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Abstract— We introduce a comprehensive method for space-
borne 3-D volumetric scattering-tomography of cloud micro-
physics, developed for the CloudCT mission. The retrieved
microphysical properties are the liquid-water-content (LWC) and
effective droplet radius within a cloud. We include a model for
a perspective polarization imager and an assumption of 3-D
variation of the effective radius. Elements of our work include
computed tomography initialization by a parametric horizontally
uniform microphysical model. This results in smaller errors than
the prior art. The mean absolute errors of the retrieved LWC
and effective radius are reduced from 62% and 28% to 40%
and 9%, respectively. The parameters of this initialization are
determined by a grid search of a cost function. Furthermore,
we add viewpoints in the cloudbow region, to better sample the
polarized scattering phase function. The suggested advances are
evaluated by retrieval of a set of clouds generated by large-eddy
simulations.

Index Terms—3-D scattering-tomography, clouds, initializa-
tion, polarization, pySHDOM.

I. INTRODUCTION

TATE-of-the-art remote sensing has information defi-
Sciency regarding the 3-D nature of small warm clouds.
This is due to two major factors. First, at the spatial res-
olution of most atmospheric science sensors currently in
orbit, these clouds may be below pixel resolution. Second,
and more importantly, assumptions of common reconstruction
algorithms break down when addressing small clouds. The
CloudCT [1] space mission, funded by the European Research
Council (ERC), aims to retrieve high-resolution 3-D volu-
metric microphysical properties of small clouds by means of
scattering tomography. The mission confronts classic remote
sensing biases [2], [3], [4], [5], [6], [7]. These biases are
caused by an assumption of a plane-parallel cloud structure
and by clouds being smaller than the spatial resolution that
has been traditionally used in Earth observations. The antic-
ipated 3-D retrievals should yield new empirical warm-cloud
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statistics. The statistics will be used to study cloud trends in
changing environmental conditions. Based on these expected
studies, improved parameterizations of climate models will be
developed.

In CloudCT a formation of ten satellites will capture simul-
taneously multiview images of cloud fields. These will be
analyzed by scattering tomography, based on a 3-D radiative-
transfer (RT) solver that includes multiple scattering. Images
will be captured in daytime, exploiting solar radiation as the
light source. The satellites will be in a low Earth orbit (LEO)
of ~500 km altitude. In each orbit cycle 94 min), several
cloud-fields will be imaged. The clouds of major interest are
small liquid-phase clouds, typically hundreds of meters wide.
Therefore, ground resolution should be finer than ~50 m at
nadir.

Classic remote-sensing assumes a plane-parallel geome-
try [2], [3], [4], [5], [6], [7]. This effectively degenerates,
to some extent, 3-D RT to a 1-D form, as if effectively there
is neither horizontal heterogeneity nor RT. This assumption is
particularly invalid at edges of clouds. This leads to biased
retrievals of the cloud microphysics [2], [3], [4], [5], [6], [7]-
In particular, this leads to high uncertainties regarding the
microphysics and radiative effects of small clouds, regardless
of the sensing resolution.

To allow better understanding of microphysics and RT in
small clouds, a 3-D retrieval approach is essential. 3-D mod-
eling currently receives growing attention [8], [9], [10], [11].
Levis et al. [12], [13], [14], introduced 3-D scattering com-
puted tomography (CT), based on the spherical harmonic dis-
crete ordinate method (SHDOM) for RT [15]. Their method,
pySHDOM [16], retrieves cloud properties by fitting multiview
light intensity images to a physics-based forward model.
This is a generalization of CT to recover scattering by
passive sensing, relying only on the Sun as an illumination
source.

Scattering-based CT was further developed using
vSHDOM [17], for vectorized RT, allowing consideration of
polarization [18]. There, cloud properties are retrieved by fit-
ting Stokes vectors. Polarization has advantages for retrieval of
the cloud-droplet size distribution [19], [20], [21], [22], [23],
[24], [25]. However, these advantages are specifically related
to cloud regions where single-scattering may be sensed:
mainly one or two optical depths (ODs) into the cloud
[19], [26]. This article takes a step beyond the basic principle
of cloud tomography, to elements that guide the CloudCT
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mission, considering the mission constraints. The mission
will use visible-light (VIS) polarized imagers [27], [28].

A. State-of-the-Art

Two main cloud parameters are usually retrieved from
satellite measurements: OD and droplet effective radius (r,).
There are two dominant approaches in remote sensing for
retrieving r,. One is by a bispectral technique developed by
Nakajima and King [29], currently used by the operational
Moderate Resolution Imaging Spectrometer (MODIS) [30].
It uses VIS or near-infrared (NIR) bands combined with short-
wave infrared (SWIR) bands. The retrieval is based on a plane-
parallel RT assumption and done per atmospheric column,
assuming an independent pixel approximation (IPA) [31]. The
finer resolution of MODIS retrievals is 1 km? [30].

Studies find significant biases due to the plane-parallel
assumption [2], [3], [4], [5], [6]. Marshak et al. [S] explore
r. uncertainty stemming from cloud horizontal inhomogeneity.
They examine retrievals from data at pixel resolution on the
scale of kilometers, as in MODIS. They point to two main
findings: a) Subpixel heterogeneity leads to an underestimation
of r.. b) Heterogeneity in a scale larger than a pixel leads
to an overestimation of a domain-averaged r,. They show
by simulation an overall positive bias of 60% for cumulus
clouds. Grosvenor et al. [32] emphasize the significance of
more accurate r, retrievals, as they dominate the uncertainty
of the cloud droplet number concentration.

A second sensing approach uses polarized radiance mea-
surements. Polarized reflectance is affected by the polarized
scattering phase function of droplets, which has strong features
in the cloudbow scattering angles *135°-165°). The phase
function is sensitive to the droplet size distribution. Therefore,
ro may be retrieved. This approach was demonstrated by
the polarization and directionality of the Earth’s reflectances
(POLDER) instrument [19], [21] and later spaceborne mis-
sions [33], [34], [35]. POLDER has ground resolution of ~6 x
7 km? at nadir [36]. Recent methods suggest side-scanning to
retrieve vertical profiles of cloud droplet properties [37], [38].
Alexandrov et al. [38] demonstrate fitting of high-resolution
side-scanning measurements, by the airborne research scan-
ning polarimeter (RSP).

Fu et al. [7] present a thorough comparison of retrievals
based on data from the 2019 Cloud, Aerosol, and Monsoon
Processes Philippines Experiment (CAMP2 Ex). Bispectral
and polarimetric retrievals are compared using data from
MODIS, RSP, and in situ measurements. Fu et al. [7] present
a positive bias of 50%, mainly due to 3-D radiative effects.

Matar et al. [6] demonstrate dual-wavelength retrievals
using multiview polarized measurements, taken by the airborne
Observing System Including PolaRization in the Solar Infrared
Spectrum (OSIRIS). Here too, analysis used the plane-parallel
assumption. They emphasize the significance of a heteroge-
neous column model, pointing to an error of more than 10%
solely due to a homogeneous column assumption.

Liquid-water-content (LWC) can be retrieved using cloud
radar reflectivity. Ebell et al. [39] estimate errors in retrieval
of the LWC to be larger than 60% for shallow nondrizzling

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

clouds. Zhu et al. [40] estimate the uncertainty in radar dual-
wavelength retrievals of the LWC. They estimate an uncer-
tainty of between 0.1 (g/cm?) and 0.65 (g/cm?) for shallow
clouds, decreasing with cloud thickness.

Operational methods do not consider 3-D RT effects, nor
do they perform 3-D volumetric retrieval of cloud parameters.
Levis et al. [18] derive and define a polarimetric 3-D scatter-
ing tomography method for retrieval of cloud droplet micro-
physics, using multiview multispectral image measurements,
based on vSHDOM. This method is the basis for our current
work. They present demonstrations based on the Airborne
Multiangle SpectroPolarimetric Imager (AirMSPI) [18], [41].
Doicu et al. [42] presents another method for tomographic
cloud retrievals, also based on SHDOM. Doicu et al. [43]
further develop an algorithm based on an adjoint method for
gradient computation.

Forster et al. [26] have recently explored the use of 3-D
scattering tomography, based on data from MODIS [44] and
the Multiangle Imaging SpectroRadiometer (MISR) [45]. For
3-D RT, Forster et al. [26] use the 3-D Monte-Carlo Code
of the Physically Correct Tracing of Photons in Cloudy
Atmospheres (MYSTIC) [11], [46], [47]. Forster et al. [26]
examine a basic limitation of retrieval. They explore a
region of the cloud in which microphysical properties can-
not be resolved by scattering tomography, termed the veiled
core. Their demonstration, however, was without considering
polarization.

CloudCT offers very different spaceborne retrievals than the
operational state of the art. As in [18], CloudCT suggests 3-D
retrieval of cloud microphysics using scattering tomography.
Operational spaceborne instruments designed for global cov-
erage, have retrieval spatial resolution that is coarse relative
to the clouds of interest. CloudCT will image clouds with
spatial resolution of finer than 50 m, and retrieve at volumetric
resolution of ~50 x 50 x 50 m?>.

In this article, we present a comprehensive method for
retrieval, highlighting adjustments and improvements which
we implement. We make advances needed for realistic space-
borne perspective optical imaging. We model the imager as
having a polarized sensor as in [48]. We introduce a new
method for initialization of the retrieval medium, based on
a parameterized horizontally uniform model. This medium is
updated by an optimization process.

1I. BACKGROUND
A. Parameter Definition

Air molecular density is assumed to be known. Thus,
we do not try to retrieve air density. By cloud tomogra-
phy, we retrieve the cloud-droplet microphysics. We assume
small warm clouds, i.e., liquid-phase clouds. The droplets
have spherical geometry! of variable radius values r. One
of the unknowns is the 3-D distribution of the LWC.
Let the droplet size distribution at a volume element be
n(r) (1/um) - (1/m%). The droplet size distribution is

IThis is a common approximation for cloud-droplets, where Mie theory is
used to describe light scattering.
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Fig. 1. Overview of the retrieval method (see Section II-B).

parameterized by a gamma distribution model as in [49].
The LWC is

g

4
LWC = ~7p, /r3n(r)dr {—J (1
3 , m-
where p, = 1 (g/cm?) is the water density. The effective
radius r, um is defined [49] by
= f(nrz)rn(r)dr. 2
[ @r?)n(rydr
The extinction coefficient is
B = / n(r)Qmr? 3)

where Q is the extinction efficiency. For Mie scattering at VIS,
Q =~ 2. Therefore, there is a relation between f, r,, and LWC
3LWC 1
= Zene
TePuw
The OD along a path x is defined as fx S (x)dx. In this article,
we focus on the retrieval of the LWC and r, as in [18].

— “)

m

B. Retrieval Overview
Retrieval includes the following stages (See Fig. 1).

1) Stage 1) Data acquisition: This stage consists of the
imager setup definition, optics, and camera positions.
With these settings, a set of measured images is
acquired. The measured images in our case are partially
polarized intensity images. From these raw images,
spatial maps of the Stokes vector components are cal-
culated. This stage is currently simulated.

Stage 2) Initialization: Definition of an initial state of the
sought variables. This kick-starts iterative optimization,
to be done in Stage 3. The initialized state of the medium
may be set in various ways, e.g., it may be entirely null.
However, in general, the more similar the initialized

2)

Yes
[ Solved — cloud 3D retrieval ]

medium is to the true state, the better and faster the
optimization is.

Stage 3) Optimization based on gradient descent: In this
stage, a set of modeled images is rendered by a forward
model.? The forward model solves the 3-D RT equation
using SHDOM [10], [50]. The forward model uses the
initialized state medium and then updates the modeled
medium through an iterative optimization process. The
optimization seeks the 3-D fields LWC and r,, which
lead to the best fit of modeled images to measured
images. This is the essence of CT. Many viewpoints
sample multiple ray paths through each volume-unit,
providing a variety of data for CT. In our case, the radi-
ance is partially polarized. Thus, each measured pixel is
associated with Stokes vector components. Classic CT
uses simple straight integrated paths. However, in our
case, scattering dominates the signal, thus our CT does
not rely on straight paths but on 3-D RT.

Let the number of viewpoints be Nyeyw. Let the num-
ber of pixels of each view be Npjels. The number
of measurements iS Npeas = Nview Npixels- The set of
unknowns is ® = [LWC, r.]. A cost function is defined
according to the difference between modeled values and
measurements. In general

3)

Nmeas
cost(®) = > Z(modeled@ [k] — measured[k])>.  (5)
k=1

Here, modeledg is the result of the image formation
(forward) model, which is RT. The estimated values of
the unknowns are

6= arg min(cost[@]). (6)
<)

2The forward model is the image formation model. It involves 3-D RT with
multiple scattering. The 3-D RT equation (RTE) yields the radiance value in
a pixel. It is solved numerically and iteratively by the pySHDOM [16].
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Fig. 2. TE local Cartesian coordinate system ENU, and zenith and azimuth
angles of the Sun and satellite. The direction of the Sun is indicated by dsun-
The satellite viewing direction is indicated by dgq.

The derivatives of the RT forward model with respect
to ® are calculated by pySHDOM [16] and their
expressions are presented in [18]. These derivatives are
used to express the gradient of the RT forward model.
Minimization of the cost function is by the Limited
memory Broyden—Fletcher—Goldfarb—Shanno algorithm
(L-BFGS) method which is a part of pySHDOM [16].

C. Retrieval Quality Measure

Let LWC and r, be the ground-truth fields. Let LWC and
F, be the corresponding estimated 3-D fields. The quality of a
retrieval is quantitatively estimated per cloud i by the relative
error € [18]

_— (i) 0
W ILWC —LWCY|,
twe Iwcy,

For the retrieval of a set of N, separate clouds, a mean relative
error is

17D —rd|,

(i) —
o= )
e ”1
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N
€ = —1 €(i)
LWC — N LWC>
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i=1
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_ (@)
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III. DATA ACQUISITION

Stage 1 of each retrieval is data acquisition (see Section II-B
and Fig. 1). This stage requires definition of the imager
specifications, positions, and viewing angles. These need to be
defined to suit retrieval demands. The imaging is passive: The
only source is the Sun. The retrieval requires simultaneous
multiview images of a single cloud field, with high overlap
between the multiviews.

The temporal resolution of the retrieval depends on the
frame rate of data acquisition, while high synchronicity is
achieved. If synchronicity is not practical, temporal accumu-
lation of data of up to ~30s may be applied [51].

A. Coordinate Systems

In this section, we detail several coordinate systems which
are referred to throughout this article. The following points
explain these coordinate systems. Points 1 and 2 refer to
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Fig. 3. Topocentric Earth (TE) and Earth-centered (EC) coordinate systems,
as well as the satellite zenith angles in these coordinate systems.

Center pixel
General pixel

A~
cam

X’cam is aligned
with the pixel rows
of the sensor and
filter direction

$=0

Fig. 4. Camera coordinate system and a pixel coordinate system.

coordinate systems which are used to express a 3-D position in
the world. Point 3 is the camera coordinate system. Points 4-6
are used as the reference frames of a Stokes vector.

1) The topocentric Earth (TE) coordinate system. The
origin of the TE system is on the Earth’s surface. The TE
coordinate system is expressed as East, North, Up (ENU)
(Fig. 2). In our convention, the east axis is labeled l?,
the north X , and the zenith Z.

The Earth-centered (EC) coordinate system. The origin
of the EC system is at the Earth’s center, as shown in
Fig. 3. The axes of this system are X carth s ?eanh, Zemh.
Axis Xeanh is parallel to X s IA/emh is parallel to Y and
Zearn 18 parallel to Z. With respect to the EC system, the
center of the TE system is at Zeath = Rearth, Yearth = 0,
Xearth = 0, as shown in Fig. 3. The relation between EC
and TE is further detailed in Appendix L.

The camera coordinate system. The origin of the system
is at the center pixel of the sensor, as shown in Fig. 4.
The axes of this system are Xeams Yeam, Zeam. Axes
Xeam and Yeum are parallel to the pixel rows and
columns of the imager sensor, respectively. Axis Zeum
aligns with the optical axis of the camera. The satellite

2)

3)
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Fig. 5. Meridian and pixel coordinate systems, and the scattering plane.
In the 2-D illustration, w is directed into the page.

viewing direction dy, (from field of view toward satel-
lite), is equal to —anm (see Fig. 2).

The meridian coordinate system. As shown in Fig. 5, the
meridian plane contains the viewing direction @ (from
the observed object toward the camera) and the zenith 7
at the viewed point on Earth. In the meridian coordinate
system, two orthogonal unit vectors are, respectively,
defined [18], [52] by

4)

m =72 xw, Hp=wxm.

©)

The meridian coordinate system is a right-handed
Cartesian coordinate system defined by i, m, and
(see Fig. 5).
5) The pixel coordinate system. A right-handed Carte-
sian coordinate system defined by by, b, and @ (see
Figs. 4 and 5), where

by = w x l?cam, b = b x w. (10)

Let by and b, be the normalized (to unit vector) pro-
jections of f)l and f)z on the camera plane, respectively.
The vector b, aligns with X cam. The vector by does not
align with ¥, for most of the pixels. There is a slight
deviation which can be expressed as

Y

As an example, for a camera with a ~5° field-of-
view (FOV), as intended for the CloudCT mission,
Y. < 0.143°. Therefore, we assume the Stokes vector in
the camera coordinate system is practically identical to
that which is expressed in the pixel coordinate system.
The Scattering plane. The scattering plane (Fig. 5)
contains the viewing direction @ and the Sun light
propagation direction dgy, (see Fig. 2). This plane is usu-
ally referenced when considering polarization caused by
single scattering in the atmosphere. PySHDOM is based
on multiple scattering. When the RT model simulates
multiple scattering, it is common to represent polariza-
tion in the meridian coordinate system. However, the
cloudbow (described below) angular region is defined
in the scattering plane.

Y= Hcos_l(f)l -f'cam) H

6)
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Fig. 6. Imaging setup of ten satellites at 500 km orbit, as described in
Section III-B.

90°

Fig. 7.
Sensor.

Wire-grid polarizing filters in a block of pixels in Sony Polarsens

B. Imaging Setup

Imagers are positioned by a satellite formation. The satel-
lites’ configuration is constant in all our demonstrations. A set
of ten imagers in separate satellites is considered. The satellites
are assumed to be in a trailing formation (string of pearls),
moving northward consecutively, as illustrated in Fig. 6. The
altitude of the satellites is Rypir = 500 km. The uniform
distance between each pair of neighboring satellites is 100 km,
on the orbit arc. The viewing angles are between —46° and
39.3° relative to the zenith.

The imager used in the demonstrations herein is a mono-
chrome polarization camera, having a Sony IMX250MZR
sensor, and a spectral filter. The Sony sensor [48] has four
types of wire-grid polarizing filters which are formed on the
chip in blocks of four pixels, as illustrated in Fig. 7. Each
filter in a block has a polarization angle y € [0°,45°,90°,135°],
relative to X cam in the image-sensor coordinate system (Fig. 4).

High spatial resolution is needed for retrievals at high vol-
umetric resolution. State-of-the-art remote-sensing retrievals
are restricted by radiative smoothing [53], due to unresolved
horizontal fluxes. These fluxes have been neglected in tra-
ditional methods due to the assumption of a plane parallel
cloud structure. A 3-D RT model obviates this limitation.
Therefore, the only limitation we consider is that of the imag-
ing optics. In the demonstration herein, the imaging payload
optics lead to nadir resolution of 20 m. Tomography relies
on integrated measurements along multiangular ray paths.
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Fig. 8.
scattering plane encapsulates the satellite formation. The curves are the DoLP
of the scattered radiation as a function of the scattering angle, for droplet size-
distributions of r, = 8 um (blue) and r, = 10 um (orange), assuming an
effective variance of v, = 0.1.

Scattering angle in the scattering plane. In this illustration, the

Therefore, wide-angle views, despite having lower resolution
at high off-nadir angles, improve retrievals.

Typically, a payload swath is defined. Here, we consider
the FOV, as we do not focus on pushbroom imaging along
a flight path, but on simultaneous multiview 2-D projections.
The sensor considered here has 2448 x 2048 pixels. At 500 km
orbit, the corresponding FOV is ~ 49 x 41 km” on the
ground at nadir. The imager uses a red waveband channel,
between 620 and 670 nm. There, absorption by water droplets
is negligible, and Rayleigh scattering by air molecules is rel-
atively low. This reduces the airlight. We currently consider a
single waveband. We have found by simulations (not presented
here) that additional wavebands in the VIS to NIR provide no
significant advantage to retrieval of cloud microphysics.

C. Cloudbow-Scan

Polarization of Mie scattered light is significant mostly in a
specific range of scattering angles known as the cloudbow. The
scattering angle Oy, is the angle between the Sun irradiation
direction (asun) and a line of sight from a cloud (@), in the
scattering plane (See Figs. 5 and 8. See also Egs. (37), (38),
and (40) in Appendix II). The cloudbow is mostly in the range
~135°< b5, < 165°. The polarization depends on the droplet
size distribution. In the cloudbow domain, the degree of linear
polarization (DoLP) is highly sensitive to r,, as long as the
effective variance is low [21]. In order to better exploit the
information of polarization, a cloudbow-scanning principle is
integrated into the process.

Images would be acquired, without changing the number
of imagers. To achieve this, one or two satellites take a
sequence of images of the cloud field, while in orbital motion,
as illustrated in Fig. 9. The cloudbow is sampled per ~1.5°
in 6y,, which is a realistic assumption for satellite attitude
control. The outcome is a set of additional satellite views
in the cloudbow angular range. The imager which executes
the scanning is chosen according to the scattering angles it is
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Cloudbow
views

Fig. 9.
sampling.

Focus on Fig. 8, illustrating scattering angles for cloudbow-scan

positioned to view. Therefore, the chosen imager depends on
the solar illumination direction. The method for choosing the
most suitable satellite for the task is detailed in Appendix II.
In the setup which is described in Section III-B (see Fig. 6),
the satellite which scans the cloudbow is satellite number 9.
In the simulations presented in this article, a single imager
captures ten additional views within the scattering angles of
~135°< By, < 150°. On average, we find the cloudbow-
scan decreases the mean errors epwc and €., by 2% and
1%, respectively. We find this is a consistent improvement.
However, further sensitivity studies may improve the choice
of scanned scattering angles and resolution.

Appendix II describes the calculations of the time-scale
for the cloudbow-scan. The time-scale may reach ~30 s.
As demonstrated by [51], this is an acceptable time scale
regarding evolution of cloud droplet size.

D. Conversion of Measurements to Stokes Vectors

Measurement readouts are represented as grayscale values.
There is a linear relation between grayscale levels and photo-
electrons detected at sensor pixels (See Appendix III). This
section describes the conversion of the expected number
of measured photo-electrons to Stokes vector components
(radiance units) in the meridian coordinate systems (see
Section III-A).> The pipeline of the conversion is illustrated
in Fig. 10.

Assume a polarization sensor, as described in Section III-B
(see Fig. 7). To allow evaluation of the Stokes vector per sensor
pixel, demosaicing is used [54], [55]. This way, each image
pixel k is associated with four expected numbers of measured
photo-electrons at a pixel, N;‘easu“’d [k] using each polarizer
angle . Conversion of N(‘/‘,“’z‘lsured [k] to radiance per pixel k
is done by multiplication by a factor A (see Appendix III),
where

I;?easured [k] — AN;?easured [k] (12)

The radiance vector I™®U*d[k] contains all radiance
measured
components IW [k].

3Note that pySHDOM produces the Stokes vector components in the
meridian coordinate system.
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Fig. 10. Pipeline of conversions of radiance measurements (red) or simulated radiance measurements (green) to Stokes vectors.
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Simulated (normalized) radiance /, Stokes elements Q and U, and the DoLP, in the meridian coordinate system, as viewed by the satellite setup

described in Fig. 6. The DoLP is visibly more noisy than the radiance. Notice the high values of DoLP viewed by sat 2 and 8. They correspond to cloudbow

scattering angles.

For a linear polarizer at angle y, the Mueller Matrix is

1 1 cos2y sin2y
Mpoi(y) = = |cos2y  cos*(Qy)  sin(2y)cos(2y) | .
sin2y sin(2y)cos(2y) sin?(2y)

13)

The pixel intensity readout includes only the first element
of the Stokes vector. This corresponds to the first row of
Mo (y). Let y[k] be the unknown Stokes vector of pixel
k in the (f)lk, f)gk) pixel coordinate system. According to (13),

the radiance readouts per pixel are related to this Stokes vector
according to

Imeasured[k] — Gy{g[k] (14)
where
1 cos2y, sin2y, 11 0
1 {1 cos2yn sin2y, {10 1
G= 2 |1 cos2ys sin2ys| — 21 -1 0 (13)
1 cos2yy sin2yy 10 —1
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Hence, the Stokes vector at pixel k can be calculated from
Imeasured[k] as

yis‘[k] — [GTG]flGTlmeasured[k]. (16)

Pixel k corresponds to a viewing direction @y, a pixel coor-

dinate axis by, and a meridian coordinate axis 1y;. The angle

between my; and f)zk is yr (Section III-A, points 4, 5). Let
M, o (yx) be the Mueller matrix of rotation by an angle y; [56]

1 0 0
0 cos2yx) sin(2yx) | .
0 —sin(2yx) cos(2yx)

Mot (yi) = (17)

The vector y’[k] is then rotated from the pixel coordinate
system to the meridian coordinate system (see Section III-A,
and Fig. 5) by

vilk]
yolk] | = My (7x)ys[k].
yulk]

(18)

yslkl

E. Simulated Measurements

In our demonstration, radiance measurements are simulated
(see Fig. 10, green pipeline). An RT model renders the Stokes
vector reaching a pixel, y%T[k], in the meridian coordinate
system.

The conversion of y?T[k] to measured intensities in the pixel
coordinate system is by simulation of rotation and transfer
through pixelated polarizers, as follows:

I [k] = G Mot (720 y§ [K]. (19)

The RT model does not consider imager noise. Noise needs
to be included in the radiance values, in the pixel coordinate
system. Noise is thus introduced to I*™[k] (see Appendix III).
The simulated Stokes vector measurement y’SSim [k] in the pixel
coordinate system is then retrieved by

VK]
vo K]
o [k]

yim k] = =[G'GI'GT Mk (20)

Then, y$™[k] is obtained by rotation of y§™[k] back to the
meridian coordinate system by

Y k] = My (7) ys™ k). 1)
Note that if no noise were applied
Yim[k] = Ml (701G TG 7'G TG Mo (7)) ¥R [k]
= yS [kl (22)

Simulated Stokes vector images and corresponding images of
the DoLP are presented in Fig. 11.
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IV. INITIALIZATION

This section describes Stage 2 of the retrieval (see
Section II-B and Fig. 1): There is a need to define a medium
(3-D fields of the LWC and r,) which initializes the opti-
mization of Stage 3. The initialization method sets model
parameters, denoted ®.

A prior initialization method [18], assumes a simple homo-
geneous model, in which the entire medium is defined by
initialization parameters ® = [LWCy,r.o]. It specifically
assumes values ® = [LWCO =0.01 (g/m%), r,o = 12 ,um].
We denote this first method as Hrypica. In addition to the
homogeneous model, we describe a horizontally homogeneous
parametric cloud model. The parameter values used for each
initialization are found by preoptimization of an initial cost
function, as we describe. We emphasize that these models are
suggested strictly for Stage 2. Once initialized, the optimiza-
tion in Stage 3 is no longer restricted to either a homogeneous
or a horizontally homogeneous assumption.

A. Monotonous Model

Let Zy be the cloud-base height. The value of Z; can be
evaluated by methods of space-carving [57]. Assume the initial
cloud model has vertical monotonic profiles of LWC and r,
at altitude Z > Z, within a cloud. Following [58], set:

LWC = a (Z — Z(]) + LWCmina
e = a,(Z — Z0) + T

(23)
(24)

Here, o; and a, are parameters of the LWC and r,, respec-
tively. Thus, ® = [ay, a,]. We set LWC,,;, = 0.0001 (g/mS),
Tenw = 2.5 um. These settings are tested on large-eddy-
simulation (LES) cloud data and found suitable for steady-state
cumulus convection.

B. Optimal Parameters

For a set of possible initialization methods presented here,
the parameters ® are found by a small (two unknowns)
minimization of a cost function. Because this is a small
problem, minimization is achieved by a grid search. We follow
the notations of [18]. Two cost functions are considered
for polarized imaging. Based on a scene characterized by
initialization parameters ®, let [/ (®)[k], O (®)[k], U(<I>)[k]]T
be the modeled Stoke vector components of pixel k. The errors
of the components are

Numeas

5 2 @)K = yi [k}
k=1

Nueas

1
5 2 {Q(®)IK] — yolk]}?
k=1

Dradiance((b) = (25)

Do(®) = (26)

Numeas

1
Dy(®) = 5 > U@k —yolkl’. @27
k=1

Then define

DStokes(<I>) = Dradiance(q)) + DQ ((I)) + Dy ((I)) (28)
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Fig. 12.  (a) Dradiance, (b) Dsiokes, and (c) Dporp as a function of initialization parameters.
TABLE I
SUMMARY OF INITIALIZATION METHODS
Method Model ‘ Initialization parameters ‘ Method of setting the two parameters ‘ Cost function
Hrypical | Homogeneous P = [LWCo, 7eq] Typical values & = [LWCO =0.01 [n%], reg = 12 [,um]]
Hstokes | Homogeneous P = [LWCo, reg] Cost function minimization Dstokes
Mstokes Monotonous P = (o), ar] Cost function minimization Dstokes
MpoLp Monotonous P = [oy, ax] Cost function minimization DpoLp
1.4 1.4
—12 P I =12} ground truth
. . .
E _E I-L[‘ypical
= 7 7 = H
_g 1 ) ’ i _8 1 Stokes
43 ’ g = = = Mgires
= /3 = - -
<08 2 1 <08} MpoLp
0.6 - - - 0.6 -
0 0.2 0.4 0.6 0.8 0 2 4 6 8 10
3
LWC [g/m’] r, [pm]
Fig. 13. Initial profiles of LWC and r, for a sample cloud, as set by different initialization methods. In this cloud, the values of mean r, and maximum

OD at wavelength of 645 nm are 10 xm and 24, respectively.

Define an initialization method Hgokes, Which uses a homo-
geneous model. The parameters ® = [LWCy, r.o] are set by

& = arg min [ Dsioes (®)]. (29)
L)

Define an initialization method Mgikes, Which uses a
monotonous model: the parameters ® = [a;, a,] are set after
minimization as in (29).

A different considered cost is defined by the difference
between the modeled DoLP[k](®) and the measured DoLP,
denoted yporp[k]

Neas

Dporp(®) = = > {DOLP(®)[K] — yporplk]}.
k=1

(30)

An initialization denoted Mpy p which uses a monotonous
model sets the initialization parameters ® = [a;, a,] by

A

¢ = argq{nin [ DpoLp(®)]. (3D

Examples of the cost for a particular cloud, using the
monotonous model, are presented in Fig. 12. The cost Dpop
has a better-defined minimum. This example indicates that
there is a potential advantage to use the DoLP for setting ®.
The different methods are summarized in Table I. An example
of initialization profiles of LWC and r, is plotted in Fig. 13.

V. PRECONDITIONING AND ALTERNATING OPTIMIZATION

This section relates to Stage 3: high-dimensional optimiza-
tion of CT (see Section II-B, and Fig. 1). The optimization
attempts to solve a problem, which consists of unknowns
whose commonly used numerical scale differs by orders
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of magnitude. In small clouds (up to a domain of 1 x 1 x
1 km?), typical maximum values of LWC and r, are 1 (g/m?),
and 15 um, respectively. An optimization based on gradient
descent can be highly affected by this relative scale.

One way to overcome this effect is a preconditioning of
the scales of the variables, which sets them at the same
order of magnitude, as done by Levis et al. [18]. They define
preconditioning factors of EQVC = 15 and II,, = 0.01, which
multiply the gradients of LWC and F,, respectively.

However, we find that the preconditioning is cloud-sensitive.
Levis et al. [18] assume a 1-D structure of r, retrieval. For r,
with 3-D spatial variation, we find preconditioning factors of
Iiwe = 10 and II,, = 0.1 to be useful.

We also consider a different approach that requires no pre-
conditioning: Alternating optimization rounds of either a LWC
optimization round or an r, optimization round, exclusively.

VI. SIMULATIONS

Data acquisition is currently simulated and the inverse
methods are applied on this simulation. This section is divided
into three parts. Section VI-A describes the simulation settings.
Then inversion results are shown in Section VI-B. Possible
errors are discussed in Section VI-C.

A. Settings

We simulate the satellites and Sun in the TE coordinate
system. The orbit of the satellites and their positions are set
as described in Appendix I. The satellites move in the positive
direction of X , while Y = 0. Let Osae and ¢, be the zenith
and azimuth angles of the satellite, respectively (see Fig. 2).
For simplicity, we set ¢g, to zero (Appendix I). Each imager
aims to the center of the cloud field. In practice, the satellites
have an inevitable pointing error. Still, part of the cloud field
is viewed by all satellites simultaneously. To demonstrate the
concept of this article, we focus only on this FOV part, which
is viewed simultaneously from all the satellites. Let 6y, and
¢sun be the zenith and azimuth angles of the Sun (see Fig. 2).
In the current demonstration, g, = 25° and ¢g,, = 90°.

Cloud properties within the field are defined accord-
ing to LES [59], based on the Barbados oceano-
graphic and meteorology experiment (BOMEX) [60]. The
LES results are precomputed and serve as ground-truth,
including microphysics of the cloud. The voxel size is
20 x 20 x 20 m?. RT through these 3-D fields is modeled by
pySHDOM as in [13], [14], [18], [61]. We used a set of six
clouds having characteristics as summed in Table II.

An image formation model of a polarized camera is used
to generate the multiview images, including radiometric noise
(see Appendix III). To achieve the conclusions of this study,
we save computation time, by studying a camera of about
1 x 1 km? FOV. The FOV is tuned to acquire a cloud of
interest from the LES. We then set the FOV as centered at the
(0,0, 0) coordinates in the TE system.

B. Tomography Results

In the reconstruction, the effective variance v, is assumed
constant, v, = 0.1. The retrieval assumes a ground-truth 3-D
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TABLE II

SUMMARY OF GROUND-TRUTH CHARACTERISTICS OF
A CLOUD-SET USED IN OUR SIMULATIONS

Maximum 7e [pm] 8.8 -154
Mean 7e [pum] 6.2 -10
Maximum cloud optical-depth 19.2 - 71.8
Minimum cloud base altitude [m] 550
Maximum cloud top altitude [m] 1710
0.8
O frwc
0.7 + .
o ere
06 ¢ 1
0.5+ 8
w -
=1
S 041 f
£
0.3+ P ) 8
0.2 | % f
0.1} $ % 3 o
0 H H M M M M
Typical ~ Stokes  Stokes DoLP DoLP DoLP
3Dretrieval ~ +Alternating
only for LWC  optimization
Method (stage 3)

Fig. 14. Summary of mean error values following Stage 3, following different
initializations set in Stage 2. Bars represent the standard deviation of errors.

mask, which is extracted from the 3-D extinction field of the
cloud data.

For each initialization method, €fwc and €,, are estimated
(see 7, 8). A comparison (presented in Fig. 14) demonstrates
the superiority of Mgiokes and Mporp for initialization. These
methods use the monotonous cloud model (see 23, 24).

The difference in errors of Mgkes and MpoLp is very small,
with a slight advantage to Mp, p. For some of the clouds
sampled, these two methods result in the same parameters
for initialization of Stage 3. For the few clouds that yielded
significantly different parameters, we find an improvement in
favor of Mp,Lp. For this reason, it appears there is a benefit
to use Mpop for initialization. The advantage of Mpgrp is
in clouds having (vertical) optical-depth values below 30.
In a scattering medium, a lower optical-depth corresponds to
less multiple scattering. This is equivalent to a higher weight
of single scattering, in which polarization is significant. The
scientific goals of the CloudCT mission are focused on small
warm clouds. Therefore, it is a reasonable assumption that a
significant part of the actual data acquired in the mission has
the order of these low optical-depth values.

We find that the 1-D model assumed for r, (see 24)
proves to be a good assumption. As demonstrated in Fig. 14,
Stage 2 (see Section IV, and Fig. 1) may suffice for estimation
of r.. Here, r, and LWC are set by the Mp,p initialization
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Fig. 15.  (Left) Rendered cloud images based on 3-D RT. (Right) Plane
parallel assumption. The pixel values of the approaches are compared via a
scatter plot.

method (Stage 2). Afterward, only the LWC is retrieved in
3-D (Stage 3). The 3-D CT problem is thus mainly that of
estimating the LWC in 3-D, while r, is approximated by a
1-D function, as in prior research [18], [23], [38].

Alternating optimization removes the need for precondi-
tioning of the scales of the variables, and thus removes
a complication from the optimization. In addition, we find
that alternating optimization (Section V) yields an additional
retrieval improvement (see Fig. 14, here the Mporp initializa-
tion method is assumed). However, alternating optimization
increases the run-time significantly.

C. Discussion of Errors

Errors of a plane-parallel model arise from neglecting lateral
effects of RT. These effects increase with the solar zenith
angle. A quantitative comparison of rendered cloud images
based on 3-D RT and plane-parallel assumption is presented
in Fig. 15. This rendering is an orthographic projection of a
3-D cloud scene.* In plane-parallel rendering, each pixel is fit
to a specific 1-D column, effectively following the IPA [31].
In IPA, each pixel is isolated from its neighbors, i.e., there are
no radiative interactions between vertical columns underlying
neighboring pixels. The wavelength in this demonstration is
652 nm, and 6y, = 25°. Fig. 15 illustrates that a small
cloud rendered by an IPA approach is brighter than that
of 3-D RT rendering, since the horizontal fluxes are treated
differently. Higher reflectance in an image based on the IPA
would cause overestimation in r, retrieval [5]. In contrast, the
3-D RT model includes lateral RT. So, 3-D RT reduces this
overestimation.’

In the current simulation, retrieval errors stem from
physical and optical constraints and algorithmic capacities.

“This orthographic projection is not used in the inversion.

5 A plane parallel atmosphere assumption also neglects the curved geometry
of the atmosphere. For retrieval of clouds in a wide medium, this is significant.
However, in the scale of the medium that we examine, this effect is negligible.
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Fig. 16. Scatter plots of retrievals sampled from the whole cloud-set. The
color bar represents the altitude of the sample.

As Forster et al. [26] demonstrate, a veiled core of a cloud
limits tomography. We will continue to explore the error in
clouds of focus in CloudCT.

Retrieval accuracy depends also on the signal-to-noise
(SNR) ratio. A thorough analysis of the effects of electronic
noise, airlight, and stray light on the SNR will be discussed
in our future work.

In algorithmic aspects, as demonstrated, retrieval highly
depends on initialization. In addition, there is uncertainty
stemming from the process of space carving. In space-carving,
image processing and stereo imaging are used to set a domain
of interest. However, the cloud base is not directly viewed by
spaceborne imagers. So, there may be a higher uncertainty of
the cloud geometry there.

An additional biasing effect can be seen in the retrieval
of the LWC. This can be seen in the scatter plots presented
in Fig. 16. Here, a tendency of underestimation of LWC is
apparent. These errors will be further examined. We believe
that algorithmic advances will counter this error.

VII. CONCLUSION

We introduce a comprehensive method for spaceborne 3-D
volumetric scattering-tomography of cloud microphysics. The
method is tailored for the CloudCT space mission, of 3-D
scattering tomography of warm clouds. It includes adjustments
to the pySHDOM 3-D microphysical scattering tomography.
The major adjustments are implementation of a realistic
polarized imager model, and a new initialization method.
We demonstrate the superiority of an initialization method
based on a parameterized horizontally uniform model, under
the constraints of the implemented imager model. For small
clouds with low values of vertical OD, we find that initializa-
tion based on the DoLP has an advantage. For the CloudCT
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mission which focuses on small clouds, this may be significant.
In addition, we suggest cloudbow scanning.

Future research toward the CloudCT mission will further
address the potential of the cloudbow-scan. The final orbit
plan will be taken into consideration, along with a statistical
analysis of the satellite pointing accuracy, maneuver capabili-
ties, and payload frame rate.

Following our conclusion regarding the advantage of the
DoLP error to initialization, we have begun an initial exami-
nation of the possibility of full optimization (Stage 3) based
on the DoLP error. Currently, this has not proven useful. This
may be due to the low values of DoLP outside of the cloudbow.
However, future research may examine other cost function
formats, which consider errors of different combinations of
the Stokes vector components.

The proposed method has not been tested on large precip-
itating clouds such as Cumulonimbus. In such clouds, there
is a mixed phase. That is, the cloud is made of ice crystals,
cloud-droplets as well as rain-drops. Such clouds appear also
in extreme weather conditions. These are not the focus of
CloudCT. Ice crystals have different optical properties. More-
over, rain-drops are much larger than cloud droplets. Further
research may include the phase functions of ice particle and
rain drops. SHDOM can express RT by ice crystals of eight
specific shapes [62], based on [63], assuming no preferred
orientation. However, this is currently not implemented in
pySHDOM. In addition, heavy precipitation and severe con-
vection may cause rapid changes in liquid water content. Here,
simultaneity of multiangular imaging would be an advantage
to sequential imaging as in MISR, AirMSPI and POLDER.
Regardless of the polarized sensing approach, we believe
that our scattering tomography approach can be relevant in
additional tomographic setups, for instance, in the mesospheric
airglow/aerosol tomography and spectroscopy (MATS) [64].

APPENDIX I
EARTH COORDINATE SYSTEM

Here, we describe the coordinates of the satellites. For
simplicity, let the Earth be a sphere having radius Reyn =
6371 km. We used the EC and TE coordinate systems (see
Section III-A). Both are illustrated in Fig. 3.

Let & be the zenith angle of the satellite, in the EC
coordinate system (Fig. 3). Let L be the distance (on the orbit
arc) between two adjacent satellites (L = 100 km as described
in Section III-B). The angular distance between two adjacent
satellites is

L

A = ————.
. Rearlh + Rorbit

(32)

Let j € [1,10] be an index of a satellite. Satellite angles
{&al/1}}2, are equally spread. The satellite location in the
EC coordinate system is

Xearth []] = (Reanh + Rorbil) Sin(ésat[j])
Yeanh[j] =0

Zearth[j] = (Rearth + Rorbil) Cos(gsat[j]) (33)
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So, in the EC coordinate system

. -1 Xeanh []] -1 Zearlh []]
Csael /] = tan (7 ) = cos (7
Zearn[ /] Rearth + Robit

In the TE coordinate system, the satellite coordinates are
X[j] = Xean[/]
Y[j1=0
Z[]] = Zearth[j] - Rearlh~

In TE Earth system (Fig. 3), the zenith angle of the

satellite is
) 1 X[J]
Hsa = tan ! (—) .
e[J] 711

). (34)

(35)

(36)

APPENDIX II
CLOUDBOW-SCAN TIME-SCALE

Here, we show that the time-scale for the cloudbow-
scan may reach &30 s. As demonstrated in [51], this is an
acceptable time scale regarding cloud development. In the
simulations presented in this article, the range of the scanned
scattering angles in the cloudbow is 135° < O, < 150°.
We uniformly sample ten angles in this range.

Using the same convention as described in Figs. 2 and 3
(¢hsat = 0°), the direction vector from the Sun to the domain is

SIH(ISO — Hsun)COS(¢sun)
SIH(ISO — esun)Sin((f)sun) .
cos(180 — Ogyp)

dqun (37
The direction from the origin of the TE coordinate system to
the satellite is

. sin(fsar)
dsal = 0

: (38)
cos (Gsar)

Only at the central pixel, dy = @. The scattering angle Oy,
(see Fig. 8) is calculated by

Osea = Cosil(asat : asun) (39)

which yields

Osca = cos™! [sin (Osy)Sin (Ogun )OS (Psun) + €08 (Hsar)c0S(Osun) 1.
(40)

The angles &, and 6y, (and generally, the azimuth angles ¢gy,()
can be set to a specific angular range relative to dgy,, specif-
ically within the cloudbow. This requires inverting (40), and
extracting 6, as a function of .,. We solve this numerically.
First, angle samples &, are converted to angle samples gy
(using 33, 35 and 36). Then, by numerical search of (40),
we seek samples g, that provide the required samples of O,.

Let &, be a zenith angle of the satellite, in the EC
coordinate system, sampled at much higher resolution than
&sar (Fig. 17). The goal of using angles ¢, is to discretize the
position on the orbit path with high resolution. We generate
1310 samples of &, € [Eull], &aul10]]. Let ¢ be an index
of &, For each sample {¢/ [¢]}}3), we calculate a sample

g=1>
{0, [q1}}21), using (33, 35) and (36). Let e be an index of the



TZABARI et al.: SETTINGS FOR SPACEBORNE 3-D SCATTERING TOMOGRAPHY

5L Cloudbow
— angular
Ysat L range

Satellite

—

Center

Fig. 17. Satellite’s zenith angles &, and 6, that are used to sample the
orbit, to meet the cloudbow-scan goal.

10

scattering angle Oy,. For each of the ten samples {Osalel},;,

we find the index g which best satisfies (40), that is

g = argmin| Q[gq, e] | (41)
q
where
Qlg, e] = Oscale] — cos™! [Sin(esat[Q])Sin(esun)cos(¢sun)
+ cos(Gsalg)cos(Gsun)].  (42)

Finally, the respective angle ¢/, [§] is extracted. The angle
&lq] is the zenith angle of a satellite that observes the
cloudbow angular range, in the EC coordinate system. Given
ten such angles, we extract the two extreme and denote them
by & and & (Fig. 17). These two extreme angles are used to
assess the time that is needed to scan the cloudbow by one
satellite.

Let vgy be the velocity of the satellite (Fig. 17). For orbit
radius (Rearh + Romit), the velocity is

M
Rearth + Rorbil
where [65] pg = 3.986004418 - 10° (km®/s?) is the stan-
dard gravitational parameter. In a low-Earth orbit, vg =~

7.6 (km/s). The distance that a satellite travels (Fig. 17) on
the orbital arc between the two angles & and & is

oL = ”él - QZZH(Rearlh + Rorbit)-

The time 7 in which the satellite scans the cloudbow
angular region is

(43)

Usat =

(44)

oL

Usat

As an example, consider satellite 9 in the setup described
in Section III-B (see Fig. 6). Let it capture ten samples
in the cloudbow angular range [135°,150°]. Then, the total
cloudbow-scan time is ~31.23 s. For a &Sat and ﬁsun where a
cloudbow-scan satellite is nadir observing (as in Fig. 8), faster
frame rates are required. In such a configuration, the scan time
is =20 s.

T (45)
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APPENDIX III
IMAGER MODEL

As in [18], we use an image formation model for both the
forward and inverse models. Let us denote spectral band by A.
There, the wavelength 4 is between [4;, 1,]. Let us denote
spectral radiance at wavelength 1 by I,. It is calculated by
pySHDOM and has units of (W/m? - sr - nm). The camera
yields perspective projection. The perspective projection is
implemented in pySHDOM.

The camera system efficiency due to optical losses at wave-
length 4 is 7;. Consider a camera with a lens of diameter D at
distance f from the focal plane. Lens distortions are assumed
to be known and compensated for. The camera is focused on
the object (i.e., clouds). For simplicity assume 7, is uniform
within the area of a pixel footprint on the cloud. Geometrically,
this is equivalent to uniform irradiance on the detector pixel
(area p?). We consider the pixels to be close to the optical
axis of the camera.®

To simulate a readout of the imager, we convert I, within A
to photo-generated electrons in the sensor, as follows.” Light
energy is converted to the expected number of photons at
wavelength 1 by the factor (1/h c) (photons/Joule). A pixel
on a sensor responds to the photons in a spectral band A. The
pixel response depends on the sensor’s quantum efficiency,
QE; (electrons/photons). It is a measure of the probability
for a photo-electron to be created per incident photon with
wavelength 4.

Let At be the exposure time of the imager. The expected
number of photo-electrons that are created in a pixel is

A D \2
Ny = pzAI/ ‘L';»QE;» —T (—) L,dx
A hc 2f
= At/ I';1,d2 electrons. (46)
A
Here, we define

D\2 2 electrons - m? - sr
T, = A(—) E, = p? 47
e 2f Q Ahcp Joule “7)

which encapsulates dependencies on the optics, pixel size, QE,
and the pixel’s receptive solid-angle.

Ideally, to calculate the integral in (46), RT would be run
multiple times to calculate 7, in the spectral band A, at a high
wavelength resolution. There is a common approximation that
simplifies these calculations [13], [61]. Instead of multiple
calculations of I; within A, in this approximation, RT is
simulated only once. Let I, be the spectral radiance which is
a result of this single RT run i.e., I, is an approximation of I;.
The field I, is used instead of I, in (46), and has the same
units as ;. When T'; is significant, the approximation I; ~ I,
is valid if wavelength dependencies within a spectral band are
weak. This condition is met when narrow bands are considered
(e.g., up to 40 nm [13]). Under these assumptions, the optical

6 Away from the optical axis, there is often vignetting, which refers to radial
fall-off of pixel intensity from the camera’s optical axis toward the edges of
the image [66], [67]. For narrow FOV imagers, as we deal with, vignetting
is considered manageable.

7For a sensor having a linear radiometric response, the conversion between
electrons and the sensor readout value in gray-scale is by a fixed ratio. We do
not deal with gray-scale values in this article.
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quantities can be spectrally averaged over A. Then spectrally
averaged optical quantities are used as constants within A.

Next, we describe how to express I;. Let I, be the spectral
radiance output of pySHDOM if the top of the atmosphere
(TOA) is irradiated by 1(W/m? - nm). Since the optical
quantities are spectrally averaged within A, I, is fixed within
A. The units of 75 are (W/m? - sr - nm). Let Y]°* be a
unitless function of A. This function scales the TOA irradiance
of 1(W/m?-nm) to the true solar irradiance at the TOA. The
spectral radiance I; is the radiance simulated by RT, if the
TOA irradiance is Y;9* - 1(W/m? - nm). Therefor

3 W
I = N0 ———. (48)
m< - Sr - nm
As I, ~ I, (46) becomes
Np = Aty / ;Y1) electrons. (49)
A

From (49), a conversion factor A, converts a photo-electron
count to radiance

1 W

A =
RN TR YRR

. 50
electrons - m? - sr (50)

To simulate raw measurements, we introduce noise to Nx.
First, we incorporate photon shot noise, which is Poisson-
distributed around the expected value N . The resulting photo-
electron value N, is

Na ~ Poisson{ Ny } (51)

electrons.

Then, we introduce more noise sources according to the sensor
specifications. We simulate the readout noise, dark current shot
noise, and quantization noise.

Let A (mean, STD) be a normal distribution with standard
deviation STD. Let operator [-] be a floor function. The
readout noise has a standard deviation of STD,,q electrons.
We simulate the readout random noise contribution in electrons
units by [N (0, STDyeaq)]. The dark current shot noise at
temperature 7 is B, (electrons/second). The dark current
shot noise is Poisson-distributed. We simulate the dark cur-
rent shot random noise contribution in electrons units by
|V (B: At, /B: A7)]. Quantization noise is introduced by
simply scaling the electrons to gray-scale levels, then applying
a floor operator, and finally scaling back. The maximum
number of electrons which can be contained in a pixel is
the full well capacity.® Pixel readout is quantized by bits, i.e.,
pixel values in gray-scale can be in the range of [0, 2P®].
We simulate measured photo-electrons by

full well
2bits

2bits

Nmeasured
A full well

{NNA + |N(0, STDyeaq) |

— [N (B, A, \/BrAt)JH electrons.  (52)

The value NP jg clipped to the range [0, full well].

In our simulations, the exposure time Af is set to a level
such that the sensor reaches 90% of its full well. Noise speci-
fications in our simulation are based on Sony’s IMX250MYR

8Sensor suppliers specify the full well in units of electrons.
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sensor [48]. The pixel size is 3.45x 3.45 um?, STDyeaq = 2.31
electrons, B, = 3.51 (electrons/second) at 25 °C. The full-well
is 10500 electrons. We use 10-bit quantization.

To convert the measured photo-electron count Nyeasured o
measured radiance I}\neasur"‘d, we use (49) and (50)

I/I{masured — AA Nxeasured 2“/ ) (53)
m- - ST
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