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Multi-Task Learning for Low-Frequency
Extrapolation and Elastic Model

Building From Seismic Data
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Abstract— Low-frequency (LF) signal content in seismic data
as well as a realistic initial model are key ingredients for
robust and efficient full-waveform inversions (FWIs). However,
acquiring LF data is challenging in practice for active seis-
mic surveys. Data-driven solutions show promise to extrapo-
late LF data given a high-frequency counterpart. While being
established for synthetic acoustic examples, the application of
bandwidth extrapolation to field datasets remains nontrivial.
Rather than aiming to reach superior accuracy in bandwidth
extrapolation, we propose to jointly reconstruct LF data and a
smooth background subsurface model within a multitask deep
learning framework. We automatically balance data, model, and
trace-wise correlation loss terms in the objective functional and
show that this approach improves the extrapolation capability of
the network. We also design a pipeline for generating synthetic
data suitable for field data applications. Finally, we apply the
same trained network to synthetic and real marine streamer
datasets and run an elastic FWI from the extrapolated dataset.

Index Terms— Deep learning, full-waveform inversion (FWI),
low frequency, multitask learning (MTL).

I. INTRODUCTION

SEISMIC waveforms recorded at the surface are the pri-
mary source of information about the Earth’s interior [1].

If the subsurface elastic properties are known, then seis-
mic waveforms can be simulated and compared to the ones
recorded in a field experiment. Full-waveform inversion (FWI)
is a technique that optimizes hypothetical subsurface prop-
erties such that every wiggle in the recorded seismic data
matches the data simulated using these subsurface proper-
ties [2]. Due to its versatility and ability to handle a wide
variety of field data, FWI is dominating seismic imaging in
the past decade in both seismological [3] and exploration com-
munities [4]. FWI optimizes the model of the Earth such that it
explains seismic data using local search methods for optimal
parameters. For such a nonlinear optimization problem, the
two key requirements for success are finding the right data
misfit to optimize toward and the right starting point or initial
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model [5]. When such information is absent, the inversion
suffers from cycle-skipping issues where waveform wiggles
of the synthetic data are matched with a wrong counterpart in
observed data [6].

In practical scenarios, available seismic data are typically
frequency band-limited and contaminated by noise. Therefore,
there are two tasks that need to be completed to set up an FWI
algorithm: 1) a priori estimation of a realistic initial model
and source wavelet and 2) conditioning of data or redefining
features that should fit between simulated and recorded data.
While these tasks can be handled separately, they are intrin-
sically related to each other. Namely, the solution for the first
task leads to requirements for the second task. For example,
if the initial model for the inversion is very close to the
actual subsurface, then conventional FWI would work without
low frequencies. However, if the initial model results in a
major seismic shadow zone in the wrong location (e.g., by a
mispositioned salt body), then the available band-limited data
can hardly correct those nonilluminated areas of the model as
the synthetic dataset is insensitive to changes in that area.

Most FWI frameworks assume the availability of a fair
approximation of the true velocity or its general trend (e.g.,
extracted from regional logs) and focus on FWI and/or data
improvements. More robust data misfits for FWI might be
constructed to compensate for the missing low-wavenumber
information [7]–[11]. Alternatively, constraints applied along-
side the main objective might serve the same goal [12]–[16].
Conditioning and smoothing of gradients for model updates
also help inversions to overcome inaccurate initial starting
models [15], [17]–[19]. These existing frameworks greatly
advance FWI in seismic exploration, and however, they might
either require a different inversion engine to be used (e.g.,
advanced traveltime tomography) or require a large number
of iterations of high-frequency (HF) seismic simulations.

In the following, let us first overview data-driven methods
aiming at initial model building and bandwidth extrapolation
of seismic data. Then, we propose a new method for FWI
initialization that combines the two objectives into a unified
framework by addressing both these tasks simultaneously
rather than solving them independently.

A. Low-Frequency Seismic Data

In an ideal setup where a broadband signal illuminates the
target domain from wide angles, FWI would converge to a
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high-fidelity reconstruction of the medium. In practice, only
offset- and band-limited data recorded at the Earth’s surface
are often available for inversions. Altogether, this makes FWI
a highly nonlinear optimization procedure suffering from the
nonuniqueness of the solution. Numerically, this corresponds
to the presence of multiple local minima in the objective
function [20] where the optimization algorithm might get
stuck on its way to the optimal solution given by the global
minimum.

1) Benefits of Low-Frequency Data: Low frequencies
present in seismic data are a valuable asset in multiple applica-
tions [21]. Long-wavelength signals scatter less and penetrate
deeper into the subsurface. They also feature fewer minima
during a nonlinear optimization and increase the reliability of
the resulting model of the subsurface.

Seismic traveltime tomography limits the desirable range of
low frequencies from the lower end and the seismic acquisition
equipment sets the limit from the higher end. In particular, the
background velocity model derived from traveltime tomog-
raphy might compensate for frequencies below 1 Hz [22],
while the frequency content recorded in a generic marine
airgun survey drops below noise level at about 4 Hz [23]. The
intermediate frequencies falling in-between these estimates
correspond to the gap in the model wavenumber spectrum [24].
The objective of this study is to reconstruct these low frequen-
cies below the acquisition threshold estimate.

2) Limits of Acquirable Frequencies: Acquiring low-
frequency (LF) data is a costly venture because it requires LF
sources [25] and sensitive receivers [26]. Nevertheless, state-
of-the-art seismic marine surveys allow recording such data
in the field. For example, ultralong offset seabed acquisitions
employing an array of ocean-bottom nodes are capable of
registering frequencies as low as 1.5 Hz [27], [28]. A similar
range of ultralow frequencies (UFs) might be detected in the
marine buoy survey setup [29] where hydrophones are floating
under the water surface attached to a buoy. The advanced
marine streamer survey [30] might record robust signals with
frequency content down to 2.5 Hz. We focus on a marine
streamer survey setup aiming to compensate for the missing
frequency range below 4 Hz by learning from synthetic data.

B. Reconstruction of Missing LF Data

The benefits of having LF data motivated the development
of a variety of methods in the pre-deep learning era [31]–[34].
Since then, the bandwidth extrapolation domain is dominated
by methods powered by data. Data-driven reconstructions of
missing LF energy might be conducted in time and frequency
domains. A time-domain seismic signal can be regarded as a
composition of multiple, independent monofrequencies. Thus,
bandwidth extrapolation in the time domain aims to simultane-
ously recover a range of such frequencies. The disadvantage of
working in the time domain is that amplitudes of the signal at
the lower end of the target frequency range are significantly
weaker than those at the higher end. While amplitude bal-
ancing techniques such as automatic gain control (AGC) or
spectral whitening might help in addressing the issue, these
methods are sensitive to noise and their applicability is yet to
be explored.

Unlike time-domain representations, frequency-domain rep-
resentations of seismic data offer a discretized framework
where every frequency component might be considered in its
own context. The dimension of monofrequency data is reduced
by one compared to a time-domain representation, thus allow-
ing us to train a dedicated network for each individual fre-
quency [35], [36]. However, the application of such methods
to time-domain data might be impractical since bandwidth
extrapolation of each frequency would require training its own
network.

The feasibility of frequency bandwidth extrapolation by
deep learning was discussed from the wavenumber illumina-
tion point of view [36] and by the sparse nature of the seismic
signal [37]. The feasibility of trace-to-trace extrapolation in
the time-domain data was explained as a by-product of super-
resolution [38], [39].

The majority of deep learning methods for bandwidth exten-
sion are focusing on the time/offset format of the data. Sun and
Demanet [40], [41] proposed and developed a trace-by-trace
approach for frequency extrapolation in the time domain. The
method operates on full-duration time series and is powered by
the WaveNet architecture. The approach is suitable for elastic
waveform inversion in marine survey layout. Fang et al. [42]
and Ovcharenko et al. [43] extrapolated low frequencies by
training convolutional networks on AGC-balanced patches of
time-domain seismic data in marine and land setups, respec-
tively. Aharchaou and Baumstein [44] avoided using syn-
thetic data and trained a UNet neural network to translate
knowledge of LF data from OBN surveys to band-limited
shallow streamer data. Fabien-Ouellet [45] proposed to iter-
atively halve the central frequency of a seismic gather by a
recursive convolutional network. Since synthetic data do not
accurately represent the field data, Hu et al. [46] developed
a self-supervised learning pipeline where predicted LF data
are iteratively injected into an FWI engine. The approach
was further improved in [47]. Wang et al. [48] also trained
a network in a self-supervised fashion to retrieve similarity
in transition between HF and LF bands. In general, these
data-driven deep learning approaches show great promise in
broadening the frequency spectrum of available seismic land
and marine datasets. Nakayama and Blacquière [49] showed
in synthetic and field data experiments that LF extrapolation
might be addressed simultaneously with deblending and trace
reconstruction.

C. Reconstruction of the Low-Wavenumber Initial Model

A low-wavenumber model available for the target subsur-
face might compensate for missing LF content in seismic data.
A general requirement is that such a model should be sufficient
to avoid cycle-skipping issues at the lowest frequency present
in the dataset. Deep learning might offer opportunities to
estimate more realistic initial models for FWI directly from
data. The objective for training neural networks is typically
formulated as finding a nonlinear mapping between a com-
plete set of seismic data from a synthetic experiment and
a respective subsurface model. This means that the whole
low-wavenumber model of the subsurface is predicted from
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seismic data representing the entire seismic survey [50]–[57].
In a synthetic setup, a subsurface model predicted in such
a way might have a resolution similar to that of a model
inverted by FWI since the training and application domain
are close to each other. These methods are often tailored for
specific survey geometries and should be retrained when the
experimental setup changes.

Assuming that a dataset with a limited aperture is suf-
ficient to illuminate the local subsurface, Kazei et al. [58]
proposed to map a set of neighboring common-midpoint gath-
ers into the central, vertical elastic profile. This approach
utilizes shot-gather data rather than the full-survey data, which
improves its applicability to a broader range of domains.
Thus, it allows applying the same trained network to synthetic
and field data, under the requirement of having an identical
configuration of input seismic data. Motivated by the broad
application domain of such a limited-aperture problem formu-
lation, we select a common-shot gather (CSG) as the minimal
source of input data for a deep learning model and explore the
limitations of such a formulation.

D. Objectives of the Study

Our aim is to extend existing FWI frameworks by merging
both initial model estimation and bandwidth extrapolation into
a unified, data-driven approach. This facilitates the initializa-
tion of FWI by increasing the error margin for data-driven
predictions. In particular, the required accuracy of an initial
model for FWI is proportional to the maximum wavelength
available in seismic data. In other words, the higher the min-
imum available frequency is, the more accurate the predicted
initial model should be. Considering model estimation and
bandwidth extrapolation independently from each other will
pose higher expectations on the accuracy of each reconstructed
entity. However, the availability of a fair reconstruction of
a tomographic subsurface model would relax the accuracy
requirement of the LF components in the reconstructed data.
For this reason, we attempt to jointly address the tasks of
time-domain LF data extrapolation and building a tomo-
graphic model of the subsurface. Specifically, we design a new
deep neural network architecture and formulate a multitask
learning (MTL) objective to simultaneously deliver these two
outputs.

Our solution implies the joint recovery of the
low-wavenumber model of the subsurface and the LF
data (Fig. 1). The frequency band of the recovered LF data is
limited by the bandwidth of the source wavelet used for the
generation of a training dataset of seismic waveforms. In our
case, the source wavelet covers the sought-for frequency
range from 2 Hz to 4 Hz, while the reconstructed model of
the subsurface aims to compensate for low frequencies that
were missing during data generation.

The key contributions of this work include the following:
1) a neural network architecture for the joint prediction of

LF, CSG data, and corresponding smooth initial velocity
model.

2) definition of a multitask training objective for joint data
and model prediction.

3) formulation of a workflow for generating a semisynthetic
dataset for supervised learning, based on real-world
marine data.

4) case study for the application of elastic FWI with pre-
dicted inputs.

In the following, we first introduce the multitask objective
for joint LF extrapolation and building a smooth background
model. Then, we explain the generation of synthetic datasets
tailored for specific real-world marine streamer data. Finally,
we showcase the application of the trained network on a
modified version of the synthetic Marmousi II model [59] and
real-world marine streamer data and run an elastic FWI on
these models.

II. MULTITASK LEARNING FRAMEWORK

MTL is inspired by the human ability to indirectly deduct
knowledge from related tasks [60]. For example, extracting
the summary of a book can help identify the genre. From the
deep learning point of view, MTL is equivalent to training a
network to simultaneously perform several tasks while par-
tially or completely sharing trainable weights in the neural
network branches leading to each of these tasks. With hard
parameter sharing, the MTL formulation forces the optimiza-
tion to accommodate the common knowledge for the main
and auxiliary tasks in the shared weights of the network. This
potentially improves the generalization capability of the net-
work on the main task by constraining the domain of suitable
solutions [61]. Thus, MTL generally solves a multiobjective
optimization problem. Next, we define a combined objective
functional as a weighted sum of functionals related to each
task.

A. MTL Loss Design

Our objective is to jointly recover the LF information for
the entire CSG and to reconstruct the low-fidelity subsur-
face model covered by the streamer at the moment of shot
excitation. We further denote it as a local subsurface model
for each shot. Two widespread choices for the FWI misfit
are the point-wise accumulated norms and trace-wise corre-
lation coefficients (L2 comparison of the normalized traces).
Therefore, we measure the LF seismic data fit by the sum
of the point-wise L1 norm of the data difference (Ld) and
the correlation coefficient of the predicted and labeled traces
(Lc). The predicted low-wavenumber velocity model serves
as a starting FWI model. The quality of the prediction is
constrained by the model loss measuring the closeness of the
reconstructed subsurface to the ground truth synthetic model
(Lm). Successful completion of this task can compensate for
the incomplete reconstruction of UFs. Furthermore, the com-
pletion of these two tasks delivers both a starting point and
extrapolated data for FWI.

The complete objective function for our MTL implementa-
tion is as follows:

L = W(Ld , σd) + W(Lc, σc) + W(Lm, σm) (1)

where Ld is the difference-based data loss, which treats each
pixel in the data independently. The second term, Lc, also
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Fig. 1. (Left) Multitask network architecture and (Right) inference workflow for extrapolated FWI. The input HF data, HF, map into LF data, LF, as well
as a local subsurface velocity model. The blending block then substitutes extrapolated frequencies below 4 Hz into available seismic data. Local subsurface
models are stacked into the initial subsurface model for inversion.

operates in the data domain, but it promotes scale-independent
trace-wise correlation. The last term, Lm , is responsible for
fitting the local subsurface model. The weighting operator,
W, with the trainable parameter σi dynamically balances the
training in between tasks, is described as follows. Let us
explain each component of the multitask loss in more detail.

Weighting the Tasks: Following Kendall et al. [62],
we define the weighing operator for a regression loss Li as

W(Li , σi ) = 1

2σi
Li + log σi (2)

with a task-uncertainty related parameter σi , i.e., for the data,
σd , model, σm , and trace-wise correlation, σc. The value of σi

quantifies the error/uncertainty associated with the prediction
for the task i . When the uncertainty σi increases, the weight for
the respective loss term Li decreases. This effectively reduces
the contribution of the gradient with respect to Li into the
minimization of the multiobjective functional. The log σi term
discourages σi from excessive increasing, which would lead
to ignoring the respective loss term completely. Specifically,
the logarithm returns an increasing positive value as σi grows
above 1 and a negative value as it drops below 1. Thus, a neg-
ative total loss value is a normal state for the described MTL
formulation. This may occur when the training is dominated
by contributions of high-confidence loss terms. The gradient
descent seeks a minimum of the objective function where the
gradient becomes zero, meaning that the nominal value of
the loss function might decrease as long as the optimization
advances in the correct direction. By this, contributions of
multiple loss terms can be adjusted on-the-fly to enable an
uncertainty-driven automatic loss balancing. In practice, each
σi is a scalar that is trained alongside the network weights.

B. Data Loss

The first objective of the training is to predict time-offset
LF data. In particular, we aim to reconstruct the wavefield
recorded for frequencies below 5 Hz given input seismic data
high-passed above 4 Hz (Fig. 2). The intentional overlap
of corner frequencies of bandpass filters eliminates the gap
between known and unknown bands caused by filter design.
The same shared band later serves as an amplitude reference
to match predicted LF and available HF data.

We use a mean-absolute-error (MAE) loss for element-wise
comparison of predicted and target volumes of seismic data.
Hereafter, we refer to a general pair of target and predicted
data as x and y, respectively

Ld = |d − d̂|1, MAE(x, y) =
∑N

i=1 |xi − yi |
N

(3)

where d is the true data and d̂ is the predicted data by the deep
neural network. A network trained to accurately reconstruct the
CSG data would also deliver a high correlation of individual
traces in the CSG. Unfortunately, far-offset traces typically
have lower amplitudes and thus smaller contributions, which
challenges their predictions. Still, far-offset traces carry diving
waves with important information for LF FWI [63] and thus
need to be reconstructed more carefully. To address this issue,
we add the following correlation loss term.

C. Correlation Loss

The MAE loss treats seismic data as a collection of indepen-
dent data points, linearly attributing more weight to a larger
amplitude mismatch. To reduce the amplitude dominance of
short offsets over far offsets where the signal is generally
weaker, we add an auxiliary loss term that measures the
trace-wise correlation of the signal along the time axis.

Pearson coefficients quantify the linear relationship between
two variables, ignoring bias and scale. For seismic data with a
zero mean, the Pearson coefficient is equivalent to a cosine
similarity measure. Cosine similarity is a commonly used
scale-independent metric, popular in the computer vision com-
munity. Effectively, it normalizes a pair of traces by their
norms and finds angles as if traces were vectors in a mul-
tidimensional space. Since the zero-mean assumption might
not be met when multiple arrivals are recorded by the same
receiver, we use the Pearson coefficient, as a more general
formulation of cosine similarity, defined by

ρ = cov(x, y)

sx sy
, cov(x, y) =

∑N
t=0(xt − μx)(yt − μy)

N
(4)

where cov(x, y) stands for the covariance between two traces
x and y, with μα and sα denoting the mean and standard
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deviation for a given trace, respectively

sα =
√∑N

t=0(αt − μi )2

N
, μα =

∑N
t=0 αi

N
. (5)

The summation over t means counting over N temporal
samples in a trace, and α stands for either x or y.

When applied for each trace in a CSG, ρ becomes a vector
of coefficients ranging from −1 to 1, between a perfect phase
mismatch and match. The correlation loss between ground
truth, d , and predicted seismic data, d̂ , might be formulated
in a straightforward way

Lc = 1 −
∑K

k=1 ρ(dk, d̂k)

K
(6)

where the subscript k denotes an individual trace from K traces
in a CSG. The range of Lc is from 0 to 2, for perfect match
and mismatch.

D. Model Loss

The bandwidth of the source wavelet used for the generation
of training data defines the range of recoverable low fre-
quencies. We constrain ourselves to use the wavelet extracted
directly from the real-world marine streamer data, which spans
the frequency range >2 Hz. The lack of such low frequencies
might be generally compensated by the availability of low
wavenumbers in the initial model, reducing the effect of the
unresolved LF content.

A single CSG contains sufficient data to recover a layered
structure of the subsurface in the vicinity of the shot location.
Based on that, we formulate the subsurface fitting term similar
to the data matching term by

Lm = |m − m̂|1. (7)

It seeks to optimize the MAE loss by recovering the smooth
background model of the underlying subsurface, which intends
to replace the presence of tomographic frequencies. Since
a subsurface model for an individual shot gather cannot be
accurately recovered, we linearly average overlapping areas
from all shots to build an initial model for FWI. The resulting
smooth background model then has a resolution approximately
equivalent to that of traveltime tomography, compensating for
the missing UFs in predicted data.

E. Architecture

We design a fully convolutional architecture for joint predic-
tion of the local subsurface model together with two cascaded
bands of seismic data (Fig. 1). The network consists of an
encoder as well as data and model decoders. As an encoder, E ,
we use a modified multicolumn structure by Wang et al. [64].
In particular, we keep the three branches that accommodate
dilated convolutional layers with kernel sizes of 3, 5, and
7 and create a bottleneck by dropping all upsampling layers.
The outputs from each branch are concatenated along the
channel dimension and passed through another convolutional
layer to shape the final encoded representation of the input
data. We find that such a multiscale decomposition of the

input data is crucial to capture the weak-amplitude and long-
wavelength trends in the input volume. The benefit is primar-
ily due to the large perceptive field of dilated convolutional
kernels.

There are two decoders: a data decoder and a model decoder.
The data decoder is a stack of transposed convolutional layers
spatially upscaling the encoder bottleneck into the dimensions
of seismic data. The model decoder has a purely convolutional
structure that preserves the spatial dimensions of the encoder
output and maps it into the single-channel model of the
subsurface. The reduced dimensionality of the model decoder
output promotes the simplicity of the reconstructed subsurface
structure and reduces the number of trainable parameters.

F. Implementation Details

Similar to FWI, the training step of a deep neural network
is a nonlinear optimization problem that is sensitive to the
initial weights in the layers of the network as well as to
the set of hyperparameters selected for training. Here, we list
the practical aspects that we found significant to this deep
learning application.

1) Ensemble Learning: Artificial neural networks are
high-variance approximators prone to overfitting data [65].
Also, the nature of nonlinear stochastic optimization makes
training sensitive to the initial random state of network
weights. As a result, the mapping between inputs and outputs
learned by a deep neural network depends on weight initial-
ization. Averaging predictions produced by having the same
architecture, but differently initialized models, helps to reduce
this bias by the initial set of weights. Consistent features are
shared by all ensemble members, while initial weight-related
errors in predictions from different models cancel out [66].
We average predictions from ten identical networks initialized
by different random seeds and notice that the cumulative
prediction consistently outperforms the individual predictions
of the ensemble members.

2) Batch Size: Larger batch sizes typically lead to a better
load of computational units and reduce the generalization
power of the network [67]. Keskar et al. [68] analytically
showed that large-batch implementations are prone to converg-
ing to so-called sharp local minima of the objective function,
while small-batch implementations converge to smooth local
minima. The sharp minimum implies the impossibility of
an optimization method to escape from the attraction basin.
We performed tuning of batch size and empirically found that
a batch size of 4 delivers the lowest MTL loss on the testing
dataset, and hence, it is the most suitable for the proposed
architecture and dataset size.

3) Weight Initialization: Before training a convolutional
neural network, its weights are typically set to small random
values. However, the initialization method depends on the
type of activation function used in the layer. Since we use
the Leaky ReLU activation in all convolutional layers of our
network, Kaiming initialization [69] is a natural choice for a
reasonable weight primer. A proper range of initial weights
prevents gradient vanishing problems as well as the problem
of exploding gradients.
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4) Learning Rate: A properly selected learning rate policy
improves the convergence rate and leads the iterative nonlinear
optimization to a deeper minimum of the objective func-
tion. The concept of superconvergence introduced by Smith
and Topin [70] suggests using the one-cycle strategy, which
changes the learning rate for every batch, gradually increasing
it from the initial warm-up pace to a large maximum rate, and
then decreases it back to an even lower value than the initial
rate. The authors show that the large learning rate serves as
an auxiliary regularizer when approached following the one-
cycle strategy. We too observe in our experiments that the
training reaches a deeper minimum of the objective function
when using the one-cycle policy, rather than the reduce-on-
the-plateau strategy that quickly overfits our data.

III. SEISMIC DATA

In a supervised learning framework, it is critical to minimize
the domain gap between training and application datasets. For
this reason, we copy the acquisition design, noise imprint, and
the source signature from a particular seismic dataset when
generating our synthetic training data.

A. Marine Streamer Data

The target 2-D marine streamer dataset was acquired in
the Northwestern part of the Australian continental shelf.
Fig. 2 shows a CSG from the dataset and its average power
spectrum. There are 1824 CSGs in the survey, excited succes-
sively along a line with approximately 18.75-m spacing. The
waveforms were then recorded by 648 hydrophones placed
along the towed streamer every 12.5 m. We use the signal
recorded for 6.2 s with 2-ms temporal sampling. The survey
included the Broadseis acquisition system with a variable
depth streamer [30], capturing a robust seismic signal above
2.5 Hz. Assuming that data below 4 Hz are unavailable, we use
the frequency band [2.5, 4] Hz as a real-world reference to
evaluate the bandwidth extrapolation results. We limit the data
spectrum by applying a low-pass filter of fourth order with a
corner frequency of 10 Hz.

The source wavelet for each source location is estimated
in the frequency domain following [71]. For the sake of
simplicity, we assume the average wavelet signature to be
shared among all sources. The general experimental layout for
the marine streamer data experiment follows the description
in [72]. We also use the result of traveltime tomography
reported by authors as a visual reference for our constructed
smooth background model in the field data experiment.

B. Generation of Semisynthetic Dataset

The workflow for synthetic data generation utilizes the
survey geometry, the seafloor bathymetry, and the average
source wavelet derived from the target field data. The general
knowledge about this deep-water area of seismic exploration
defines dimensions and elastic parameter distributions for a set
of random subsurface velocity models. Meanwhile, the source
signature and source-receiver configuration determine the lay-
out for elastic wave propagation in each random subsurface

Fig. 2. (a) Marine streamer data with (b) its power spectrum. The dashed box
outlines the prearrival area that serves as a donor of noise. (d) Butterworth
bandpass filters are used to split seismic data into (c) HF and LF partitions.
The UF range was not captured. We set zero amplitudes the input data for
frequencies below 4 Hz.

model. We also directly incorporate samples of field-data noise
into computed waveform data. Such an approach is commonly
referred to as creating a semisynthetic dataset [73], [74].

1) Random Subsurface Models: The generation of realistic
subsurface models remains a nontrivial task. In detail, the
properties of random models in Earth sciences were explored
in [75]. Kazei et al. [76] generated realistic seismic models
using shuffling of coefficients in a wavelet-packet domain
and separate trend randomization. Ovcharenko et al. [77]
showed that a style-transfer approach is capable of transfer-
ring the layered structure from a geological reference to a
smooth velocity background, but at high computational costs.
Feng et al. [78] trained a generative adversarial network to
accelerate style transfer between real-world images and geo-
logical models. Ren et al. [79] formulated a pipeline for build-
ing 3-D synthetic models with salt intrusions. Alternatively,
Kazei et al. [58] demonstrated that an elastic transformation
applied to a simple layered model might be sufficient for
generating a diverse dataset of seismic waveforms. We follow
and modify this approach by creating random models that
approximately follow a user-defined background trend.

The workflow for the generation of realistic subsurface mod-
els includes four steps: 1) we generate a sparse sequence of
random values ranging from −1 to 1 to emulate the distribution
of impedance in depth; 2) we build a dimensionless velocity
profile v(z) by integrating and fitting the result into the range
from 0 to 1; 3) we replicate the v(z) profile to make a laterally
homogeneous layered model v(x, z); and 4) we finally apply
the elastic transform to distort the layered model and randomly
rescale the model velocities within 1.5 to 4 km/s.

Quantitatively, the amount of distortion is controlled by the
mean and variance of 2-D random Gaussian fields. Alternat-
ing those, one might produce models ranging from slightly
variable layered models to salt-containing models of the sub-
surface. To ensure that the produced model is following a
selected background trend, v0(x, z), we first remove the orig-
inal trend from the generated model. Effectively, this creates
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Fig. 3. (a) Random velocity model, (b) mean, and (c) standard deviation for
a dataset of 1024 synthetic subsurface model realizations. The stack of central
well logs for (d) dataset of random subsurface models and (e) histogram of
velocity perturbations at the depth marked by the white dashed line.

a perturbation distribution δv(x, z), centered around zero.
Then, we add the randomized trend into the perturbation map,
v0(x, z) + δv(x, z) (Fig. 3). The background trend models also
feature the fluctuating depth of the sea bottom. This makes the
deep learning model trained on such a dataset applicable to
marine datasets with variable water depth. The set of generated
models then follows the specified trend while evenly spanning
the domain in terms of feature variability.

This procedure generates random samples of compressional
wave velocities, Vp. We then scale shear-wave velocity Vs and
density ρ by empirical relations derived in [80]

ρ = 310 ∗ V 0.25
p , Vs = Vp/

∘
3. (8)

2) Forward Modeling in Elastic Media: The choice between
an acoustic and elastic formulation of wave propagation
defines the fidelity of the phenomena as well as the com-
putational costs involved in the generation of the training
dataset. Mora and Wu [81] showed that for a large-offset
marine data, there is significant energy attributed to wave
mode conversion, regardless of the water-bottom type. The
discrepancies between acoustic and elastic modeling increase
with offset and get more prominent in media exhibiting severe
scattering [82], [83]. We thus employ the elastic formulation
of wave propagation in both training dataset generation and
FWI of marine data.

To generate synthetic seismograms for our set of random
subsurface models, we use the elastic finite-difference imple-
mentation in the time domain by Köhn [84]. The source
wavelet extracted from the observed seismic data is the key
component to enabling the generation of training data and
subsequent FWI. Unlike land data, the marine streamer data
features sufficient wave propagation in the water layer, which
makes it possible to estimate the source signature reliably [85].
In particular, we use the average source signature from all
shots in the survey for forward modeling in random models.

The pitfall of using the source wavelet extracted from
the field data is that its bandwidth is limited by hardware
constraints of the data acquisition system. In our case, the
field data are broadband where the source wavelet contains
representative frequencies down to 2 Hz, while the objec-
tive of the study is to reconstruct frequencies below 4 Hz.
Meanwhile, we use the range in-between for validation.

This outlines expectations for a range of LF data extrapo-
lation. As a workaround for limited source bandwidth, one
could remove the source imprint from the observed data (e.g.,
by deconvolution) and use a synthetic wavelet of choice on
the dataset generation stage to enable full-band extrapolation.

3) Realistic Seismic Noise From Field Data: The lack of
realistic noise in the training dataset is another contributor
to the domain gap between synthetic and field data. The
properties of seismic noise are specific to the environment
and recording equipment, which makes the generation of real-
istic synthetic noise a nontrivial task [86]. To mimic realistic
noise, we extract the noise imprint directly from the field
data, which turned out to be a simple and efficient way to
focus training on removing a particular noise pattern from
the predicted data. Instead of training the network to cope
with diverse random synthetic noise, we train the network in
a semisynthetic framework [87], [88]. This implies blending
synthetic data on waveforms with the real-world noise specific
to the target dataset.

An example of such a donor area of representative noise is
shown in Fig. 2. We collect such triangular noise patches from
all field shot gathers intended for use in FWI. Then, we tile and
replicate these triangles into rectangles large enough to cover
twice the entire target shot gather in the training dataset. The
double coverage of data shape by noise allows augmenting the
dataset on-the-fly during training by shifting the noise pattern
and reversing its polarity. The limited amount of field noise
samples extracted from the target data makes the network
accurately remove the data-specific noise at the inference
stage.

4) Preprocessing: Before adding realistic noise, we split the
generated synthetic data into inputs and targets for training.
We apply a set of eighth-order Butterworth bandpass filters,
as shown in Fig. 2. Before that, we normalize the raw seismic
data by dividing it by the maximum of its absolute value.

The input HF data are made from full-band synthetic data by
high-pass filtering with a corner frequency of 4 Hz. We also
explicitly set zeros in the frequency domain for data below
4 Hz to avoid signal leakage into the target. Note that this
manipulation creates a discontinuity in the frequency spectrum
of the input data causing the spectral leakage artifacts. These
are visible as the weak nonzero energy in the zeroed-out part of
the spectrum when converting back from time to the frequency
domain. Since these spectral leakage artifacts do not com-
promise the experiment and are multiple orders of magnitude
weaker than the amplitude of input signal, we consider them
as inevitable noise and let the network training to account
for it.

The LF target data are built by applying a low-pass filter
with a corner frequency of 5 Hz. We evaluate the accuracy of
extrapolated data on the UF subband of target data, constructed
by low-pass filtering below 3 Hz.

The overlap between corner frequencies of the target LF and
the input HF range roughly accounts for the shape of bandpass
filters and ensures the lossless pass of the target data below
4 Hz. Finally, we map LF into the [−1, 1] range, making
it suitable for a deep learning application. In this way, the
amplitude information about targets is lost and we use the
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Fig. 4. Example of input and target data used for training. HF input data,
LF target for training, and local subsurface model (MOD, upscaled four times
for visualization) for a synthetic shot gather. The UF data were used for the
evaluation of bandwidth extrapolation.

amplitude of data in the available range from 4 to 5 Hz to
reconstruct the scale of the predicted data prior to the FWI
application.

The local velocity model underlying the shot location is
another target for training. First, we scale model targets into
the range [−1, 1] using velocity box conditions and the linear
transform mentioned earlier. Then, we stretch each model
along the depth axis to match the size of the shot-gather
data along the temporal dimension. This manipulation allows
to generalize the network architecture for an arbitrary model
depth. We assume that the network is capable of learning a
linear operation as the experiment is tailored for the specific
model depth and signal recording duration. At the inference
stage, we revert the depth to pseudo-time transformation by
resizing the predicted local subsurface models into their orig-
inal dimensions.

IV. NUMERICAL EXPERIMENTS

To reduce the gap between applications to synthetic and
real data, we conduct both a synthetic and field experiment,
using the same survey design and source signature extracted
from the real-world marine streamer data. First, we detail the
dimensions of input and target data as well as specific hyperpa-
rameters of the training runtime. Then, we show extrapolation
results and apply FWI to synthetic and field data.

A. Network Training

The density of the marine survey described earlier offers
redundant information for the extrapolation of data below
4 Hz. We reduce the dimensionality of the data by sampling
receivers in the streamer with 25-m offset as well as increasing
the time sampling rate of seismograms from 2 to 16 ms. In this
way, each HF CSG (input data) measures 324 × 376 data
points along offset and time dimensions, respectively. The
target LF data shares the same dimensions, while the resized
target subsurface model is four times more sparse and mea-
sures 81 × 94 model points with 100-m spacing along the
offset dimension and the equivalent of 64 ms along the second
pseudo-time axis (Fig. 4). At the inference stage, we resize
the predicted models back into the original offset-depth
dimensions.

Exploring the compression ratio of the target model,
we notice that size reduction by a factor of 4 is not opti-
mal and twice larger model target would lead to a better
reconstruction of the initial model of the subsurface (Fig. 5).
However, we use the size reduction of 4 throughout the work

Fig. 5. Predicted local subsurface models from synthetic dataset depending
on the compression ratio of the target model. The number in black quantifies
the normalized root-mean-squared match (the higher the better). The optimal
configuration suggests the compression of the target subsurface model as 1:2,
but we use the 1:4 ratio to represent a nonoptimal experiment configuration.

since this represents a conservative scenario with a nonoptimal
network configuration. Note that high-wavenumber details did
not emerge into the predicted subsurface model regardless of
spatial sampling. This implies that the dimensions of the out-
put do not exclusively determine the features that are present
predicted local subsurface model. Thus, the primary factors
contributing to the low-resolution subsurface prediction are
the intentionally restricted output size of the predicted subsur-
face as well as the insufficient waveform data to accurately
describe the 2-D subsurface from the physics point of view
(single shot gather). Another reason is the selected architecture
of the model decoder. However, increasing the architecture
complexity is associated with the broad search space and
the optimal architectural study falls out of the scope of this
work. The high-resolution details are also sacrificed for sake
of generalization since the inference on the training dataset
delivers a more accurate reconstruction of the local subsurface.

For the training dataset, we generated 3072 synthetic shot
gathers by modeling three shots in each of the 1024 initializa-
tions of random velocity models. The final dataset was further
split into training, validation, and testing partitions of 2765,
154, and 153 samples, respectively.

To compensate for the ambiguity caused by random weight
initialization [66], we spawn an ensemble of ten identical
networks initialized from different random seeds and aver-
age their predictions. The training strategy for each net-
work includes 81 epochs with a batch size of 4, guided
by an Adam optimizer [89] with variable learning rates.
In particular, we utilize the one-cycle learning rate sched-
ule by Smith and Topin [70] with the learning rate bounds
of 10−5 and 10−3 (Fig. 6).

B. Marmousi II Benchmark Model

The Marmousi II model [59] is a standard benchmark for
inversion and imaging algorithms. We use the original model
as a geological proxy which we tailor to match the geometry
of the field data experiment, thus distancing from the original
benchmark configurations. We modify the model by cropping
its dimensions and rescaling velocities within the boundary
conditions used for the generation of the training dataset
(Fig. 12). In particular, we reduce the maximum velocity in the
model to 4 km/s in order to meet the model bounds introduced
earlier for the generation of the synthetic dataset. The compu-
tational domain is discretized onto a regular mesh with 25-m
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Fig. 6. (Left) Training and validation loss curves, (Center) weights of respective losses, and (Right) learning rate schedule. A larger weight for a certain
loss term indicates higher confidence associated with the task (lower uncertainty).

spacing, measuring 152 × 600 model points. This is equiva-
lent to the velocity model of 3.8 km × 15 km along with depth
and offset axes, respectively. However, we limit the model
width for plotting by 12 km to focus on the area in the vicinity
of available field data well log at 10.4 km and to exclude the
computational extension. We place 128 sources every 200 m
along the offset dimension, from 1.125 to 13.825 km. The
marine streamer is about 8 km long and the first offset used in
the inversion is 175 m. In this setup, we record the data using
324 hydrophones evenly spaced at 25 m along the streamer.
For simplification purposes, we ignore the variable depth of
the Broadseis survey system and approximate it by placing the
streamer line at a depth of 50 m below the free surface.

1) Contributions of Loss Terms: In MTL, we seek to opti-
mize the distribution of weights in the layers of the network,
which minimizes several loss terms at the same time. To under-
stand the contribution of each loss term, we gradually add loss
terms one after the other to training and plot the predicted
data (Fig. 7). There, we compare the synthetic data reference
against predicted LF data (top row) and its subset matching
the UF range (bottom row) inferred by several network con-
figurations.

Experimental setups described here are based on two net-
work architectures as well as the increasing complexity of the
loss formulation. The baseline architecture is the UNet [90],
which is a common choice in numerous applications dedicated
to image translation and segmentation. Specifically, our imple-
mentation follows the original paper and features [32, 64, 128,
256, 512] convolutional kernels in the layers of the downwind
branch and the reversed order in the symmetric upwind branch.

To construct an inference reference, we set the UNet to
directly predict LF data from the input HF data (UNet L)
avoiding the search for optimal hyperparameters. All other
configurations are based on a multicolumn network layout,
which shares the prefix “MTL.” The first setup, given by a
multicolumn encoder, aims to directly reconstruct one target,
which is LF data (L). The dynamic loss weighting is imple-
mented in the remaining configurations where the objective
function for training combines more than one term. The first
objective is to fit the data loss together with the correlation
loss term (LC). The last experimental setup involves adding

Fig. 7. LF data (<5 Hz, first row) predicted for a single synthetic shot gather
by UNet and multiscale network configurations. The same data after low-pass
filtering <3 Hz (second row). Subscripts indicate the objectives of training:
LF data (L), previous with correlation loss term (LC), and previous with the
local subsurface model (LCM). The standard deviation of predictions by an
ensemble of ten network initializations (third row).

the subsurface model loss term (LCM), thus using all terms
from (1).

Analyzing the inference results for a single CSG (Fig. 7),
we observe that the generic UNet manages to recover strong
events in the data, while it fails at weak events, such as
reflections. The multicolumn architecture with a single data
target (L) shows promise in recovering weak events. Adding
the trace-wise correlation term (LC) boosts the amplitudes
of predicted data at later times. An intuition behind using
the Pearson coefficient as a loss term is similar to the one
for the cosine similarity, where the target for optimization
is the angle between two vectors rather than their amplitude
matching. Finally, by adding the local subsurface as a target,
we guide the training toward a unified solution that would
accommodate a weak connection between waveforms and the
subsurface (LCM). Fitting the multiobjective loss is a more
challenging task with more variables involved. However, the
LF data predicted in this way appear to be more accurate
than the one predicted without model and correlation loss
terms (Table I).
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Fig. 8. Pearson correlation coefficient for the set of 80 shots used for FWI
on synthetic data. The horizontal dashed line indicates the perfect correlation
score. The dashed line in correlation plots indicates the performance of UNet.
Abbreviations for experiments are explained in Fig. 7.

TABLE I

EVALUATION METRICS FOR SELECTED NETWORK CONFIGURATIONS.
MEAN R2 SCORE, SSIM, AND PEARSON COEFFICIENT MEASURED

FOR 80 EXTRAPOLATED SHOTS (<3 HZ) USED FOR FWI IN
MARMOUSI II MODEL. ABBREVIATIONS FOR EXPERIMENTS

ARE EXPLAINED IN FIG. 7

For each configuration, we also plot the trace-wise Pearson
correlation coefficient (Fig. 8). The intention is to understand
how the proposed architecture and loss terms affect the linear
correlation between predicted and true data when compared to
the baseline configuration. Specifically, we compute the mean
and standard deviation of low-passed below 3-Hz predictions
for 80 shot gathers used later for the inversion in the Marmousi
II model. Then, we compare these quantities with the mean
trace-wise Pearson coefficient computed for predictions by
UNet (dashed line). There is a minimum value in the near
offset shared among all experiments, which is attributed to
the weak-amplitude segment in the data where low-amplitude
signals are poorly reconstructed. Meanwhile, the proposed
approach (LCM) shows the improvement of linear correlation
with the target data compared to baseline UNet.

Table I shows the mean metric scores of inference on the
same shots of synthetic data mentioned earlier. Due to the
mild overlap between target and input data, the data <5 Hz
predicted by all network setups show a nearly perfect cor-
relation with the true data, not shown in the table. Lower
frequencies, in turn, have a higher value for early iterations
of FWI, so we focus attention on the subset constructed by
low-pass filtering with a corner frequency of 3 Hz. Such a
filter effectively represents the complete target range <4 Hz
due to its trailing slope. Aside from the Pearson coefficient,
we use a set of common metrics to compare the performance of
the algorithms. The R2 metric [91] measures how much more
variance the model describes compared to the mean of the
dataset. The structural similarity index measure (SSIM) quan-
tifies the perceptual similarity between two images (see [92]).
Unlike other metrics reported here, it depends on the window
size where evaluation happens. We set it to be 0.1 from the
minimum dimension of the data or 35 pixels along each side
to include the main structural variation. However, we found

Fig. 9. Interval comparison of true and predicted LF data after low-pass
filtering with corner frequencies 3, 4, and 5 Hz and AGC.

that this metric is also not sensitive to mild variations in the
predicted data regardless of the window size.

All experiments with multicolumn architecture show an
improved fit in the UF range compared to the fit obtained
with the UNet application. Otherwise, reported metrics indi-
cate similar performance among all formulations of multitask
objectives. Direct recovery of the data and model (LM) was
not successful without using the correlation loss term. In such
cases, the training fell into the local minimum equivalent to
recovering the subsurface model only, giving up the data fitting
term. Despite marginal differences in performance of data only
(L) and data with trace-wise correlation (LC) objectives, the
correlation term appears to be crucial for simultaneously fitting
data and model objectives (LCM). Together with the recovered
subsurface model, the predicted LF data seem sufficient to
guide FWI to a better minimum.

2) Inference on Synthetic Data: The trained MTL neural
network accepts a band-limited shot gather, HF, >4 Hz,
as input and produces two outputs—LF data, LFp, <5 Hz,
and smooth local subsurface model Mp. Numerically, this
is equivalent to translating the input volume dimension of
[1, 324, 376] into [1, 324, 376] and [1, 81, 94].

The first output of the model is LF data. Weak amplitudes of
the predicted signals at later times make it difficult to evaluate
the presence of signals there. We apply an AGC to several
low-pass subsets of predicted synthetic data to visualize how
the complexity of extrapolation increases at lower frequencies
(Fig. 9). As can be seen, the reconstruction is more accurate at
higher frequencies since we intentionally introduce the overlap
window between 4 and 5 Hz to recover the amplitudes of the
predicted data. The predicted data below 3 Hz match the target
in shallow parts, while the signal gets scattered at later times.

The second output is the local subsurface model. The net-
work learns a direct mapping between input data and the geo-
logical structure underlying the shot location. To understand
the data-to-model translation, we upscale the predicted veloc-
ity model by a factor of 4 (the ratio is built into the network
design) and overlap it with the input data [Fig. 10(a) and (b)].



OVCHARENKO et al.: MTL FOR LOW-FREQUENCY EXTRAPOLATION AND ELASTIC MODEL BUILDING 4510717

Fig. 10. Local subsurface velocity models predicted by the same trained
network and overlapped with (Top) respective input synthetic and (Bottom)
field data. The network relies on water bottom reflections to recover the depth
of the seafloor as well as translates deeper reflections into velocity anomalies.
The map of shot overlaps (Bottom) quantifies the amount of averaging when
merging individual predictions of local subsurface.

Given that the synthetic dataset used for training was generated
assuming a flat water bottom at variable depth, this approxi-
mation of variable-depth marine subsurface geometry appears
to be sufficient for the network to match strong water bottom
reflections in the data with the depth of the underlying seafloor.
Also, predicted velocity anomalies seem to be spatially limited
by the offset reached by the propagating signals. To improve
the spatial coverage in the predicted model, we accommodate
this observation by introducing offset-flip data augmentation at
the training stage. This effectively doubles the size of training
datasets and motivates the weight optimization to search for
flip-invariant encoder embeddings of the data.

A single CSG is not sufficient to recover the complete
2-D subsurface structure. However, it contains enough infor-
mation about the background velocity trend, water depth, and
near-offset geological structures. In particular, the limits of
resolved vertical wavenumbers should be defined by the fre-
quency band of the input data and the range of offsets covered
by the towed streamer geometry. When building a complete
initial model from a set of independent predictions we first
rescale the raw predicted models back from pseudo-time to
depth domain and then rely on averaging that should cancel out
inconsistencies and keep common features between predicted
models. Specifically, for each model offset, we sum local
subsurface predictions from all shots whose streamer extension
covers that coordinate and divide the result by the number of
shots involved [Fig. 10(c)].

3) Full-Waveform Inversion: The complete workflow for
elastic FWI initiated from predicted data is shown in Fig. 1.
First, we build an initial velocity model for inversion by
taking the weighted average of predicted local velocities
for each shot. In the synthetic experiment, the part of the
initial model not covered by the survey (before the first

source location) is a mirrored version of the reconstructed
model, while in the field data experiment, we compensate
for insufficient shot coverage in the left part of the model
by replicating the predicted model to the left from 5-km
location. The assumption of 1-D background velocity structure
in synthetic would lead to similar results. Before running FWI,
we populate the missing frequency content below 4 Hz in
the field data with those low frequencies from the predicted
data. True amplitudes of LFs were lost at the preprocessing
stage and we approximately reconstruct those from the over-
lapping range from 4 to 5 Hz between predicted and available
HF data. Specifically, we apply a bandpass filter with the
before-mentioned corner frequencies to both predicted and
observed data and find the maximum amplitude in the filtered
data. Then, we normalize the predicted data to fit the range
from −1 to 1 and multiply it by the amplitude extracted from
field data. The remaining step is to merge the predicted data
with the field data, done in the frequency domain.

The isotropic elastic Marmousi II model is parameterized by
velocities of compressional waves, Vp, shear waves, Vs , and
density, ρ (Fig. 12). We use the same empirical relations as
were used for the generation of random subsurface models for
training to construct Vs and ρ from the initial model Vp. The
motivation is to deliver a homogeneous framework between
synthetic and field experiments where these elastic parameters
are unknown. The FWI then iteratively updates the elastic
model parameters to build the final model of the subsurface.

The inversion strategy uses an L2 norm minimization of the
difference between observed and simulated data. We succes-
sively invert the low-pass filtered data with corner frequencies
from 3 to 7 Hz, making 1-Hz steps. We further regularize the
inversion of the extrapolated 3- and 4-Hz data by applying a
2-D spatial variable Gaussian filter to the gradients [93]. This
causes smooth velocity updates for the most uncertain data.
We disable this regularization for frequencies starting from
5 Hz, which inserts high-resolution details into the inverted
models. Meanwhile, a standard depth-dependent linear pre-
conditioning operator for gradients is applied at all stages of
inversion [84].

As shown in Fig. 11, conventional FWI initiated from a
linear initial model fails when data below 4 Hz are unavailable
even when velocities in shallow sediments are assumed to
be known from well logs. The resulting subsurface model
is corrupted by severe cycle-skipping artifacts indicating that
the mismatch between target and initial subsurface models
cannot be inverted by FWI. In the following, we initiate the
inversion from a predicted smooth initial velocity model and
use predicted data as the target.

The predicted initial model appears to be locally linear
(Fig. 11) as expected due to the limited amount of information
encoded in a single CSG. In other words, the predicted model
explains the water bottom reflection and background trend
at the reference log location, rather than that it reflects the
detailed structure of the subsurface. When followed by the
inversion of predicted data below 3 Hz, the shallow part of
the subsurface becomes more pronounced. The next iteration
of inverting for data filtered below 4 Hz details the complex
fault structures in the central part as well as corrects the
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Fig. 11. FWI of synthetic band-limited data for (d) frequency range 4–7 Hz, started from (a) linear initial model. Extrapolated FWI for predicted data below
(c) 3 Hz, (e) 4 Hz, and (f) 5 Hz initiated from (b) predicted initial model.

Fig. 12. Elastic FWI of 7-Hz data from a modified Marmousi II model. The
true distribution of elastic parameters Vp , Vs , and ρ is compared with their
counterparts inverted by extrapolated FWI.

high-velocity layers around the reference well log. The inver-
sion of subsequent frequency bands above 5 Hz is dominated
by HF field data and thus inserts fine details into the inverted
subsurface. Turning off Gaussian smoothing of gradients above
5 Hz is another reason for the higher resolution at later stages.

The Vp component reconstructed by the extrapolated FWI
closely follows the well log down to a depth of 3 km and then
undershoots the deep high-velocity structure. The potential
reservoir hidden in the folds of sedimentary layers in the
shallow part is clearly resolved. Reconstructed shear-wave
velocity Vs , and density ρ, also exhibit common features with
the target model but show worse results. The reason for that is
in the nature of the scattering phenomena. In an ideal illumi-
nation scenario (infinite offsets and unlimited frequency con-
tent), all three isotropic elastic parameters could be resolved
from the recorded P-waves [94]–[96]. P-waves recorded by
hydrophones are most sensitive to Vp, so this parameter is
resolved most accurately. The range of illumination angles
decreases with depth, and in addition, high frequencies decay
faster with distance. Decoupling perturbations from different
parameters becomes more challenging for deeper targets. For
these reasons, Vs and ρ are mostly resolved in the shallow
parts of the model. The training dataset incorporates noise
from a specific field dataset. Thus, the network learns to
accurately remove it, and considering the generalization of
inference for other noise types is out of the scope of this study.

C. Marine Field Data

The trained neural network that was used in the synthetic
experiments is also applied for inference on marine field data.
We bandpass each of the 85 shots used in FWI between
4 and 10 Hz to produce input records to the network.

Fig. 13. Comparison of observed and extrapolated data in frequency ranges
of a CSG from marine field data. The synthetic input data for training was
set to zero below 4 Hz.

1) Inference: The network reconstructs LF data below 5 Hz
and a model of the subsurface adjacent to the shot location and
spanning the length of the streamer (Fig. 10). The Broadseis
acquisition system used during the survey records frequency
components of the wavefield down to 2.5 Hz. Thus, there is a
shared band of frequencies below 4 Hz where we can compare
predictions and observed waveforms (Fig. 13). We see a match
of first arrivals since these are the strongest events. However,
since synthetic waves do not attenuate in our numerical for-
mulation, we observe large amplitudes in later arrivals. The
network also serves as a denoising operator, and the noise
present in the filtered data is due to leakage from higher
frequencies. Seismic noise is almost absent in the data at the
lowest frequency range for the same reason.

The contribution of the components of the multitask objec-
tive is visualized in Fig. 14. The linear correlation term
promotes reflections and surface-related multiples arriving at
later times. We identify the first water bottom multiples in
the input data (yellow arrows) by observing them in the
wavefield simulated in the initial model for FWI on field data
(Fig. 18). Adding local subsurface as a target further improves
the consistency of predictions within the ensemble of network
initializations.

We show the comparison of amplitude spectra of predicted
and ground truth data in Fig. 15. Specifically, the network
successfully infers on testing data, which was generated
using the same source signature as training data (left).
However, predicted low frequencies for the field dataset do
not accurately match the reference in the shared range from
2.5 to 4 Hz (right). The network is not trained to predict the
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Fig. 14. Same as Fig. 7 but for marine field data. True and predicted low-
frequency data (<5 Hz, first row). Same data after low-pass filtering <3 Hz
(second row). Subscripts indicate the objectives of training: LF data (L),
previous with correlation loss term (LC), previous with the local subsurface
model (LCM). The standard deviation of predictions by an ensemble of ten
network initializations (third row). Yellow arrows are pointing to the first
water-bottom multiple.

Fig. 15. Mean amplitude spectra of (Left) synthetic and (Right) field datasets,
where predicted (red line) and target (black dashed line) data are shown
together with the spectrum of input data (black solid line) which was set
to zero below 4 Hz.

noise, which is significant in this interval. This might be the
primary cause of the observed discrepancy. Other assumptions,
such as averaging the source signature for all sources for data
generation and using an elastic approximation of subsurface
properties, also contribute to the spectra mismatch for field
data.

2) Full-Waveform Inversion: FWI of the field dataset fol-
lows a similar strategy as the inversion of synthetic data.
Specifically, we use the L2 objective function between sim-
ulated and observed data and guide the optimization by an
L-BFGS algorithm [97]. The target for inversion is a blend of
extrapolated LF data and available HF data. We change the
corner frequency of low-pass filters to invert for subbands of
the data in a stage-like fashion [20]. In particular, we partition
the full band by filtering it with corner frequencies of 3, 4, 5,
6, and 7 Hz. We account for inaccuracies in the extrapolated
data below 4 Hz by Gaussian gradient smoothing at the first
two stages. We disable smoothing at later stages. The shape of
the seafloor found from the earliest reflection arrivals defines
a taper mask, disabling model updates in the water column.

The results of FWI applied to marine streamer data are
shown in Fig. 16. Inversion of the band-limited data between
4 and 7 Hz started from a 1-D velocity model with known
water bottom indicates the presence of a high-velocity layer
between 1 and 2 km depth. However, the optimization is
unable to find a consistent distribution of elastic parameters.

Since we assume a known transient layer between water and
sediments by using the shallow part of the well log extracted at
an offset of 10.5 km, this assumption appears to be insufficient
for the inversion to converge. However, adding available LF
data from 2.5 to 4 Hz helps the inversion to converge to a
better set of subsurface parameters [Fig. 16(g)].

The predicted low-wavenumber model [Fig. 16(b)] also
indicates the presence of a high-velocity anomaly in the left
part of the model, while the velocity increases gradually with
depth in the right part. A notable feature of the predicted
model is that the seafloor depth was accurately reconstructed
by training only on a set of random velocity models (Fig. 17).
FWI iterations of the predicted data at 3 [Fig. 16(e)] and 4 Hz
[Fig. 16(h)] refine the layered structure of the subsurface.
The inversion of the mixture of predicted LF data below
4 Hz with available field data spanning the frequency range
between 4 and 7 Hz further adds details to the final result of
extrapolated FWI [Fig. 16(f)].

The tomographic initial model accurately follows the veloc-
ity trend in depth (Fig. 17, right) but still causes prominent
cycle-skipping when used for inversion of the full avail-
able range >2.5 Hz of field data [Fig. 16(i)]. The search
for optimal FWI configuration for field data inversion is
out of the immediate scope of this study, but if conducted,
it would help to build a better reference model of the subsur-
face. Nevertheless, the field data inverted in such a straight-
forward way suggest the fidelity of inversion results from
extrapolated FWI.

Fig. 17 (middle) compares the observed real-world well
log recorded at 10.5 km with the predicted initial model and
the final FWI result for 7-Hz data. We find that the peaks
of high-velocity layers are shifted in this field data example.
A similar shift of the first layer with respect to the well
log was observed in [98]. A reason for that might be the
fact that we ignored anisotropy in our simulation. Vertical
transverse anisotropy would consider different velocities of
wave propagation along with horizontal and vertical directions
in such a layered model. Other reasons for overestimating
velocities deeper than 2 km are that we did not consider
the 3-D effects of the field data, nor did we incorporate
attenuation into the formulation of the numerical wave prop-
agation. Altogether, higher amplitudes of the synthetic signal
arriving at later times translate into higher velocities of deep
reflectors. Still, there is a fair match with that of the field well
log considering that no well log information was used when
building the initial velocity model and during the inversion
itself.

Fig. 17 (right) shows the comparison between the same
well log acquired in the field, the tomographic model of the
subsurface, and the final FWI result produced by inverting the
field data in the available range from 2.5 to 7 Hz starting
from the tomographic model. The respective inversion result
[Fig. 16(i)] more accurately follows the velocity trend than
the model produced by extrapolated FWI [Fig. 16(f)], indicat-
ing that the predicted by neural network background model
overestimates velocities in depth.

In our FWIs, the data match is the only objective. The
optimization thus seeks a distribution of elastic parameters in
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Fig. 16. FWI of marine streamer data initiated from (a) linear, LM; (b) predicted, PM; and (c) tomographic, TM models of the subsurface. The importance
of low frequencies in the field data is demonstrated by a comparison of inversion results for (g) broadband and (d) band-limited field data subsets started
from LM. Extrapolated FWI started from PM model for predicted LF data low-pass filtered below (e) 3 and (h) 4 Hz followed by inversion of the blended
predicted data <4 Hz and (f) available field data from 4 to 7 Hz. Similar layered structures are recovered by (f) FWI of predicted data and (i) FWI of available
broadband field data initiated from the tomographic model.

Fig. 17. Well logs of Vp velocities (black line) compared to initial model
(red line) and the FWI result of data up to 7 Hz (blue). Extrapolated FWI
initiated from the predicted initial model and LF data <4 Hz for the synthetic
experiment on (Left) Marmousi II model and (Center) field data. FWI on
the same field data initiated from available tomographic velocity model and
data >4 Hz (Right).

Fig. 18. Example interval comparison of marine streamer data and synthetic
data generated in the final velocity model inverted by FWI initiated from the
predicted initial model and LF data [Fig. 16(f)].

the subsurface such that the generated synthetic waveforms
match every wiggle in the observed seismic data. Fig. 18
compares the field records from 4- and 8-km offsets from the
coordinate origin with its synthetic counterpart simulated in
the initial and the final model inverted by elastic FWI. The
phases of the reconstructed events are in fair agreement with
field recordings, while some amplitudes remain overestimated.
Further advances are still possible regarding both modeling
and parameterization possibilities as well as FWI strategies;

however, this would extend the focus of this study and must
be addressed in future research.

V. DISCUSSION

In this study, we explore the extension of a data-driven FWI
framework to include an MTL approach, combining bandwidth
extrapolation and initial subsurface model estimation. Com-
pared to single-frequency formulations, time-domain signals
might be considered as superpositions of multiple monochro-
matic signals, each featuring its own phase and amplitude.
Thus, a 1-D configuration of seismic data would be a single
seismic trace in the time-domain and monofrequency data in
the frequency domain. The dimension of a time-domain trace
would be equal to the number of temporal samples, while the
dimension of a single-frequency slice is proportional to the
number of receivers. Adding an extra dimension to any of
those simplest data types increases the complexity of training
since optimization should search for the network weight dis-
tribution describing a search space with an extra dimension.
The fidelity of predictable wave phenomena increases due to
the growth of the input data features. Ultimately, the accu-
racy of bandwidth extrapolation should improve when adding
more data, provided that the training data set is rich and the
prediction model has sufficient learning capacity.

FWIs within the framework of our study depend on the
high-fidelity estimations of either LF data or the initial velocity
model. Reaching the required accuracy for each of these esti-
mations independently might be an ambitious task. However,
due to the inherent tradeoff between these tasks, inversions
tend to tolerate inaccuracies when fair rather than perfect
estimates of both velocity model and LF data are avail-
able. Furthermore, the composition of seismic data contributes
to the success of FWI. We simulate elastic wavefield in
marine data setup since it was shown that acoustic formu-
lation is not descriptive for converted waves [81]. We also
take surface-related multiples into account by setting the
free-surface boundary condition on the water–air interface.
Multiples encode low wavenumbers and further reduce the
middle-wavenumber gap [99], [100].
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A successful FWI implies that an initial model is sufficient
to deliver less than a half-period mismatch between observed
and calculated data. Thus, reconstructed LF data should meet
this requirement to avoid cycle skipping. A possible pitfall
scenario occurs when both the initial low-wavenumber model
and LF data are reconstructed inaccurately but in sync. Then,
the calculated data in the inaccurate initial model would
misleadingly deliver less than a half-period mismatch with
the predicted data, but FWI would still fail. We rely on the
fidelity of the generated synthetic data for the proper network
training, meaning that we expect that given realistic training
data, the reconstructed initial velocity model and LF data will
sufficiently approximate the reality.

In our experiments, early arrivals are better estimated than
later arrivals, which leads to a better reconstruction of the
shallow subsurface. On the other hand, the reconstructed
subsurface model appears to be sufficiently accurate in-depth
where missing late arrivals in the predicted data do not produce
model updates during FWI. We also use stronger gradient
smoothing for the predicted LF data, assuming that it might
be inaccurate.

In this work, we extrapolated LF content for CSGs recorded
in a real marine survey. Due to using the band-limited source
wavelet for the generation of training data, we reconstructed
the LF data in the range from 2 to 4 Hz. The predicted
low-wavenumber initial aimed to compensate for the UFs
missing in the predicted data. In addition, our test applications
further confirm the importance of self-weighing of loss terms
in an MTL formulation. In particular, the auxiliary correlation
loss term based on the Pearson coefficient further helps the
recovery of reflections in predicted data.

VI. CONCLUSION

We developed a deep learning approach to jointly recon-
struct the LF content of an entire CSG together with the
respective local subsurface model. The proposed MTL objec-
tive with automatic weight balancing aims to simultaneously
optimize for the data, initial model, and trace-wise data
correlation loss terms. The data extrapolation capability of
the network is limited by the frequency bandwidth of the
source wavelet used for training data generation. The predicted
smooth background model compensates for potential flaws
in the predicted LF data by uplifting the lowest frequency
required to initiate the inversion. We observed that predictions
of the low-wavenumber velocity model are more consistent
and less sensitive to data composition and network adjustments
compared to the LF data predictions. Thus, the proposed
method also aims to compensate for the fragility of the pre-
dicted lowest frequencies by aiding it with a predicted initial
model and regularization.
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