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A Purely Spaceborne Open Source Approach
for Regional Bathymetry Mapping

Nathan Thomas , Brian Lee, Oliver Coutts, Pete Bunting , David Lagomasino, and Lola Fatoyinbo

Abstract— Timely and up-to-date bathymetry maps over large
geographical areas have been difficult to create, due to the cost
and difficulty of collecting in situ calibration and validation
data. Recently, combinations of spaceborne Ice, Cloud, and
Elevation Satellite-2 (ICESat-2) lidar data and Landsat/sentinel-2
data have reduced these obstacles. However, to date, there have
been no means of automatically extracting bathymetry photons
from ICESat-2 tracks for model calibration/validation and no
well-established open source workflows for generating regional
scale bathymetric models. Here we provide an open source
approach for generating bathymetry maps for the shallow water
region around the island of Andros, Bahamas. We demon-
strate an efficient means of processing 224 ICESat-2 tracks
and 221 Landsat-8 scenes, using the classification of subaquatic
height extracted photons (C-SHELPh) algorithm and Extra Trees
Regression to provide 30 m pixel estimates of per-pixel depth and
standard error. We map bathymetry with an RMSE of 0.32 m
and RMSE% of 6.7%. Our workflow and results demonstrate
a means of achieving accurate regional–scale bathymetry maps
from purely spaceborne data.

Index Terms— Bathymetry, Ice, Cloud and Elevation Satellite-2
(ICESat-2), landsat8, machine learning.

I. INTRODUCTION

MAPS of shallow water bathymetry are critical for
the provision of coastal socioecological services and

emerging demands on the blue economy will open up new
opportunities for development where up-to-date water depth
information is needed. Marine navigation, aquaculture, climate
change adaption and mitigation, coastal resilience, and disaster
recovery are several key markets that will demand resources
from the nearshore environment over the coming century [1].
Contemporary nearshore seafloor maps with regular repeat
observations will enable proper marine spatial planning (MSP)
and enable the sharing of coastal waters [2], [3]. This is
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particularly pertinent for Big Ocean States that have limited
data access [4] and an inability to conduct expansive marine
surveys. In addition, nearshore structure is increasingly sought
as a nature-based risk reduction solution, predominantly focus-
ing upon the use of natural barriers to sea level rise and
storm surges [5]. Measuring the wave attenuation of benthic
habitats, such as seagrasses and coral reefs [6] are aided with
accurate maps of the seafloor, but this requires up-to-date and
repeatable observations of sediment stability and structural
complexity [7], [8]. These and other processes are not fully
captured by current, openly available bathymetry data [9],
which are limited in spatial and temporal resolution. There
are several free and open initiatives that procure bathymet-
ric data (e.g., International Hydrographic Organization Data
Center for Digital Bathymetry (IHO DCDB; [10]), European
marine observation and data network (EMODnet; [11]) and the
general bathymetric chart of the oceans (GEBCO; [12]), but
these are inadequate in shallow waters where the demands on
vertical and spatial resolution are not met. High-resolution data
can be derived from Singlebeam (SBES) and multibeam echo
sounders (MBES) [13] but collecting data in shallow water
is hazardous and time-consuming while bathymetric lidar
data acquired from airborne systems [14] are economically
expensive and time-intensive to collect.

Recent advances in satellite-derived bathymetry (SDB)
using multispectral and hyperspectral Earth Observation have
lead to new approaches and subsequent improved estima-
tions [15], [16]. SDB studies have established the water depth
retrieval through correlations between surface reflectance and
field-acquired depth estimates [15], [17]–[26], but studies
have so far been limited to single-site locations or processed
small quantities of optical data. Methods that have used cloud
computing have access to large archives of data [25] but often
rely on data compositing, which reduces data volumes for
bathymetry modeling and limits the derivation of per-pixel
uncertainty.

Recently, spaceborne Ice, Cloud, and Elevation Satellite-2
(ICESat-2) data has emerged as a means of collecting bathym-
etry training data, enabling timely and consistent collections.
Limited studies have begun to investigate bathymetric data
calibration [27], [28] and a number of studies have generated
study site to island scale maps of bathymetry at 10–30 m
spatial resolution [25], [29]–[31]. These have predominantly
relied on established linear relationships between optical
reflectance and depth [17], [18], which recent tests have
suggested can outperform machine learning approaches in
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Fig. 1. Great Bahamas Bank study site, centered around the island of Andros in the Caribbean. Low-resolution bathymetry information and vector layers
provided by Natural Earth. Free vector and raster map data available at www.naturalearthdata.com.

limited cases [25]. However, these tests were nonexhaus-
tive and the role of machine learning has yet to be fully
explored, particularly as they implement in—model weighting
of variables based on the strength of the relationship which
is not readily achieved with a linear or multilinear model.
Despite this emergence, there are few available frameworks
[32], [33] for ICESat-2 bathymetry photon extraction that
are not labor and time intensive. Though commercial tools
do exist for machine learning bathymetry extraction [34]
there are currently no open–source tools capable of both
extracting ICESat-2 bathymetric photons and generating robust
bathymetry models. TCarta do provide both workflows and
tools to achieve this but as a private commercial entity
require substantial economic investment. Advances in this
domain will help pave the way for a purely spaceborne SDB
approach to mapping bathymetry at regional and larger scales
[35], [36]. Here, we provide one such approach to allevi-
ate these limitations, providing automated bathymetry photon
extraction with a machine learning data fusion approach for
modeling bathymetry with low error.

II. METHODS

A. Study Site

The chosen study site is the Great Bahamas Bank around the
island of Andros in the Bahamas, Caribbean (Fig. 1). Andros
is a flat-topped isolated carbonate island bordered on the east
by the tongue of the Ocean, a deep water region reaching a
depth of 2000 m. Water depths within the Bahamas region

are typically shallow (0–10 m) and contrast heavily with the
Tongue of the Ocean and other surrounding deeper waters.
Islands in the wider region are composed of Aeolian sands and
limestone built on the Florida-Bahamas Platform. The wider
Bahamas region is composed of 700 islands, cays and coral
reefs and contains a number of distinct geomorphic features,
including the Great Bahamas Bank. The region has a tropical
climate which is heavily influenced by the Gulf Stream and
hurricanes which frequently impact the region.

B. ICESat-2 Data

The ICESat-2 is a laser altimeter launched in Septem-
ber 2018. ICESat-2 carries a photon counting lidar, the
advanced topographic laser altimeter system (ATLAS), which
is composed of three pairs of beams each separated in the
across-track direction by 3.3 km and 90 m between each
pair. Each pair of lasers is divided into a strong and a
weak beam, based on a 1:4 energy ratio. Each laser has a
10 KHz repetition rate at a wavelength of 532 nm. Each
footprint has a diameter of 10 m and is separated by 70 cm.
ICESat-2 geolocated photon data is provided in the ATL03
product [37]. Detailed instrument specifics can be found
in [38]. All ICESat-2 data available over the study site were
queried, subset, and downloaded from the National Snow
and Ice Data Center (NSIDC) using the ICEPYX python
software [39]. A total of 265 ICESat-2 tracks (version 5) were
downloaded between 2021-01-03 through 2021-09-29, each
containing up to three strong lasers each.
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Fig. 2. Example of the manual selection of the C-SHELPh processed ICESat-2 tracks. Top: Poor isolation of the bathymetry surface with noise classified
as surface points due to their density. This is evidenced by the red haze of classified photons near the blue water surface. Bottom: Successful identification
of the bathymetric surface without the erroneous classification of noise photons (black). The quality of the signal-to-noise isolation determines the processed
ICESat-2 photons selected for training.

To extract bathymetric photons from ICESat-2 tracks,
we created the classification of subaquatic height extracted
photons (C-SHELPh) python tool to locate and separate
training photons. This algorithm detects the dense cluster-
ing of photons, synonymous with returns from a surface,
over a dense grid whose dimensions are specified by user
inputs. Default values include 0.5 m in the vertical (height)
direction and 10 m in the horizontal (along-track latitude)
direction. Photons are corrected for refraction following [27]
and transformed to EGM08 from WGS84 ellipsoid height.
Ocean surface temperature used for the refraction correction is
retrieved automatically to match the ICESat-2 acquisition date
and location from the Jet Propulsion Laboratory’s GHRSST
Level 4 Global Foundation Sea Surface Temperature Analysis
via the OpenDap website [40]. Initially, dense clusters of
photons detected around a height of 0 m are classified as ocean
surface photons and the median height is used to determine
a water surface. Below this value, dense photon clusters are
identified on a per–grid–cell basis when meeting a user-defined
threshold percentile value. This threshold value enables grids
that include less dense noise photons where there are no
bathymetric returns to be excluded. Once selected, the photon
depth was determined from the water surface height and were
output into a GeoPackage (GPKG) file. Only strong lasers
were considered for this work. A suite of threshold values were
run for each track and the best results were chosen based on
manual inspection of the output plots. Manual inspection was
determined based on both the quantity of incorrectly classified
noise and accurately classified bathymetry surface photons
(Fig. 2). This step ensures that no erroneous classified photons
are used as training data and such is the ability of C-SHELph
to classify millions of photons, even a conservative approach
is able to yield large training data banks for modeling. In loca-
tions where high-resolution bathymetry data is available, this
step could be automated by assessing the error of the ICESat-2

derived height in comparison to reference data. This generated
224 individual ICESat-2 bathymetric tracks to use as model
training data.

All points within each GPKG that intersected a land mask
polygon were removed to ensure no false training was pro-
vided. This provided a database of 18 954 960 bathymetric
photons for model training. To reduce the compute time of
the regression modeling a 5% subsample was extracted by
selecting every 20th photon. The data was combined to create
a training dataset of 947 748 photons, while the remainder was
used for validation.

C. Landsat Imagery

Landsat 8 data was downloaded from the Google
Public dataset (https://cloud.google.com/storage/docs/public-
datasets/Landsat) using the tools within the atmospheric and
radiometric calibration of satellite imagery (ARCSI) soft-
ware [41]. For this study, all the Landsat 8 scenes from
2021 for 12 rows and paths of data that crossed the study
site, with a cloud cover of 50% or less, were downloaded,
totaling 221 scenes. Each of the Landsat images were then
corrected to surface reflectance using a dark-subtraction algo-
rithm within ARCSI and the United States Geological Sur-
vey (USGS) FMASK-provided cloud mask was applied to
the imagery. A Shuttle Radar Topography Mission (SRTM)
Digital Elevation Model (DEM) was used as input for the
calibration. Each Landsat scene was corrected to 30 m spatial
resolution in the local utm zone and included the blue, green,
red, near-infrared (nir), shortware infrared (swir) and swir2
bands. After visual inspection, the FMASK was judged to
perform poorly over water, thus an additional cloud mask
was created. Pixels that intersected an independent water
mask and had swir and swir2 bands >0.005 reflectance were
classified as cloud. These pixels were then dilated using a
9 × 9 window. These new cloud masks were then applied
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Fig. 3. ICESat-2 subaquatic photons. Top) Raw ICESat-2 data transformed to orthometric (EGM08) height. Bottom) Bathymetric classified photons (red)
and surface classified photons (blue) from C-SHELPh. The algorithm is robust against a phenomenon known as ringing, whereby an artificial repeat of the
surface is produced offset from the true surface, as visible below the red selected photons.

to the Landsat scenes to mask out remaining clouds. Finally,
a land mask was used to remove all land surface pixels, leaving
ocean pixels only.

D. Machine Learning Model

Additional preprocessing and data management was carried
out using the Remote sensing and GIS Library (RSGIS-
Lib; [42]) python software. For each of the 221 Landsat
scenes, the Landsat data was subset to the red, green, and
blue bands and additional ratio bands of green/blue and
blue/green were calculated to create a five-band image. For
each bathymetric photon, the pixel value was extracted from
each of the five image bands. These bathymetric depths
and reflectance values were passed into a scikit-learn [43]
Extra Trees Regressor via RSGISLib, using 100 estimators.
K-fold fitting with five splits and ten repeats were used to
parameterize the model. The input training data was split into
an 80:20 ratio for modeling and testing. As the study site
intersects four UTM zones, the output bathymetric models
were combined and mosaicked onto a common grid. To create
this, a WGS84 5 × 5 vector grid of 1◦ cells was generated
and RSGISLib tools were used to intersect a vector tile index
of the bathymetry models within it. For each vector grid cell,
each image that intersected it was resampled with a nearest
neighbor interpolation to that grid. The bathymetry models
were then reduced to a single image using four descriptive
statistics; mean, median, max and standard deviation. This
resulted in 25 individual composite bathymetry images per
statistic (e.g., max), derived from each bathymetry model that
intersected a given grid cell. The 25 grid cells, now all on a
common reference frame, were mosaicked to create one image.
The benefit of this was that the reduction is done on a per-pixel
basis per grid cell and this circumvented image edge effects
common with tiling multiple acquisitions.

E. Validation

The bathymetric photons were not validated as they were
generated at a much higher spatial resolution and vertical
accuracy than existing bathymetric models, particularly those
derived over large regional areas, as shown in [25]. For
this reason, independent ICESat-2 data was used in the

Landsat-derived bathymetry model validation. From the 95%
remaining bathymetric photons data bank (see Section II-B),
we excluded the extreme shallow water values outside of
Andros Island leaving 15 583 933 points for validation. The
maximum, median and mean pixel values from the bathymetry
models were extracted for each validation bathymetry point.
The root mean square error (RMSE) was then calculated from
the residual error for each model.

III. RESULTS

A. ICESat-2 Bathymteric Extraction

Bathymetric photons were successfully extracted from the
ICESat-2 tracks, where a subaquatic surface was detected.
The extraction model was able to run automatically with the
user required only to select the threshold value that yielded
the highest signal-to-noise ratio. An example of the extracted
photons is visible in Fig. 3. A total of approximately 19 million
individual bathymetric depths were detected, providing results
at a much more time and economically efficient rate than
field-based surveys. The extracted photons covered an area
from 21.611955◦ to 27.636068◦ latitude and −79.470479◦ to
−74.752996◦ longitude. The minimum depth values extracted
were 0.75 m and the maximum depths were 30.45 m, with a
mean and median depth of 4.69 and 4.26 m, respectively. The
reduced training data size of 947 748 (5%) depth locations
had a minimum depth of 0.75 m and a maximum depth of
30.3 m (median 4.3 m). The subsequently withheld validation
data contained corresponding minimum and maximum depths
of 0.75 and 30.45 m, respectively. The model was robust
against false positives which could be readily excluded with
the user-defined density threshold. The model was successful
over a wide turbidity gradient, interpreted by the density of
noise photons, successfully extracting surfaces in both clear
and turbid conditions. At greater depths of ≥40 m, there was
a low density of subaquatic returns and thus these depths could
not be extracted. Where there was a strong return from a
subaquatic depth, this was not a limitation.

B. Landsat Derived Bathymetry Models

A total of 221 individual bathymetry models were created
and were successfully reduced into three spatially continuous
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Fig. 4. Single bathymetric model generated from a single Landsat image (Left) and a spatially continuous median composite for the Bahamas region (Right)
demonstrating a range of depths, with the deepest depths at the outer edge of the island complexes, such as at the Tongue of the Ocean.

Fig. 5. Geomorphological features mapped with the bathymetry model. (a) and (b) Two distinct features with fine-scale variations in elevation.

models, representing the median, max, and mean depths for
the study site. The median model is provided in Fig. 4.

The median and mean composites are visually comparable,
with the models closely following the patterns observed in
high-resolution imagery (e.g., Google Earth/MAXAR). Shal-
lowest waters are observed around the island of Andros and
shoal complexes around Schooner Cay, Exuma Cay, and the
Great Bahamas Bank (Fig. 5) are observed, with water depth
increasing toward the outer edges of the bay. Both maps
contained a noisy speckled region, indicative of error in the
model and not accurate derivation of depth. The maximum
depth contained broadly similar patterns but had increased
noise from the selection of the maximum pixel depth selection
and some image edge effects were visible. The maximum
composite produced the lowest quality esthetic product.

C. Validation

Overall the median composite had the lowest RMSE from
15 583 933 independent validation points in the Andros shal-
low water region. The median composite produced the lowest

RMSE of 0.32 m, closely followed by the mean bathym-
etry composite of 0.35 m. The maximum composite had a
substantially larger RMSE of 1.25 m. Each Landsat derived
bathymetry model was accompanied by its own model perfor-
mance metrics, using the internal training:testing split on an
80:20 ratio and estimates of residual error and its distribution.
Also provided are the k–fold cross-validations to reflect the
robustness of each Extra Trees Regressor (Table I). For the
median composite, we assessed the change in absolute residual
error with depth, with the majority of errors rarely exceeding
20 cm and occurring predominantly at shallower depths.
Absolute error did not increase with model depth. This is
shown in Fig. 6 alongside validation summary statistics of
the three composites.

As the bathymetry models are composed of composite
values from a range of individual models, it was possible
to calculate per-pixel standard deviation and standard error
(Fig. 7). Both standard deviation and standard error were low,
≤ 0.5 and ≤ 1.25, respectively, across the majority of the
study site and larger values occurring at deeper bathymetric
depth estimates. This figure also highlights a region of deep
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TABLE I

5 OF 50 K-FOLD MODEL RESULTS FOR A SINGLE LANDSAT DERIVED BATHYMETRY MODEL

Fig. 6. (Left) Relationship between ICESat–2 observed depth and modeled depth. There is no relationship between depth and residual error, with the majority
of errors being small and occurring across all depths. (Right) Summary statistics of the validation data for each of the three composite bathymetry maps.

bathymetry within the shallow bay (24.5◦ N, −79.3◦ E),
interpreted as model noise and not accurate derivation of
depth.

IV. DISCUSSION

We have developed an open source workflow for
regional-scale bathymetry mapping from purely spaceborne
data, capable of generating maps with low error. We demon-
strate C-SHELPh, a means of automating the extraction of
bathymetric photons from ICESat-2 tracks, capable of the
required orthometric calibration and geometric correction of
the photons caused by the refraction of the laser at the
air/ocean interface. C-SHELPh was able to extract photons to
depths of 40 m, making it suitable for nearshore coastal waters.
The extraction of 224 ICESat-2 tracks totaling 18 954 960
points demonstrates the ability of C-SHELPh to work at
scale to create large training banks of data for regional-scale
studies. Further developments to C-SHELPh could include the
extraction of a detailed water surface to characterize waves and
the automated online lookup of water salinity, to further the

accuracy of the refraction correction. The simplistic approach
of C-SHELPh to detect point density over a grid enables it to
be readily tuned and modified, allowing it to be specifically
customized. In some instances, in very shallow (≤0.5 m)
waters C-SHELPh is susceptible to the under-classification
of bathymetric photons as the sea surface is approached and
confusion increases. This parameter is, however, customizable
within the algorithm and this confusion can be mitigated
against. This approach is more standardized and simplistic
than [32] and achieves satisfactory results. Furthermore, as
C-SHELPh is written in python it can fit easily into existing
open source workflows and is open to the community for
modification and improvement.

Our use of a machine learning regressor was able to generate
regional-scale spatially continuous seamless composites of
bathymetry, with high model accuracy and low RMSE values
of 0.32 m. We were able to utilize a state-of-the-art algorithm
in a field that has traditionally relied on linear relation-
ships [17], [18] between variables, allowing us to exploit both
linear and nonlinear relationships to derive improved results.
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Fig. 7. (Left) Standard error map of the region, detailing increased errors at increased depths. (Right) Standard deviation map of the study site used to
determine standard error. A region of inaccurately modeled deep bathymetry within the shallow bay at 24.5◦ N, −79.3◦ E, is visible.

Traditionally, nonlinearity in models increases uncertainties,
but a machine learning algorithm is able to exploit this to
reduce overall error. These models were capable of using
millions of data points for robust modeling and validation
while remaining vigorous against overfitting. Our workflow
is built upon RSGISLib [42] to enable efficient access to
advanced scikit-learn [43] machine learning algorithms and
model parametrization. Tools within RSGISLib allow the
efficient extraction of raster–to–point values for training and
validation, efficient regridding of the results to a common
frame and the reduction of over 200 bathymetry images to a
single seamless mosaic, easily formed into a workflow through
python bindings and enabling the integration of other common
python modules such as Pandas, GeoPandas and Matplotlib.
This efficiency enabled a regional-scale bathymetry map to
be created at high spatial resolution (30 m), allowing high
spatial detail to be mapped, such as geomorphological features.
The ability to process hundreds of individual Landsat scenes
reduces the reliance upon image composites which have been
used in cloudy regions to date, sometimes spanning numerous
years [25]. This reduces image artifacts, such as cloud edges
and image edge–effects, which are known to degrade optical
composites, while combining pixels with varying reflectance
values due to atmospheric conditions and solar angle. Instead,
compositing the bathymetry models enables several maps to
be generated at once, including minimum, maximum, mean
and median, rather than just one single model. However, the
model is not limited to this limited number of statistical
descriptors, in fact, any statistical reduction can be used to
determine the most accurate model. This allows full flexibility
in the workflow to generate the most robust bathymetric
model. Furthermore, the use of individual images enables
the derivation of per–pixel variance and maps of bathymetry
standard deviation and standard error. This enables the spatial

distribution of uncertainty to be mapped across the study
site at high resolution. Per–image model statistics are also
generated for detailed assessment of each model, including
internal residual scores and model fit. Finally, this workflow
is not limited to Landsat data alone and is applicable to
any visible wavelength imagery, thus it can be applied to
Sentinel-2, PlanetScope and MAXAR data to derive increased
spatial resolution if required.

The acquisition of bathymetry maps from purely spaceborne
data is being more readily facilitated, yet standardized methods
are still in their infancy and machine learning algorithms
have yet to be fully explored, with numerous studies uti-
lizing traditional linear methods [25], [33], [35], [44], [45].
We demonstrate that machine learning algorithms are well
placed to tackle nonlinear relationships between reflectance
and ocean depth, evidenced by the low uncertainties measured
in this study. Future work could focus on the use of additional
machine learning algorithms and further exploration of model
parametrization, including the use of additional optical bands,
such as the Landsat coastal band, as well as associated
band ratio combinations and statistical reducers (e.g., mode,
percentiles) in addition to the of maximum, mean and median.
Furthermore, our approach is applicable to all optical remote
sensing imagery with short wavelength visible bands, thus
from an applications perspective, the use of additional data
such as Sentinel-2 and PlanetScope/MAXAR imagery should
be investigated.

V. CONCLUSION

We provide a means of end-to-end bathymetry mapping with
purely spaceborne data. We map the shallow waters around the
Bahamas island of Andros, extracting 224 separate ICESat-2
bathymetric photon tracks and fusing them with 221 Landsat
8 images to create a single bathymetric map with an RMSE
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of 0.33 m. Our open source workflow, based upon mature and
efficient software and advanced machine learning algorithms,
paves the way for anyone to have access to contemporary
regional-scale bathymetry mapping. Our open source approach
will enable the community to further the mapping and ecosys-
tem accounting of important blue carbon coastal environments
by providing more readily accessible spatially continuous
maps of ocean depth and subaquatic structure. The ability
to derive spaceborne bathymetric models will help advance
studies into habitat characterization, storm surge modeling,
coastal protection, fisheries, and sea level rise as well as other
sciences that serve the Blue Economy.
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