
constellations characterized by different frequencies, polar-
izations, and resolutions (e.g., Sentinel-1, COnstellation of
small Satellites for the Mediterranean basin Observation
(COSMO) SkyMed, TerraSAR-X, RADARSAT-2, Advanced
Land Observing Satellite (ALOS)-2, and GaoFen (GF) 3). The
majority of flood mapping methods presented in the literature
exploit the above-mentioned satellite data (e.g., [4]–[8]) and
focus on inundated rural areas (i.e., bare soils and sparsely
vegetated terrain) and flooded vegetated areas (i.e., flooded
forest [9], wetlands [10], rice field [11]), while methods and
applications targeting urban areas are less frequent.

Urban flood mapping methods used in the past can be
divided into two categories: traditional remote sensing meth-
ods (e.g., [5], [12], [13]) and machine learning (ML)/deep
learning (DL)-based methods (e.g., [14]–[16]). Compared with
the traditional flood mapping methods, the ML/DL methods
are able to learn the characteristics of different classes (e.g.,
nonflood class, flooded open areas, flooded urban (FU) areas,
and flooded vegetation areas) from the training dataset directly
instead of relying on assumptions based on prior knowledge.
As the amount of training data tends to be very small,
it remains particularly challenging to adopt DL approaches for
SAR-based flood mapping in urban areas. The application of
the attention mechanism and normalization technique allevi-
ated the problem without entirely solving it. Thus, we hypoth-
esize that the introduction of prior information derived from
multitemporal SAR data to the DL model improves the robust-
ness and generalization of the trained model. To test this
hypothesis, we applied an urban/nonurban mask as in [12]
to provide additional essential information for the selection of
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effective features characterizing the urban class. Here, instead
of using the urban mask as an additional layer of the input
data, we introduced and evaluated an urban-aware module
making use of an urban mask to refine informative features.
In addition, we hypothesized that the proposed DL-based
model is able to generalize and be robust in large-scale flood
mapping with different land cover scenarios, focusing not only
on urban areas but also on bare soils and sparsely vegetated
areas. The possibility of generalization and the robustness of
the proposed model are also evaluated in this study.

This article is organized as follows: Section II introduces
several state-of-the-art methods. Section III describes the pro-
posed urban-aware module and urban-aware U-Net in detail.
Section IV describes the flood events, datasets, and the exper-
imental setup. Section V evaluates the results via a series of
quantitative and qualitative comparisons. Section VI discusses
the advantages and disadvantages of our proposed method.
Finally, conclusions are drawn in Section VII.

II. RELATED WORK

Due to the complexity of the urban fabric, SAR-based
flood mapping within built environments is challenging, which
may explain the comparatively low number of studies focus-
ing on urban floods. Urban flood mapping methods can
be divided into several categories depending, for example,
on the input data that are considered: methods combining
SAR data with auxiliary data [e.g., digital surface model
(DSM), hydraulic data, world settlement footprint (WSF2015)]
(e.g., [17]–[19]), SAR intensity-only methods (e.g., [20]),
InSAR coherence-only methods (e.g., [12], [21]), interfer-
ometric phase-only method [13], and methods combining
InSAR coherence and interferometric phase statistics [22].
Mason et al. [17], [18] delineated urban floods with the help
of water height maps and high-resolution DSM [i.e., Light
Detection and Ranging (LiDAR) DSM and World digital
elevation model (DEM)]. Tanguy et al. [19] developed a near-
real-time flood extent mapping method relying on the com-
bined use of very-high-resolution Radarsat-2 data acquired
in the horizontal-horizontal (HH) polarization and hydraulic
data (i.e., flood return period). When mapping urban floods
using SAR intensity data, [20] proposed a multitemporal SAR
intensity [vertical-vertical (VV)]-based method assuming that
the presence of urban flooding increases the SAR backscatter.
This assumption is not correct when the double-bounce scatter-
ing between the floodwater and the façades of the surrounding
buildings is either insignificant or the buildings are submerged
by floodwater. To reduce the number of underdetected pixels,
the InSAR coherence was investigated for flood mapping in
urban areas. Pulvirenti et al. [21] explored the role of inter-
ferometric coherence in complementing intensity SAR data
for mapping floods in urban environments. The study showed
for the first time that the use of coherence data significantly
reduces underdetections. Floodwater in built-up environments
is mapped by detecting a decrease in the multitemporal
InSAR coherence (VV) in the vicinity of buildings [12].
The study reported in [13] analyzed the interferometric phase
information instead of the more frequently used coherence to
detect floodwater in built-up areas. By investigating the L-band
Phased Array L-band Synthetic Aperture Radar (PALSAR)-2

data in the HH polarization, the study showed that it is
beneficial to explore phase statistics rather than coherence in
the case of point-like scatterers. In fact, the underdetection of
point-like scatterers affected by flooding may occur when the
InSAR coherence is dominated by strong scatterers. When the
latter remains stable during a flood event, the phase variation
caused by the presence of floodwater might be negligible
and therefore undetectable. Recently, Pulvirenti et al. [22]
proposed detecting floodwater in settlements by exploring the
InSAR multitemporal coherence (VV) over persistent scatter-
ers (PSs). In their study, the phase statistics and the InSAR
coherence of flooded PSs were used together and this led to
a decrease in omission errors in urban flood mapping. The
joint exploration of both the VV and vertical-horizontal (VH)
polarizations has also proven to be informative for urban flood
mapping. Pelich et al. [23] demonstrated that adding the VH
polarization leads to an increase in the accuracy of the urban
flood maps from 75.2% when only using the VV polarization,
to 82.9% when using dual-polarization information. This could
be explained by the fact that multiple-bounce scattering occurs
in addition to double-bounce effects in urban areas and the
importance of this mechanism depends on the orientation of
the building facades with respect to the SAR sensor’s line of
sight (LoS) [23].

Besides the conventional flood mapping methods mentioned
above, applications of ML/DL methods have attracted much
attention in the remote sensing field in recent years [24]–[26].
The advantage of these ML/DL approaches is that they only
rely on the annotated input data during the training phase,
while during the inference stage, no assumptions have to be
made regarding land cover classes. Indeed, precise information
on land cover classes is not always readily available, especially
for complex environments such as urban areas containing dif-
ferent subclasses, e.g., dense buildings, bare soil, and vegetated
areas. However, only a few studies using the ML and DL
methods for urban flood mapping are available in the literature.
Moya et al. [16] used a traditional ML approach, i.e., support
vector machine (SVM) and historic Japanese flood events as
a training dataset to identify urban floods in Koriyama, Iwaki,
and Nagano during the 2019 Hagibis Typhoon. The gathering
of training data for urban flood mapping is time-consuming
and difficult due to the scarcity of available labels. A temporal-
ensembling active self-learning convolutional neural network
(A-SL CNN) was adopted for a major flood event that occurred
in Houston in 2017 using SAR intensity and InSAR coher-
ence to alleviate the negative effects of a limited annotated
training dataset [14]. It should be noted that due to the
limitation of annotated data, the A-SL CNN is trained using
labeled image patches (i.e., 32 × 32 pixels) rather than
labeled pixels. Li et al. [15] proposed an unsupervised urban
flood mapping method, combining SAR intensity and InSAR
coherence in the framework of a Bayesian network, which
is a probabilistic graphical model for parameterizing joint
probability distribution over a fixed set of random variables.
However, due to the limitation of urban flood training and
testing datasets, the above-mentioned studies were trained
and tested using the data acquired during one or two urban
flood events. The possibility of reapplying the trained models
to different flood events was not evaluated in any of these
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studies. Thus, to propose a DL-based flood mapping method
that can be generalized and reapplied to different scenarios,
the attention mechanism should be considered as it plays an
essential role in identifying the most representative features,
especially when training labels are scarce and unbalanced
within different classes. The attention mechanism inspired by
the human visual system has been widely used in computer
vision and natural language processing [27], as it can focus
on important features and suppress unnecessary ones. The
attention mechanism can be divided into two categories:
self-attention and cross-attention. The self-attention computes
attention weights based only on the input features. There are
several widely used self-attention modules in the computer
vision domain. For example, Hu et al. [28] used channel-wise
attention to highlight important feature dimensions (i.e., layer
of feature). Spatial information can be considered and com-
bined with channel attention modules either in a sequence
or in parallel. As an example, Woo et al. [29] proposed a
convolutional block attention module (CBAM) composed of
two submodules, i.e., a channel attention followed by a
spatial attention, while the dual-attention module introduced
in [30] fused the refined features from the spatial and chan-
nel attention modules in parallel. Besides the self-attention
mechanism, the cross-attention mechanism was introduced to
bridge attention across different data. For example, multimodal
approaches take advantage of the attention from one modality
(e.g., LiDAR) to highlight features in the other modality
(e.g., hyperspectral data) [31]. The attention gate proposed
by [32], [33] also acts as cross-attention, since the gating
signal is used to help the model concentrating on the local
spatial regions of input features instead of the global ones.
Besides the attention mechanism, the normalization is able to
select the robust features by rescaling them in the DL models.
Common normalizations in the DL models are: batch normal-
ization (BN) [34], instance normalization [35], layer normal-
ization [36], and group normalization [37]. Moreover, there
are some normalizations that consider additional conditions,
i.e., spatially adaptive normalization [38], adaptive instance
normalization (AdaIN) [39], and attentive normalization [40].
Thus, features could be affine transformed using different
information, such as the other features or conditions. However,
to the best of our knowledge, the attention mechanism and
feature normalization have not yet been applied to SAR-based
flood mapping. As shown by the above-mentioned studies, it is
advantageous to consider SAR intensity, InSAR coherence,
and the cross- and copolarization data acquired before and
during the flood events to map floodwater over bare soils
and urban areas. Different information is necessary for each
specific land cover (e.g., bare soils and urban areas). Thus,
DL approaches must select the most adequate modality for
each class.

III. METHODS

In urban areas, there are three distinct scattering mecha-
nisms: specular reflection, the double, and multiple bounces.
In the case of specular reflection, the presence of water leads
to a decrease in SAR intensity backscattering in both the
VV and VH channels. In the case of double-bounce, the

intensity is expected to increase mainly in the VV channel,
and the magnitude of the effect depends on the orientation
of the building façade with respect to the LoS of the sensor.
The strength of double-bounce also depends on the height of
the building above the water level: the double-bounce effect
reduces the difference between the water surface and the height
of the surrounding buildings with decreasing elevation and
completely disappears when the building is totally submerged.
Thus, the interferometric coherence, which indicates the cor-
relation of two complex (amplitude and phase) observations,
plays an important role in indicating the surface changes
caused by floodwater. In principle, urban settlements are con-
sidered as steady targets characterized by high coherence even
at large temporal baselines without considering the vegetation
with unstable structures resulting in low coherence. Hence,
a sudden decrease in the multitemporal InSAR coherence
in both the VV and VH polarizations is indicative of the
appearance of floodwater between two image acquisitions.
However, a significant drop in coherence may also occur
because of a precipitation cell covering bare soils, thereby
potentially causing false alarms in the urban flood maps.
Thus, it is evident that the input features must be carefully
selected to tackle floodwater mapping over different land cover
classes. Given the scarcity of labels for the urban floodwater
class, there is indeed a high risk that self-attention approaches
generate less accurate results in terms of the robustness of
the trained model, especially when applied to new events in
different locations. Thus, we hypothesize that considering an
urban mask provides additional information and potentially
contributes to more accurate results. An intuitive way to
make use of the urban mask is to simply concatenate it with
SAR input and then feed them into a semantic segmentation
network. However, such a method may suffer from the distri-
bution bias between the training dataset and the application
dataset due to the limited volume/diversity of the training
dataset. This may lead to inefficient use of the SAR-derived
urban mask and thus less accurate predictions. To address this
issue, we propose the application of an urban-aware module
as a way to leverage an additional urban layer to normalize the
features learned and the final predictions. We expect the urban
mask to provide information about the built-up area’s geometry
and the probability of building locations. Such features can
guide the neural network toward normalizing features of urban
and nonurban flood classes and can thus improve the accuracy
of urban flood mapping. This normalization is performed for
each input instance adaptively in both the training and testing
phases. Then, the urban-aware module is embedded into a
multiscale network architecture, i.e., U-Net.

It is worth mentioning that the double- and multiple-bounce
scattering mechanisms are also caused by tall vegetation.
When such areas are flooded, an increase in the backscattering
value is expected, while the specular reflection mechanism
dominates in cases of short or sparse vegetation. The latter
results in a decrease in the backscattering value [10]. In this
study, we consider three classes (i.e., open flood, urban flood,
and no flood) because when considering 20 m resolution
Sentinel-1 images, it was not easy to clearly identify a class
of flooded vegetation in our use cases. Vegetated areas are
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Fig. 1. Structure of the urban-aware module.

mainly composed of isolated trees. Thus, we assume that trees
belonging to the same resolution cell as buildings dominate the
backscattering. Such areas were assigned to the urban flood
class, while low vegetation was associated with open water
flooding. We note that isolated trees generating a raise of
backscattering values in the presence of floodwater could cause
an underdetection of floodwater via the proposed algorithm
since vegetation usually shows a low value of multitemporal
coherence.

A. Urban-Aware Module

The urban-aware module is applied to facilitate the learning
process of the model by focusing on the more representative
and robust features for different targets (i.e., different flood
classes). Inspired by the work in [29], our module has two
submodules that are applied sequentially: i.e., the channel
attention and urban-aware normalization submodules (Fig. 1).
The feature map is expected to be adaptively refined through
each submodule.

1) Channel Attention Submodule: Given a multilayer fea-
ture tensor X ∈ RW×H×C where W, H, and C present,
respectively, the number of width, height, and channel of
the feature map, different attention weights are applied to
focus on different channels. Each channel brings different
information content. Each channel attention exploits the inter-
channel relationship of features using a learnable network
that weighs the importance of each channel and generates
more informative outputs. In previous studies (e.g., [28], [29],
[41]–[43]), the global average pooling (GAP) was selected
to squeeze and aggregate the spatial dimension of the input
feature map. In the channel attention module, GAP is adopted,
followed by the application of two 1 × 1 convolutions
with a rectified linear unit (ReLU) comprised in between.
Finally, the sigmoid function is used to obtain a chan-
nel attention score (Xc) with values ranging from 0 to 1.
The graphical visualization of the channel attention submod-
ule is shown in Fig. 1, and the following equation gives
a mathematical expression for the aforementioned channel
score (Sc):

Sc = sigmoid(Conv2d(ReLU(Conv2d(GAP(X))))). (1)

Next, the channel attention refined feature X ′ can be
obtained, as follows:

X ′
= Sc × X. (2)

2) Urban-Aware Normalization Submodule: In this section,
a normalization was considered by introducing the probabilis-
tic urban mask. The normalization submodule is generally
composed of a scale factor and a bias component. The scale
factor is derived from the intermediate feature and the “urban
mask.” We compared the results obtained when normalizing
both with and without a bias derived from the “urban mask”
and found that in our study, the approach that did not use
any bias term achieved slightly better results. Therefore, the
normalization submodule without bias is applied in this study.

Given an intermediate feature tensor X ′
∈ RW×H×C , a block

containing 1 × 1 convolutions, a BN, and a ReLU activation
unit are applied. Then, the scale factor Ws is obtained by
multiplying it with the urban probabilistic mask feature M

Ws = ReLU
(
BN

(
conv2d

(
X ′

)))
× M. (3)

Finally, the refined feature (X refined), where the urban-aware
normalization is applied, can be obtained

X refined = Ws × X ′. (4)

As for each input instance, there is an associated “urban
mask” that differs from the standard normalization fixed in
the testing phase, and this conditional normalization is applied
to each instance adaptively in both the training and testing
phases. This is done to improve the generalization capability
of the model.

3) SAR-Derived Probabilistic Urban Mask: As shown in
Fig. 1, an SAR-derived probabilistic urban mask is used as
input in the proposed urban-aware normalization submodule.
Following [44], we introduced a fuzzy-logic-based proba-
bilistic urban mask. It is generated based on the assumption
that both the double-bounce and multiple-bounce effects exist
in urban areas and can be detected and measured by the
co-polarization and cross-polarization channels, respectively.
However, high backscatter values may also be caused by
different types of vegetation. To remove vegetation from the
analysis and thus reduce the risk of overdetection, the InSAR
coherence is considered in addition to SAR intensity. The
reason for this is that buildings have stable structures leading
to high temporal coherence, while vegetation changes over
time lead to low coherence. These assumptions imply that the
probabilistic urban mask can be generated using multitemporal
mean backscatter in VV and VH and multitemporal mean
coherence in VV and VH. In this study, five intensity images
and five coherence images, which were acquired during a
period without flooding or other changes, are used. We assume
that the urban area is stable during this time period and
that possible small changes in one image are attenuated
by the temporal averaging step of the five intensity and
coherence images. To integrate these four layers, a stan-
dard S membership function was applied [Fig. 2(a)], where
parameters X1 and X2 define the minimum and maximum
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Fig. 2. Illustration of thresholds’ selection for the fuzzy-logic-based
probabilistic urban mask. (a) Standard S fuzzy membership function. For the
S function, values smaller than X1 have a membership degree equal to 0, while
values higher than X2 have a membership degree equal to 1. (b) Parametric
Gaussian distributions of building and nonbuilding in intensity/coherence
image.

fuzzy thresholds determining whether a pixel is considered a
building or not, respectively. To automatically find suitable
X1 and X2 for each fuzzy set, a hierarchical split-based
approach (HSBA) [7] was applied. Generally, HSBA assumes
that the distributions of backscatter values associated with
buildings and all other backscatter values, respectively, can
be parameterized as two Gaussian distributions in intensity
VV and VH, and coherence VV and VH images, respectively.
Hence, with the parameterized Gaussian distributions, X2 is
assigned as the mean value of the probability density function
(PDF) attributed to backscatter values of buildings, while
X1 is assigned as three standard deviations of the mean
(i.e., mean − 3std) [Fig. 2(b)]. The assumption of Gaussian
distributions is motivated by the fact that the PDF of a random
variable affected by speckle approaches a Gaussian distribution
when equivalent number of looks (ENL) increases [45] and
that the PDF of the log-transformed noise approaches the
Gaussian distribution much faster than on a linear scale [46].

B. Urban-Aware U-Net
In this study, we used a U-Net specifically designed for

image segmentation using limited training datasets as a basis.
The technique has been widely used in remote sensing image
segmentation (e.g., [48], [49]) since the low and high levels
of details can be combined to achieve better performances by
the skip connections. As shown in Fig. 3, the urban-aware
module was adopted at each skip connection of the U-Net.
The SAR-derived probabilistic urban mask should be down-
scaled to each level of the U-Net to be combined with the
corresponding feature of the input SAR data. In this study,
the downscaling of the SAR-derived probabilistic urban mask
was conducted using the same U-Net encoder. The input and
SAR-derived probabilistic urban mask features are downsam-
pled at each level and refined by the urban-aware module.
Thus, the fine-grained features are successively transmitted to
the decoder through skip connections, compensating for the
loss of position information in the deep layers of the decoder.

In this study, the focal loss (FL) function was used since
it was found to be the most effective solution regarding data
imbalance [50] as it considered the imbalance of the data and
the difficulty level of the dataset

FL(pt ) = −αt (1 − pt )
γ log(pt ) (5)

where pt is the class probability. The focusing parameter γ is
set to 2 and the weighting factor αt is set to 0.25 as reported
in [50].

IV. DATASETS AND EXPERIMENTS

In this section, the datasets and experiments are described
in detail. First, several recent urban flood events in four study
sites are introduced, and all the relevant data, i.e., SAR data
and ground-truth data, are presented. Then, the preprocessing
of SAR data and data preparation for the CNN model are
explained step by step. Finally, the training of the model using
the proposed urban-aware U-Net is presented in detail.

A. Urban Flood Test Cases and Datasets

In this study, several flood events impacting built-up areas
in four different regions were selected:

1) The Hurricane Harvey-related flooding which affected
the metropolitan area of Houston (USA) on August 30,
2017;

2) The Typhoon Hagibis-related flooding that hit the cities
of Iwaki (Japan) and Koriyama (Japan) on October 12,
2019;

3) A rainfall-related flood that impacted the Webi Shebelle
River region and the city of Beledweyne (Somalia) in
three different years May 6, 2018, October 30, 2019,
and May 20, 2020, respectively;

4) Cyclone Ida, which caused massive flooding in
Mozambique and in particular in the city of Beira in
March 2019.

These urban floods occurred in dense built-up areas com-
posed of residential, commercial, and industrial districts,
including roads, parks, and parking lots. Sentinel-1 single-look
complex (SLC) data with the VV and VH polarizations are
used for the four case studies. Since the proposed algorithm
aims to detect floods over bare soils and urbanized areas, both
the intensity and multitemporal InSAR coherence information
are used. All the information about the dataset used are
summarized in Table I.

1) Reference Flood Extent Extraction: Generally, the col-
lection of ground-truth data for this kind of analysis remains
a very challenging task. The little information that is available
may come from different data sources and only cover a
fraction of the main area of interest. Moreover, there might be
significant issues of representativeness if SAR and reference
data were not collected at the same time. However, this kind of
information is crucial to assess the quality of the flood extent
maps extracted using automatic algorithms and to provide
reliable labels in the training phase of the supervised classifi-
cation algorithms. The reference maps are usually manually
derived from a visual inspection of high-resolution optical
images acquired during flood events. However, since the
necessary high-resolution data may not always be available,
other information sources also have to be considered. If no
independent data are available, the flood extent generated using
a different SAR-based flood mapping method might be used
as a last resort to evaluate the results. Since several different
flood events have been considered in our study, the reference
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Fig. 3. Proposed urban-aware U-Net architecture: the block in orange represents the urban-aware module.

TABLE I
DETAILED INFORMATION OF URBAN FLOOD EVENTS AND SAR (I.E., SENTINEL-1) IMAGERIES CHARACTERISTICS.

THE FLOODED ACQUISITIONS ARE MARKED IN RED

floodwater extent maps are obtained using different approaches
and data sources:

- High-resolution optical data were available for the Hous-
ton event. Thus, the binary flood extents were manually
derived by analyzing the 35 cm resolution optical data pro-
vided by National Oceanic and Atmospheric Administration

(NOAA) [51], distinguishing floods over sparsely vegetated
and urbanized areas.

- The reference maps for the Iwaki flood and Koriyama
flood were provided by the Earth Observation of Singapore
(EOS), which used Sentinel-1 data [52], and by the Geospa-
tial Information Authority of Japan (GSI) [53], which used
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TABLE II
CHARACTERISTICS OF THE INPUT DATASETS: TEMPORAL BASELINE (Bt ) AND PERPENDICULAR BASELINE (B⊥)

airborne optical images, respectively. These binary flood maps
were combined with an additional urban mask—WSF2015
[55]—to distinguish flooded bare soils/sparsely vegetated areas
and FU areas.

– For the Beira test case, no independent flood extent
maps were available. Hence, flood extent references indicating
flooded bare soils/sparsely vegetated areas and FU areas were
generated using SAR data. In particular, the flood extent maps
were generated over bare soils using a state-of-the-art SAR
intensity-based algorithm [7], while the floods in urbanized
regions were delineated using a semiautomatic algorithm
based on multitemporal InSAR coherence and land cover
maps [12]. The resulting reference maps were refined by visual
comparison with a land cover map and a very high-resolution
optical image at 0.5-m spatial resolution acquired by Planet’s
Skysat satellite, presented in Fig. 10(c). Due to the limitations
caused by the differences in their acquisition times (i.e., the
optical image was acquired on March 23, 2019, three days
after the acquisition of S1 data) and cloud cover, it was not
possible to create a representative ground-truth map based on
optical data. On March 23, the flood had already partially
receded, and clouds were still affecting the area. Hence, the
presence of water could only be observed in a few regions.
Therefore, the optical image was used to carry out a visual
inspection over areas not affected by cloud cover and for which
the results provided by the InSAR coherence-based algorithm
indicated the presence of floodwater. From Fig. 10(c), we note
the presence of water around buildings indicated in dark green
color in the optical image.

- Concerning the Somalia flood events that occurred in
2018, 2019, and 2020 [54], United Nations Satellite Centre
(UNOSAT) provides the flood maps at district scale after visu-
ally inspecting optical images (i.e., WorldView-1/2, GeoEye-
1) made available during the International Disaster Charter
activations. These maps do not provide information at the pixel
scale, but rather a degree of the flood (partially or fully) at the
district scale.

2) Data Preprocessing and Preparation: This study was
carried out using Level-1 SLC Sentinel-1 data acquired during
several flood events, as shown in Table I. For each flood event,
six SLC images were acquired before flooding started and one
SLC flood image was acquired during flooding. SLC data were
used to extract interferograms and were then calibrated and

Fig. 4. Location of the training dataset. (a) ROI covering parts of Houston,
USA. (b) ROI covering Iwaki, Japan.

transformed into intensity (in dB). Using SARscape software,
the interferometric processing was performed to obtain a slant
range interferogram with a square pixel of 20 m by applying
a 4 × 1 multilook step (4 and 1 looks in the range and
azimuth, respectively). A Goldstein filter with a size of 9
× 9 pixels was applied to the interferogram to reduce noise
in the phase, and then the interferometric coherence was
estimated by a moving window of 9 × 9 pixels. Finally,
all the intensity and coherence data were geocoded to World
Geodetic System (WGS) 1984 Universal Transverse Mercator
(UTM) with 20-m spatial resolution. To attenuate the speckle
in the intensity image, a Lee filter with a 9 × 9 window
was also applied. It should be noted that the intensity and
coherence were generated from the SLC image pairs for
each polarization channel separately. Next, an SAR-derived
probabilistic urban mask was generated for each location using
six multitemporal intensity images (VV and VH) and five
multitemporal coherence images (VV and VH). Besides the
probabilistic urban mask, the input data of each flood event in
our study had eight images: preevent and coevent coherence
in VV and VH, and preevent and postevent intensity in VV
and VH. Table II summarizes the characteristics of the input
data of each flood case.

Given that one of the objectives of this study is to assess
the possibility of applying the proposed approach to different
flood events, only part of the available reference data is used
to train the DL model, while the remaining part is used for
testing the model. In particular, only one region of interest
(ROI) with 1304 × 957 pixels in Houston (USA) and one
ROI with 667 × 577 pixels in Iwaki (Japan) are selected as
the training datasets (Fig. 4), while other ROIs from these two
test cases and all other study sites are used only for testing.
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As shown in Fig. 4, all the pixels are labeled as flooded open
areas (i.e., bare soils/sparsely vegetated areas) (FO), FU areas,
and nonflooded (NF) areas, respectively.

B. Model Training

First, the ROIs of the training dataset were split into
patches with a size of 134 × 134 pixels, and each patch
has 50% overlapping with its adjacent patches. Then, data
augmentation, i.e., a random cropping with a size of 128 ×

128 pixels, a random vertical and horizontal flipping, and a
random rotation (i.e., 90◦, 180◦, 270◦) were applied during
the training phase. From this dataset, 70% of the samples
were used for training and 30% of the samples were used for
validation. To generate the dataset for testing the approach, the
preprocessed images were split into nonoverlapping patches
with a size of 128 × 128 pixels. The CNN architecture
(section III-B) is trained with a batch size of eight and using
an Adam Optimizer with an initial learning rate of 1e-6,
momentum parameters β1 = 0.9 and β2 = 0.999, and a
weight decay with a coefficient of 1e-4. The FL was adopted
to deal with the imbalanced datasets [50]. The models were
trained for 100 epochs, thereby delaying the learning rate
with ReduceLROnPlateau. Instead of using early stopping,
the model weights are saved every five epochs and then
we chose the best model, i.e., the model with the highest
accuracy in terms of F1 score during the training phase for
inferencing over several different test sites. All the models
were implemented in PyTorch1.

V. RESULTS

The results of all the case studies are qualitatively and
quantitatively evaluated. For the qualitative interpretation, red
green blue (RGB) combinations of multitemporal intensity and
coherence were generated. The Kappa coefficient, precision,
recall, and F1 score are reported for quantitative evaluation.
In Section V-A, the results of the evaluation for each region
are reported.

A. Houston (USA) Flood Case

Fig. 5(a) shows the intensity (VV) composite (R = preevent,
G = B = coevent) covering a subset of the Houston flood
case in an area outside that used for training the model.
The red color indicates FO, i.e., areas without any substantial
double-bounce effect between the surface water and adjacent
building facades or tree trunks. The cyan color depicts the
FU and submerged vegetation where backscatter increases
due to the double-bounce effect. The coherence (VV) RGB
composite (R = preevent, G = B = coevent) is presented in
Fig. 5(b). The white color indicates NF urban areas which are
characterized by high coherence (VV) in both preevent and
coevent acquisitions. The appearance of floodwater between
buildings results in a significant drop in the coevent coherence
(VV), as illustrated by the red color. It should be noted
that the coherence (VV) in vegetated areas is low in both
pre- and coevent acquisitions. In Fig. 5(c), the RGB com-
posite of intensity (VV) and coherence (VV) is generated as

1http://pytorch.org/

R = postevent intensity, G = preevent coherence VV, and
B = coevent coherence VV. The FU is recognizable in
yellow (i.e., high postevent intensity, high preevent coherence,
and low coevent coherence). The green color can be related
to FO which is characterized by low postevent intensity,
medium preevent coherence, and low coevent coherence.
Fig. 5(d) and (f) depicting the data acquired in the VH polar-
ization can be interpreted in a similar way. By comparing
the FU in the yellow rectangular areas of Fig. 5(c) and
Fig. 5(f) [zoom-in in Fig. 6(c) and Fig. 6(d)], it is clear that
FU is recorded differently in the VV and VH polarizations,
especially when considering the intensity. The reason for this
is that the double-bounce (VV) or multiple bounces (VH) can
vary depending on the orientation of a building with respect
to the LoS of the satellite [23].

Table III provides an overview of the quantitative evaluation
of the flood extents obtained for the Houston (USA) test case,
for which high-resolution optical images are available. The
Kappa coefficient is 0.83, and the F1 scores for FO and FU
are 0.87 and 0.63, respectively. In Fig. 5(g) and (h), our FO
(shown in blue) is consistent with the reference, while the
FU of the flood map (represented in red) is underestimated
with a recall of 0.54. Regions for which FU is underesti-
mated (squares in yellow) correspond to dense built-up areas
with heavy vegetation. To have a better understanding of
the backscatter behavior leading to underdetected FU areas,
a zoom-in of the regions highlighted by yellow squares is
provided in Fig. 6(a)–(d). It can be seen that the underdetected
areas are visible in cyan in the RGB combination of intensity
and coherence [Fig. 6(c) and Fig. 6(d)]. This is indicative
of a medium postevent intensity VV and VH, a medium
preevent coherence VV and VH, and a medium/low coevent
coherence VV and VH. Hence, the underdetection of FU can
be explained by a comparatively small change in the InSAR
coherence, arguably due to the medium value of the preevent
image caused by the presence of vegetation (e.g., 0.61 in
underdetected FU areas and 0.75 in correctly identified FU).
Moreover, the spatial resolution difference between SAR data
(i.e., 20 m) and optical-derived reference map (35 cm) may
also lead to the underdetection of FU.

B. Koriyama (Japan) Flood Case
Fig. 7 shows the SAR data, flood reference map, and our

flood map of the Koriyama (Japan) flood case in the exact same
way as depicted in Fig. 5 and interpreted in Section V-A. From
this figure, it can be observed that the reference [Fig. 7(g)] is
consistent with our flood map [Fig. 7(h)] in FO, while the
underestimation of FU is also depicted.

Table III also reports the quantitative evaluation of the flood
extent in the Koriyama flood case. The Kappa coefficient
(i.e., 0.51), F1 score of FO (i.e., 0.5), and F1 score of FU
(i.e., 0.51) demonstrate moderate consistency between the
reference and our result. The low precision (i.e., 0.5) and low
recall (i.e., 0.5) of FO are indicative of the existence of both
over- and underestimation. Fig. 8(a) depicts the overestimation
of FO in green and the underestimation of FO in yellow.
However, as shown in Fig. 8(c), the backscatter of those
overdetected FO [i.e., green in 8(a)] is quite low. Thus,
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Fig. 5. RGB color composites of the Houston (USA) case study, corresponding reference, and our flood map. (a) Intensity RGB composite, R = intensity
VV of August 24, 2017, and G = B = intensity VV of August 30, 2017. (b) Coherence RGB composite, R = coherence VV between August 18 and 24,
2017, and G = B = coherence VV between August 24 and 30, 2017. (c) Intensity and coherence RGB composite, R = intensity VV of August 30, 2017,
G = coherence VV between August 18 and 24, 2017, and B = coherence VV between August 24 and 30, 2017. (d)–(f) Using the data acquired in VH as
the same RGB combinations of (a)–(c), respectively. (g) Reference. (h) Flood map inferred by the proposed model.

we argue that the overdetection of FO originates from a
difference in the acquisition times between the SAR data and
the reference. The reference for Koriyama (Japan) is derived
from aerial photographs taken by GSI on October 13, 2019,
while the Sentinel-1 data were acquired on October 12, 2019.
Areas of underdetection of FO (yellow) are usually located
near the edge of the flood extents where the terrain may not

be totally submerged, and the backscatter tends to be slightly
higher. Areas with overdetected FU (i.e., FU precision = 0.71)
(black areas in Fig. 8) tend to be located near the edge of
the flood. We assume that this overdetection of FU is due
to a difference in the acquisition time of the SAR data and
the reference and the fact that floodwater had receded in the
meantime. Finally, the underdetection of FU is shown in cyan
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Fig. 6. Flood extent maps and the corresponding SAR data of the Houston
flood case covering the areas in yellow rectangles in Fig. 5. (a) Reference.
(b) Flood map. (c) Intensity and coherence RGB composite. R = intensity
VV of August 30, 2017, G = coherence VV between August 18 and 24,
2017, and B = coherence VV between August 24 and 30, 2017. (d) Intensity
and coherence RGB composite: R = intensity VH of August 30, 2017,
G = coherence VH between August 18 and 24, 2017, and B = coherence
VH between August 24 and 30, 2017.

in Fig. 8(a), with an FU recall value of 0.4. According to
Fig. 7(b) and (e), the decrease in the coherence (VV and VH)
in underdetected areas is not sufficiently high to enable the
mapping of FU. This is because the general assumption in
FU detection is that the appearance of floodwater in urban
areas leads to a drop in coherence. However, the decrease in
coherence is associated with pixels surrounding the buildings
that give rise to the double- or multiple-bounce scattering
mechanisms. Thus, the coherence may remain stable during
flooding when it comes to the FU areas containing buildings
that have large and flat roofs and relatively narrow streets
[e.g., industrial areas shown in Fig. 8(b)]. Theoretically, the
coherence is composed of amplitude and phase differences in
InSAR data [56], and comparatively small changes in InSAR
coherence may occur if the magnitude of the amplitude in
InSAR coherence dominates the phase. In this case, no sig-
nificant drop in coherence can be observed since the phase
variations due to the presence of floodwater are only minor.
As a result, FU may be underestimated as shown in Fig. 8(a).
A similar occurrence of FU underdetections using InSAR
coherence has been reported in [13], [22].

C. Beira (Mozambique) Flood Case

The RGB color composition of the Beira flood case is
presented in Fig. 9, and the color interpretation is similar as

described in Section V-A for the Houston (USA) flood case
in Fig. 5. In Fig. 9(a) and (d), the cyan color can be attributed
to bare soils and sparsely vegetated areas characterized by
an increase in backscatter, arguably caused by an increase in
soil moisture or the presence of double-bounce effects. For
the RGB composite of coherence in VV [Fig. 9(b)] and VH
[Fig. 9(e)], the decrease in coherence shown in red exists
not only in FU but also in sparsely vegetated areas due to
the random backscatter effects caused by vegetation. When it
comes to the combination of intensity and coherence using
the VV [Fig. 9(c)] and VH polarizations [Fig. 9(f)], areas in
red represent high postevent intensity and low coherence in
both preevent and coevent images. This behavior is typical
for vegetated regions. The black to green areas represent
low postevent intensity, moderate preevent coherence, and
low coevent coherence. These areas are expected to cover
FO. We argue that very dry soils with strong variations
in soil moisture caused by the cyclone-related rainfall are
in indicated in yellow-green. According to the quantitative
evaluation for the Beira flood case in Table III, the Kappa
coefficient (i.e., 0.81) suggests a good consistency between
these two maps, while the F1 scores for FO and FU are
0.82 and 0.66, respectively. The relatively low recall (i.e., 0.74)
indicates the existence of underdetection for FO. According to
Fig. 10(a), the underdetection of FO (yellow) is mainly due to
the inaccurate reference since wind-affected permanent water
bodies are shown as floodwater in the reference. The moderate
consistency with respect to FU (i.e., 0.59) demonstrates the
overdetection of urban floods. The area in green rectangles in
Fig. 10(a) is shown in Fig. 10(b), Fig. 10(d), and Fig. 10(e).
As shown in Fig. 10(d) and Fig. 10(e), the overdetection of
FU (black areas) in Beira is apparent in the areas characterized
by small changes in coherence between preevent and coevent
(<0.3) (shown in white and cyan). It is important to note that
this area is not included in the manually derived reference
map since the presence of water cannot be ascertained. The
0.75 recall of FU reveals underdetection, which is shown
in orange in Fig. 10(d) and Fig. 10(e). The orange color is
the result of a high postevent intensity, a moderate preevent
coherence, and a low coevent coherence. A moderate preevent
coherence was observed only in Beira. We assume that this is
due to the fact that the urban areas of this study site contain
buildings and bare soils, while the urban areas in Houston
and Koriyama mainly correspond to buildings and impervious
surfaces.

D. Beledweyne (Somalia) Flood Cases

Due to the unavailability of reference maps at the pixel
scale for the Somalia flood cases (2018, 2019, 2020), only
a qualitative evaluation at district scale has been carried out.
Reference maps provided by UNOSAT classify different dis-
tricts as totally flooded, partially flooded, or potentially flooded
by visually inspecting optical and SAR data [Fig. 11(a)–(c)],
while our results corresponding to flood maps are classified as
flooded or not for each individual pixel [Fig. 11(d) and (f)].
To enable a comparison between our results and the UNOSAT
reference maps, we generated similar categories by calculating
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Fig. 7. RGB color composites of the Koriyama case study, the corresponding reference, and our flood map. (a) Intensity RGB composite, R = intensity
VV of October 6, 2019, and G = B = intensity VV of October 12, 2019. (b) Coherence RGB composite, R = coherence VV between September 24 and
October 6, 2019, and G = B = coherence VV between October 6 and 12, 2019. (c) Intensity and coherence RGB composite, R = intensity VV of October
12, 2019, G = coherence VV between September 24 and October 6, 2019, and B = coherence VV between October 6 and 12, 2019. (d)–(f) Using the data
acquired in VH for the same RGB composites. (g) Reference. (h) Flood map inferred by the proposed model.

the percentage of pixels classified as flooded with respect
to the total number of pixels (Fperc) comprising each of the
polygons provided by UNOSAT. It is worth mentioning that
the “potential flooded regions” class only exists in two of the
polygons for the event in 2018. For this reason, we did not
consider the two corresponding polygons in our Fperc-derived
category flood maps. We plotted Fperc values, which for the
different polygons varied between 1% and 71% for areas

affected by the flooding, and defined a threshold to identify
these two classes.

1) Fperc ≤ 29%: partially flooded.
2) Fperc > 29%: completely flooded.
Assuming that only two classes are present in this area, the

threshold is set by the OTSU automatic method [57] for Fperc
values. For the Somalia flood in 2018, the reference maps,
the flood extent maps, the different category flood maps, and
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Fig. 8. (a) Comparison between reference flood category map and flood map
inferred by the proposed model of the Koriyama test case. (b) Google Earth
image. (c) Postevent Sentinel-1 image (VV).

the SAR data are shown in Fig. 11(a), (d), (g), and (j), respec-
tively. In Fig. 11(a), yellow represents the areas that are poten-
tially flooded, orange corresponds to partially flooded areas,
while brown indicates completely flooded areas. By comparing
Fig. 11(a), (d), and (g), it is clear that the largest part of the
identified flood extent in Fig. 11(d) belongs to the “completely
flooded areas” class (brown) in Fig. 11(a). As expected, the
percentage of the area covered by flooding is much lower
in the “partially flooded areas” class (orange) than in the
“potentially flooded area” class (yellow), where almost no
floods are detected. Fig. 11(g) and Fig. 11(a) shows a rather
good consistency based on visual inspection. Moreover, areas
in yellow in Fig. 11(j) have high postevent intensity (VV),
high preevent coherence (VV), and low coevent coherence
(VV). These are the expected characteristics of FU, and as
a result, the corresponding areas are successfully identified
as FU in Fig. 11(d). The areas in green in Fig. 11(j) have
low postevent intensity (VV), moderate preevent coherence
(VV), and low coevent coherence (VV). Again, this corre-
sponds to the behavior characteristic of FO and the areas
successfully detected as FO in Fig. 11(d). Similar phenomena
were observed for the data of the Somalia flood that occurred
in 2019 and 2020. Thus, we argue that our flood maps have
identified flood extents satisfactorily.

VI. DISCUSSION

To investigate the effectiveness of the proposed urban-aware
module in the network, we first conducted a comparison
between our proposed method and two previous methods (i.e.,
U-Net and CBAM U-Net). Then, two ablation studies for the
urban-aware module and the input data were carried out sep-
arately. The detailed discussion is described in Section VI-A.

A. Comparing Three Different U-Net-Based Models
The U-Net [47], CBAM U-Net [29], and the urban-aware

U-Net were trained as described in Section IV-B, and the
experimental results are listed in Table III. The CBAM U-Net
is considered since it uses an attention module based on
the SAR data itself, while the proposed Urban-aware U-Net
involves prior information (i.e., SAR-derived probabilistic
urban mask), in addition to the SAR data. The results show that
the two networks with implemented CBAM and urban-aware
modules are able to generate flood maps achieving a higher
Kappa coefficient when compared with the results inferred by
the standard U-Net: our proposed model has the highest kappa
(i.e., 0.83 and 0.81) in the Houston and Beira flood cases,
while the CBAM U-Net reaches the highest kappa (i.e., 0.54)
in the Koriyama flood case. In the proposed model result of
the Koriyama case, underdetections of FU in the urban-aware
U-Net exist because some bare soils and sparsely vegetated
areas in the city of Koriyama were not classified as urban
areas according to the SAR-derived probabilistic urban mask.
Thus, only flooded buildings and not FU areas (i.e., mixture
of buildings, vegetation, and bare soils) are classified as FU in
the results of urban-aware U-Net. In terms of the F1 scores of
FO, the CBAM variant of U-Net provides the best results.
However, the difference between the results achieved with
the three models is rather small and does not exceed 0.03.
Hence, the performances of the three networks with respect
to FO are rather similar at all the three study sites. On the
other hand, the F1 score of FU significantly improves when
using the proposed network. It reduces the overdetection in
two test cases, i.e., 0.63 for Houston, 0.66 for Beira, while
in Koriyama (Japan), the accuracy of FU is similar for the
three models. Moreover, it is worth noting that the precision
scores of FU in three test cases were increased by applying
the proposed model. The difference in behavior in terms of
FO and FU detections demonstrates that the identification of
FU is a more challenging application. This is not surprising
as the SAR characteristics of FU may vary according to
different floodwater levels and the configuration of the urban
fabric with respect to the SAR sensor. In comparison, the
mechanisms determining the SAR backscatter in FO tend
to be more stable. It is particularly challenging to learn the
representative and robust features of the urban flood class
with a rather limited training dataset. Our results indicate
that in such cases with very limited data availability, the
application of the “urban mask” enables the extraction of more
relevant features for different flood classes. As a result, the
proposed urban-aware module allowed us to achieve a better
classification accuracy in terms of FU at all the three test
sites.

To facilitate the intercomparison, the four most represen-
tative results covering the entire Sentinel-1 image frame are
shown together in Fig. 12: the Houston (USA) flood, the Japan
flood caused by the Hagibis Typhoon, the Beira (Mozambique)
flood, and the Beledweyne (Somalia) flood that occurred in
2020. Due to the unavailability of independent references at
the image-frame scale, the references were generated using
a semiautomatic method [7], [12] according to the changes
in SAR intensity and InSAR coherence. We are aware that



ZHAO et al.: URBAN-AWARE U-NET FOR LARGE-SCALE URBAN FLOOD MAPPING 4209121

Fig. 9. RGB color composites of the Beira case study, the corresponding reference, and our flood map. (a) Intensity RGB composite, R = intensity VV of
March 14, 2019, and G = B = intensity VV of March 20, 2019. (b) Coherence RGB composite, R = coherence VV between March 2 and 14, 2019, and
G = B = coherence VV between March 14 and 20, 2019. (c) Intensity and coherence RGB composite, R = intensity VV of March 20, 2019, G = coherence
VV between March 2 and 14, 2019, and B = coherence VV between March 14 and 20, 2019. (d)–(f) Using the data acquired in VH for the same RGB
composites. (g) Reference. (h) Flood map inferred by the proposed model.

the reference datasets are not of equal quality. This hampers
the intercomparison and makes it more difficult to draw
general conclusions. In Fig. 12(a)–(d), the overestimation of
FO that we observed for the Houston (USA) case study (in the
yellow circle) could be reduced by applying the self-attention
module (i.e., CBAM). Both the overdetections have been
removed by applying the proposed urban-aware U-Net. Similar
phenomena are observed for the Japan and Beira case stud-
ies: the overdetections of FU over the nonurban areas that

are visible (in the cyan circle) in Fig. 12(f) and (g) were
substantially reduced and almost completely disappeared in
the flood map that was derived from the proposed urban-
aware U-Net. Moreover, false alarms of FU in the north
of Beira [in the green circle of Fig. 12(j) and (k)] were
removed from the flood maps generated by urban-aware U-Net
[Fig. 12(l)]. However, in the results covering the Beledweyne
(Somalia) flood, the overdetections of FU still exist in flood
maps generated via the CBAM U-Net and the proposed model
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Fig. 10. Flood extent maps of the Beira test case. (a) Comparison between the flood map inferred by the proposed model and the reference. (b) Zoom-in
of the green rectangular in (a). (c) False color composite of the Planet Skysat data for the white rectangular in (b). (d) Corresponding RGB combination of
intensity and coherence R = intensity VV of March 20, 2019, G = coherence VV between March 2 and 14, 2019, and B = coherence VV between March 14
and 20, 2019. (e) Corresponding RGB combination of intensity and coherence R = intensity VH of March 20, 2019, G = coherence VV between March 2
and 14, 2019, and B = coherence VH between March 14 and 20, 2019.

TABLE III
EVALUATION OF INFERENCE FLOOD MAPS USING DIFFERENT CNN MODELS. THE HIGHEST VALUES IN KAPPA,

PRECISION, RECALL, AND F1 FOR EACH CLASS ARE MARKED IN RED

[Fig. 12(o) and (p)]. To investigate this overdetection further,
the corresponding SAR-based probabilistic urban mask and
SAR data are analyzed.

Fig. 13 presents the flood map produced by applying the
urban-aware U-Net, the SAR-derived probabilistic urban mask,
and the RGB composite of intensity and coherence in VV
and VH for the 2020 Beledweyne (Somalia) flood. In the
probabilistic urban mask of Fig. 13(b), the probabilistic values
of overdetected FU areas are slightly below the probabilistic

values of urban areas, but higher than the probabilistic values
of other nonurban areas without false alarms. This is to be
expected to guide the model toward the selection of the
distinctive features of FU and NF. However, the regions of
overdetected FU and the regions with correctly mapped FU
share similar values of intensity and coherence in VV and
VH [Fig. 13(c) and (d)]. More specifically, the yellow color
in Fig. 13(c) and (d) represents high postevent intensity, high
preevent coherence, and low coevent coherence. Regarding
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Fig. 11. Comparison of references, flood maps, and RBG composites of intensity and coherence for Somalia flood cases. (a)–(c) Satellite detected water
distribution of Somalia flood in 2018, 2019, and 2020, respectively. (d)–(f) Our flood maps corresponding to (a)–(c). (g)–(i) Category flood maps generated
according to the percentages of identified flood pixels in each polygon corresponding to (d)–(f). (j)–(l) RGB composite of intensity and coherence for Somalia
flood in 2018, 2019, and 2020, respectively, R = postevent intensity VV, G = preevent coherence VV, and B = coevent coherence VV.
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Fig. 12. Comparison of flood maps covering the entire Sentinel-1 image frame inferred by different models over three flood cases. (a), (e), (i), and (m)
References generated by manual thresholding for the Houston (2017) flood case, Japan (2019) flood case, Beira (2019) flood case, and the Somalia (2020)
flood case, respectively. (b), (f), (j), and (n) Flood map generated by U-Net corresponding to (a), (e), (i), and (m). (c), (g), (k), and (o) Flood map generated
by CBAM U-Net corresponding to (a), (e), (i), and (m). (d), (h), (l), and (p) Flood map generated by Urban-aware U-Net (proposed) corresponding to (a),
(e), (i), and (m).

high preevent/postevent intensity, the rough topography (high
topographic variations) could be one of the reasons, as reported
in [58]. Moreover, Wagner et al. [59] reported that rough karst
rocks may cause strong backscatter returns in the C-band
Advanced Scatterometer (ASCAT) data due to the presence of
strong subsurface scatterers. Since our study site in Somalia
has the exact same rough karst rocks, according to the World
Karst Aquifer Map (WOKAM)/Karst aquifers map [59], and
considering that we are using the C-band Sentinel-1 data, this
specific soil type may explain the high pre- and postevent
intensity in this case. In addition, high soil moisture could also
be the reason for the high postevent intensity. The decrease in

coherence may be due to scattering changes caused by ponds
in the rough terrain. Thus, the quality of the results provided
by the proposed urban-aware module may be lower when
using an inaccurate SAR-derived probabilistic urban mask
caused by “FU-lookalike” regions (e.g., extremely dry soils
with shrublands) with similar SAR characteristics to FU as
input. Such ambiguities lead to false alarms that we observed.

In addition to the study cases mentioned above, the algo-
rithm was applied to four additional areas with no flooding to
test the robustness of the proposed model with respect to the
overdetection: data acquired on June 9, 2020, over Houston
(USA), data acquired on June 26, 2020, over Koriyama and
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Fig. 13. Analysis of the overdetected FU in the flood map generated by the
urban-aware U-Net for Beledweyne, (Somalia, 2020) flood case. (a) Flood
map generated by the urban-aware U-Net. (b) Corresponding SAR-derived
probabilistic urban mask, whose value is represented by different colors as
shown in the color scale. (c) RGB composite: R = postevent intensity VV
(May 20, 2020), G = preevent coherence VV (April 26–May 8, 2020), and
B = coevent coherence VV (May 8–20, 2020). (d) RGB composite: R =

postevent intensity VH (May 20, 2020), G = preevent coherence VH (April
26–May 8 2020), and B = coevent coherence VH (May 8–20, 2020). The
boundaries of identified floods are shown in black in (b)–(d).

TABLE IV
COMPARISON OF THE TRAINING TIME AND

COMPLEXITY OF EACH MODEL

Iwaki (Japan), data acquired on February 6, 2019, over Beira
(Mozambique), and data acquired on June 30, 2017, over
Beledweyne (Somalia). According to our results (Fig. 14), only
a few pixels located on the wind-affected permanent water
bodies, bare soils, and image boundaries were identified as
floods, while no large regions were identified as floods. Thus,
the proposed urban-aware U-Net shows high robustness.

Moreover, the complexity and efficiency of the three models
(i.e., U-Net, CBAM U-Net, and the urban-aware U-Net) were
compared (Table IV). It appears that the time needed to com-
plete the training phase increased from 207 to 220 min. Mean-
while, 1757k additional trainable parameters are computed in
urban-aware U-Net when compared against CBAM U-Net.
To understand the influence of the model’s complexity on the
flood maps’ accuracy, a larger U-Net containing 25 606 275
parameters was tested. It generates similar results to U-Net:
the Kappa is 0.72, 0.46, and 0.57 for Houston, Koriyama,

Fig. 14. Flood maps of four nonflood cases. (a) Houston (USA). (b) Japan.
(c) Beira (Mozambique). (d) Beledweyne (Somalia).

and Beira, respectively; F1 for FO is 0.79, 0.36, and 0.72 for
Houston, Koriyama, and Beira, respectively; F1 for FU is 0.42,
0.56, and 0.08 for Houston, Koriyama, and Beira, respectively.
Therefore, we conclude that it is the urban-aware module itself
rather than the complexity of the model that contributes to
the improvement of flood map accuracy. Thus, with a large
increase in urban flood mapping accuracy (Table III), the
proposed urban-aware module does not lose much in terms
of efficiency and increased computational complexity.

B. Ablation Study for Urban-Aware Module

To investigate the effectiveness of each individual submod-
ule in the proposed urban-aware module, we conduct the
following ablation study by comparing three different model
structures.

1) U-Net with the channel attention submodule.
2) U-Net with the urban-aware normalization submodule.
3) U-Net with the urban-aware module.
The three models were trained as described in Section IV-B,

and the quantitative evaluation of three flood test cases
(i.e., Houston test case, Koriyama test case, and Beira test
case) is reported in Table V: for the Houston and Beira test
cases, U-Net with the urban-aware normalization submodule
achieved a higher F1 score in terms of FU (i.e., 0.65 and
0.57, respectively) than the results of U-Net with the channel
attention submodule; for the Koriyama test case, U-Net with
the channel attention submodule and U-Net with the urban
aware normalization submodule have similar results. However,
the combination of two submodules, i.e., urban-aware U-Net,
always has the highest Kappa and the highest F1 score for both
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TABLE V
COMPARISON OF THE ACCURACY OF FLOOD EXTENT MAPS USING DIFFERENT COMBINATIONS OF SUBMODULES IN THE URBAN-AWARE MODULE.

THE HIGHEST VALUES IN KAPPA, PRECISION, RECALL, AND F1 FOR EACH CLASS ARE MARKED IN RED

TABLE VI
EVALUATION OF U-NET AND CBAM U-NET USING NINE BANDS OF DATA: EIGHT BANDS OF SAR DATA AND A PROBABILISTIC URBAN MASK

the FO and FU classes. Thus, we conclude that our proposed
U-Net with the urban-aware normalization plays an important
role in improving the flood mapping accuracy in FU, while
the combination of the channel attention submodule and the
urban-aware normalization submodule produces the highest
Kappa coefficient for the entire flood map.

C. Ablation Study for Input Data

To evaluate the effect of the way the urban mask is
integrated, we also carried out an ablation study of inputs by
stacking the urban mask to the original eight bands of SAR
data (i.e., from eight bands of input data to nine bands of
input data). We compared the different inputs for U-Net and
CBAM U-Net with the same training process as presented in
Section IV-B. The results of three flood test cases are reported
in Table VI. By comparing the results in Table III and VI,
U-Net with nine bands of input data achieves an overall
improvement in comparison to U-Net with eight bands of
input data in terms of Kappa coefficients and F1 scores,
except for the Koriyama test case. No obvious improvements
are found for CBAM U-Net by adding the urban mask as
an additional input band. Instead, the performance degrades
overall. Moreover, by comparing the results of Urban-aware
U-Net, U-Net with nine bands, and U-Net with eight bands,
the integration of the urban mask via the proposed urban-aware
module provides greater improvements than the simple stack-
ing of the urban mask together with SAR bands, especially
for the FU class. For instance, a 0.31 improvement versus a
0.09 improvement in terms of FU F1 for the Houston test
case, and a 0.62 improvement versus a 0.04 improvement in
terms of FU F1 for the Beira test case. Hence, it is the way of
integrating the urban mask information rather than the urban
mask itself that plays the most essential role in the model

performance enhancement. The same conclusion was reported
in [60].

VII. CONCLUSION AND OUTLOOK

In this study, we proposed an urban-aware module to
enable U-Net applications for large-scale SAR-based urban
flood mapping. It should be noted that many supervised CNN
models and available attention modules (e.g., attention-gate,
channel attention, spatial attention, CBAM) cannot obtain
informative features when only limited training datasets are
available. This is often the case when applying such methods
to map the extent of flooding and the issue becomes even
more critical when aiming for the detection of floods in built-
up environments. To solve this problem, we proposed an
urban-aware module making use of an SAR-based probabilis-
tic urban mask to improve the accuracy of flood extent maps
by providing additional guidance. More specifically, the new
module applies channel attention to extract informative fea-
tures from each channel. Next, an urban-aware normalization
submodule involving an SAR-based probabilistic urban mask
was used to calibrate intermediate features with a learnable
scale factor.

The proposed urban-aware module was tested in the U-Net
image segmentation framework, i.e., urban-aware U-Net. The
network was trained using datasets covering a small subset of
Houston (USA) and the entire city of Iwaki (Japan). Then, the
trained model was tested and evaluated in six flood cases and
four nonflood cases with varying topography and land cover.
In all the flood cases, our model produced flood maps that were
consistent with the references, while the results in nonflood
cases demonstrated the robustness of the proposed model.
Moreover, a comparison between our urban-aware module
and CBAM was performed. The qualitative and quantitative
results obtained by the newly proposed approach confirm
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that the urban-aware module is able to guide the network
toward the most informative features, thereby leading to
more accurate flood maps with a similar computation cost
with respect to the available state-of-the-art attention modules
applied for SAR-based urban flood mapping by considering
the multitemporal SAR-derived prior information. However,
some limitations remain because the proposed urban-aware
module depends on the availability of a highly accurate
urban mask. When an SAR-derived probabilistic urban mask
of lower quality was considered, urban floods were overde-
tected. Overall, the results obtained in a total of ten cases
(i.e., six flood cases and four nonflood cases) indicate that the
well-trained urban-aware U-Net model shows a high poten-
tial for monitoring floods in near-real-time, especially when
only limited annotation datasets are available in the training
phase. Finally, through a series of experimental compar-
isons, our method outperformed other state-of-the-art methods
(i.e., U-Net, CBAM U-Net) in terms of the F1-score of FU
while maintaining a similar computational cost.

Further investigations are needed to better understand the
advantages and limitations of the proposed method and to
improve the classification accuracy and robustness of the
approach: 1) analyzing the interferometric phase component
instead of InSAR coherence to improve the accuracy of
the classification in challenging land cover classes such as
extremely dry areas; 2) adapting the proposed urban-aware
module to other state-of-the-art image segmentation DL archi-
tectures with the aim of evaluating the flexibility and per-
formance of the urban-aware module; and 3) applying the
proposed module to unsupervised self-learning image segmen-
tation paradigms to further mitigate the issue of insufficient
annotated training datasets in urban flood mapping.
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