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Abstract— Standard noise radars, as well as noise-type radars
such as quantum two-mode squeezing (QTMS) radar, are char-
acterized by a covariance matrix with a very specific structure.
This matrix has four independent parameters: the amplitude of
the received signal, the amplitude of the internal signal used
for matched filtering, the correlation between the two signals,
and the relative phase between them. In this article, we derive
estimators for these four parameters using two techniques. The
first is based on minimizing the Frobenius norm between the
structured covariance matrix and the sample covariance matrix;
the second is maximum likelihood (ML) parameter estimation.
The two techniques yield the same estimators. We then give
probability density functions (pdf’s) for all four estimators.
Because some of these pdf’s are quite complicated, we also
provide approximate pdf’s. Finally, we apply our results to
the problem of target detection and derive expressions for the
receiver operating characteristic (ROC) curves of two different
noise radar detectors. In summary, our work gives a broad
overview of the basic statistical behavior of noise-type radars.

Index Terms— Covariance matrix, noise radar, parameter esti-
mation, quantum radar, quantum two-mode squeezing (QTMS)
radar.

I. INTRODUCTION

THE very name noise radar suggests the nature of its
transmit signal: noise [1]–[9]. This sets it apart from other

types of radars, such as frequency-modulated continuous-wave
(FMCW) radars, whose transmit signals are deterministic.
There is no denying that FMCW radars are more popular
than noise radars. However, from a practical perspective,
the randomness of their transmit signals endows them with
desirable properties: low probability of intercept, immunity
against noise and jamming, and a “thumbtack” ambiguity
function [10], [11]. For these reasons, there has always been a
latent undercurrent of research aimed at building noise radars
[12]–[14]. In addition, there exists at least one other type of
radar whose transmit signal is also nondeterministic: quantum
two-mode squeezing (QTMS) radar, a type of quantum radar
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[15], [16]. It turns out that noise radars are closely allied with
QTMS radars [17], which links them to quantum radars more
generally. This motivates us to examine the theory of noise
radar more carefully.

Until recently, quantum radars were confined to the realm of
theory [18]–[21] except for a handful of quantum lidar exper-
iments [22]–[24]. However, in 2018, a team led by Wilson at
the Institute for Quantum Computing (University of Waterloo)
demonstrated the viability of a quantum-enhanced noise radar
at microwave frequencies [15]. This experiment was later
analyzed using more conventional radar engineering metrics,
and [16] was the first scientific publication in the world to
publish receiver operating characteristic (ROC) curves for a
quantum radar experiment. This experiment, whose leading
results were later confirmed by a similar experiment at the
Institute of Science and Technology Austria [25], showed that
microwave quantum radars can be built in the laboratory.

Although we introduced the term QTMS radar in [16] to
emphasize the vastly different technology underlying the new
quantum radar design, the term quantum-enhanced noise radar
highlights the theoretical similarities between QTMS radars
and standard noise radars. Where detection performance is
concerned, we can speak of them collectively as “noise-type
radars.” The main theoretical result that ties noise-type radars
together is that they are characterized by a covariance matrix
with a very specific structure [17]. The matrix depends on four
parameters: the amplitude (or power) of the received signal,
the amplitude of the internal signal used for matched filtering,
the correlation coefficient between the two signals, and the
relative phase between the signals.

In previous work, we highlighted the importance of the
correlation coefficient for target detection and investigated a
method for estimating the correlation coefficient [26]. This
method was based on minimizing the Frobenius norm between
the structured covariance matrix and the sample covariance
matrix, the latter being calculated directly from the mea-
surement data. The minimization was performed numerically,
which is not practical in many radar systems. In this article,
we show that this minimization can be done analytically, which
greatly increases the applicability of our results to real-world
systems. We exhibit the exact, closed form estimate not only
for the correlation coefficient, but for all four parameters in the
noise radar covariance matrix. We also show that, by a curious
coincidence, the same estimates are obtained via maximum
likelihood (ML) parameter estimation. Our work, builds on
[17], in which we derived the theoretical structure of the noise
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radar covariance without showing how the parameters of the
matrix can be calculated from experimental data.

The remainder of this article is organized as follows.
In Section II, we introduce the covariance matrix that char-
acterizes noise-type radars. In Section III, we give estimators
for the four parameters in the covariance matrix. (The relevant
proofs, however, have been relegated to the Appendixes.) In
Section IV, we characterize the probability distributions of the
estimators. Since some of these distributions are complicated,
we also give approximations. In Section V, we use these
results to analyze the detection performance of noise-type
radars. Section VI concludes this article.

II. COVARIANCE MATRIX FOR NOISE-TYPE RADARS

In [17], we showed that, under certain conditions, noise-
type radars are completely described by a 4 × 4 covariance
matrix, which we will now describe.

It is well known that an electromagnetic signal can be
described by a pair of real-valued time series, namely, the
in-phase and quadrature voltages of the signal. A noise-type
radar, in the simplest case, has two signals associated with
it (for a total of four time series): the signal received by the
radar and a signal retained within the radar as a reference
for matched filtering. We will denote by I1[n] and Q1[n] the
in-phase and quadrature voltages, respectively, of the received
signal. Similarly, let I2[n] and Q2[n] denote the in-phase and
quadrature voltages of the reference signal. We assume that
these voltages are digitized, so these are discrete time series
indexed by n.

Note that the transmitted signal is not explicitly modeled
here. All knowledge of the transmitted signal is encoded in
the reference signal. The latter may be thought of as a “copy”
of the transmitted signal, though it is important to note that
this copy is necessarily imperfect due to uncorrelated thermal
noise added to both channels.

We now make the assumption that justifies the name “noise
radar”: we assume that the transmitted and reference signals
are stationary Gaussian white noise processes with zero mean.
We also make the assumption that any other source of noise,
such as system noise or atmospheric noise, may be modeled
as additive white Gaussian noise. (Note that quantum noise
is known to be Gaussian.) Consequently, the received signal
is also a stationary Gaussian white noise process. In short,
the four time series I1[n], Q1[n], I2[n], and Q2[n] are real-
valued, zero-mean, stationary Gaussian white noise processes;
this allows us to simplify the notation by dropping the index n.
Finally, we assume that these four processes are pairwise
independent unless the time lag between the voltages is zero.

Under the abovementioned conditions, the received and
reference signals of a QTMS radar are fully specified by the
4 × 4 covariance matrix E[xxT], where x = [I1, Q1, I2, Q2]T.
In [17], we proved that this matrix has a very specific structure.
In block matrix format, we may write it as

�(σ1, σ2, ρ, ς) =
�

σ 2
1 12 ρσ1σ2R�(ς)

ρσ1σ2R�(ς)T σ 2
2 12

�
(1)

where σ 2
1 and σ 2

2 are the received and reference signal powers,
respectively, while ρ is a correlation coefficient, ς is the phase

shift between the received and reference signals, 12 is the
2 × 2 identity matrix, and R�(ς) is the reflection matrix

R�(ς) =
�

cos ς sin ς
sin ς − cos ς

�
. (2)

Standard noise radars are described by a matrix of the same
overall form, but with the rotation matrix

R(ς) =
�

cos ς sin ς
− sin ς cos ς

�
(3)

taking the place of the reflection matrix. The results in this
article hold for both standard noise radars and QTMS radars
after appropriate choices of sign as detailed in the following.
We assume σ1 ≥ 0, σ2 ≥ 0, and ρ ≥ 0, because their signs
can always be accounted for by an appropriate choice of ς.

The contribution of this article is the derivation of estimators
for σ1, σ2, ρ, and ς, as well as the presentation of results
related to these estimators.

III. ESTIMATING THE PARAMETERS OF

THE COVARIANCE MATRIX

We will estimate the four parameters in (1) via two methods.
The first is a “naive” method, which we might term the
minimum Frobenius norm (MFN) method. The second is ML
estimation.

Both methods start with the sample covariance matrix

Ŝ = 1

N

N�
n=1

x[n]x[n]T (4)

calculated from N instances of the random vector x—that is, N
samples each from the in-phase and quadrature voltages of the
received and reference signals. In radar terminology, we say
that we integrate over N samples of the radar’s measurement
data. Note that, as a consequence of the assumptions outlined
in Section II, each sample is independent and identically
distributed.

In the following, we will use an overline to denote the
sample mean over N samples. For example, Ŝ = xxT.

A. MFN Estimation

The MFN method consists of minimizing the Frobenius
norm between the structured covariance matrix (1) and the
sample covariance matrix (4). More concretely, we perform
the minimization

min
σ1,σ2,ρ,ς

���(σ1, σ2, ρ, ς) − Ŝ
��

F
(5)

subject to the constraints 0 ≤ σ1, 0 ≤ σ2, and 0 ≤ ρ ≤ 1. (The
subscript F denotes the Frobenius norm.) The MFN estimators
σ̂1, σ̂2, ρ̂, and ς̂ are the arguments that minimize (5).

In [26], we obtained estimates of ρ by performing the min-
imization (5) numerically. This procedure is computationally
expensive and would be impractical in many radar setups.
The results in this article allow us to do away with numerical
optimization altogether.
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B. ML Estimation

The probability density function (pdf) for a 4-D multivariate
normal distribution with zero mean and covariance matrix � is

f (x|�) = exp
�− 1

2 xT�−1x
�

�
(2π)4|�| (6)

where |�| is the determinant of �. When considered as
a function of � instead of x, (6) becomes the likelihood
function. The ML estimators arise from maximizing the like-
lihood function or, equivalently, the log-likelihood function.
For N independently drawn samples x[1], . . . , x[N], the log-
likelihood is

�(�) = − N

2

	
ln |�| + 4 ln(2π) − xT�−1x



. (7)

C. Parameter Estimates

One of the main results of this article, and perhaps the most
surprising of them, is that the MFN and ML methods lead to
the same estimators. We will relegate the actual derivations
of the estimators to the Appendixes. Here, we present only
the final result, namely, the estimators themselves as obtained
from both methods.

To express the estimators in a compact form, we introduce
the following auxiliary quantities:

P1 = I 2
1 + Q2

1 (8a)

P2 = I 2
2 + Q2

2 (8b)

Rc = I1 I2 ∓ Q1 Q2 (8c)

Rs = I1 Q2 ± I2 Q1. (8d)

For Rc and Rs , the upper signs apply when the reflection
matrix R�(ς) is used in (1) (QTMS radar); the lower signs
apply when the rotation matrix R(ς) is used (standard noise
radar). Note that P̄1, P̄2, R̄c, and R̄s are merely sums of the
appropriate entries in the sample covariance matrix Ŝ.

In terms of the auxiliary quantities (8a)–(8d), the squared
Frobenius distance between �(σ1, σ2, ρ, ς) and Ŝ is

���(σ1, σ2, ρ, ς) − Ŝ
��2

F

= 2
�
σ 4

1 + 2ρ2σ 2
1 σ 2

2 + σ 4
2

�− 2
�

P̄1σ
2
1 + P̄2σ

2
2

�
− 4ρσ1σ2(R̄c cos ς + R̄s sin ς) + �Ŝ�2

F . (9)

Note that �Ŝ�2
F is a constant that does not depend on any of

the four parameters. The log-likelihood function is

�(σ1, σ2, ρ, ς)

= −2N ln(2π)−N ln
�
σ 2

1 σ 2
2 (1 − ρ2)

�
− N

2(1 − ρ2)


P̄1

σ 2
1

+ P̄2

σ 2
2

− 2ρ(R̄c cos ς + R̄s sin ς)

σ1σ2

�
. (10)

These are the objective functions that must be optimized to
obtain the MFN and ML estimators, respectively.

Proposition 1: In terms of (8a)–(8d), the MFN and ML
estimators for the four parameters in (1) are

σ̂1 =
�

P̄1

2
(11a)

σ̂2 =
�

P̄2

2
(11b)

ρ̂ =
�

R̄2
c + R̄2

s

P̄1 P̄2
(11c)

ς̂ = atan2(R̄s , R̄c) (11d)

where atan2(y, x) is the two-argument arctangent.

Proof: See Appendix A for a proof that these are the
MFN estimators, and Appendix B for a proof that these same
estimators are also the ML estimators.

IV. PROBABILITY DISTRIBUTIONS FOR

THE PARAMETER ESTIMATES

In this section, we give expressions for the pdf’s of the
estimators (11a)–(11d). Of these, the most important is perhaps
the one for ρ̂ because of its importance for target detection,
a connection which we will explore in Section V. However,
for completeness, we give pdf’s for all four estimators.

For ρ̂ and ς̂, the exact pdf’s are quite complicated,
so we will give simple approximations to these distributions.
To quantify the goodness of these approximations, we will
make use of a metric on probability distributions known
as the total variation distance (TVD). Informally speaking,
the TVD between two probability distributions is defined as
the maximum possible difference between the probabilities
assigned to the same event by the two distributions. It always
lies in the interval [0, 1]. According to [27, Lemma 2.1], when
the distributions are described by pdf’s, the TVD is

TVD = 1

2

�
| f (x) − g(x)| dx (12)

where f (x) and g(x) are the pdf’s of the two distributions,
and the integral is taken over the whole domain of the pdf’s.
Apart from furnishing us with a concrete formula for the TVD,
this expression gives us a simpler interpretation of the TVD:
it is half the integrated absolute error between the pdf’s.

A. PDFs for σ̂1 and σ̂2

The distributions of the estimated signal amplitudes σ̂1 and
σ̂2 are nothing more than rescaled versions of the chi distrib-
ution, as shown in the following proposition.

Proposition 2: The pdf of σ̂1 for x ≥ 0 is

fσ̂1(x |σ1, N) = 2N N

�(N)σ 2N
1

x2N−1 exp


− Nx2

σ 2
1

�
(13)

where �(N) denotes the gamma function. This also holds for
σ̂2 when σ1 is replaced with σ2.

Proof: Note that P̄1 consists of a sum of squares of
2N independent and identically distributed normal random
variables, namely, N instances each of I1 and Q1. Both I1 and
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Fig. 1. PDF of σ̂1 when σ1 = 1, N ∈ {25, 100, 250}.

Q1 have zero mean and standard deviation σ1, as can be seen
from (1). Thus, the rescaled random variable�

2N

σ 2
1

σ̂1 =
���� N�

n=1


i1[n]
σ1

�2

+


q1[n]
σ1

�2

(14)

being the positive square root of the sum of squares of 2N
standard normal variates, follows a chi distribution with 2N
degrees of freedom. The proposition follows upon applying
the standard change of variable formula to the pdf of the chi
distribution.

Remark: The pdf (13) may be recognized as a Nakagami
m-distribution [28] with parameters m = N and 	 = σ 2

1 .
Plots of fσ̂1(x |σ1, N) are shown in Fig. 1.

B. Exact and Approximate PDFs for ρ̂

The derivation of the pdf for the estimated correlation
coefficient ρ̂ is extremely involved. But luckily, our task has
been done for us. We exploit an intriguing connection between
noise radar and the theory of two-channel synthetic aperture
radar (SAR), in which matrices analogous to (1) appear.
(Note, however, that the matrices in two-channel SAR are
2 × 2 complex-valued matrices instead of 4 × 4 real-valued
matrices.) In two-channel SAR, the quantity analogous to ρ
is known as the coherence. An estimator for the coherence,
essentially identical to (11c), was investigated in [29]–[32].
We now quote one of their results here.

Proposition 3: When N > 2 and ρ �= 1, the pdf of ρ̂ for
0 ≤ x ≤ 1 is

fρ̂ (x |ρ, N) = 2(N − 1)(1 − ρ2)N

× x(1 − x2)N−2
2 F1(N, N; 1; ρ2 x2) (15)

where 2 F1 is the Gaussian hypergeometric function.

Proof: See [29, Sec. VI].
This expression is both numerically and analytically

unwieldy (except when ρ = 0). However, we are able to
supply an empirical pdf which approximates (15) well when
N is larger than approximately 100. In [26], we showed that
the correlation coefficients estimated using the MFN method
(albeit with a numerical minimization instead of an analytic

Fig. 2. TVD between the exact pdf of ρ̂ and the approximation described
in Proposition 4, plotted as a function of N , for ρ ∈ {0.3, 0.6, 0.9}.

one) approximately follow a Rice distribution. Recall that the
pdf of the Rice distribution is

fRice(x |α, β) = x

β2
exp


− x2 + α2

2β2

�
I0


xα

β2

�
(16)

where α and β are the parameters of the distribution, and I0 is
the modified Bessel function of the first kind of order zero
(not to be confused with the in-phase voltages I1 or I2). The
approximation derived in [26] may be summarized as follows.

Proposition 4: When N � 100, ρ̂ approximately follows a
Rice distribution with parameters:

α = ρ (17a)

β = 1 − ρ2

√
2N

. (17b)

Because this is an empirical approximation, we can
only give plausibility arguments based on numerical results.
In [26, Sec. V], we showed that this approximation is a good
one by simulating radar detection data for various values of
ρ and N and fitting Rice pdf’s to the resulting histograms.
We now build on that work by calculating the TVD TVDρ̂

between the exact pdf (15) and the Rician approximation.
Fig. 2 shows the plots of TVDρ̂ as a function of N for various
values of ρ. We see that TVDρ̂ increases with ρ and decreases
with N . At N = 100, TVDρ̂ is lower than 0.05 even for
ρ as high as 0.9. This is strong evidence that the Rician
approximation is indeed a good one when N � 100.

Remark: Although the expressions (17a) and (17b) were
empirically determined, with no basis other than simulations,
the fact that ρ̂ is approximately Rician for large N has some
theoretical grounding. The basic idea is that a Rice distribution
is the distribution of the norm of a bivariate normal random
vector whose covariance matrix is proportional to the identity.
To connect this idea to ρ̂, begin by invoking the central
limit theorem to approximate R̄c and R̄s in (11c) as normally
distributed random variables. Next, replace P̄1 and P̄2 with the
expected values E[P1] = 2σ 2

1 and E[P2] = 2σ 2
2 , respectively.

The result, up to first order in ρ, is a Rice-distributed random
variable with α = ρ and β = 1/

√
2N . For a more detailed

development of this argument, see Proposition 10 and its proof.
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Fig. 3. PDF of ρ̂, together with the Rice distribution approximations described in Proposition 4. In (a), N = 10 and ρ ∈ {0, 0.4, 0.8}. In (b), ρ = 0.1 and
N ∈ {25, 50, 75, 100}.

In Fig. 3, we present the plots of fρ̂ (x |ρ, N) for various
values of ρ and N , together with the Rice distribution approx-
imations. In Fig. 3(a), we see that the Rice distribution is not
always a good fit, because N is small. Fig. 3(b) shows that the
fit becomes quite good as N increases; indeed, at N = 100,
there is hardly any visible difference between the exact and
approximate pdf’s.

A word of warning is appropriate here. The Rice distribution
approximation outlined in Proposition 4 must not be confused
with the Rice distribution that appears in the context of
continuous-wave (CW) radars. It is true that, when a radar
transmits a sinusoidal signal and detects using a square-
law detector, the detector output is Rice distributed; see,
e.g., [33, Ch. 4]. However, this is a completely different
case from Proposition 4. Not only is the transmit signal
totally different (sinusoidal waveform versus Gaussian noise),
Proposition 4 describes an approximation, whereas the Rice
distribution for CW radars is exact. In the experience of the
authors, the coincidental appearance of the Rice distribution
in these two different contexts has led to confusion. There-
fore, we emphasize that these two applications of the Rice
distribution are unrelated.

C. Exact and Approximate PDFs for ς̂

Finally, we give the pdf of the estimated phase ς̂. Again,
we are able to take over a result from two-channel SAR.

Proposition 5: The pdf of ς̂ is

fς̂ (θ |ρ, ς, N) = �
�

N + 1
2

�
(1 − ρ2)N ξ

2
√

π�(N)(1 − ξ2)N+ 1
2

+ (1 − ρ2)N

2π
2 F1

�
N, 1; 1

2 ; ξ2
�

(18)

where

ξ ≡ ρ cos(θ − ς). (19)
Proof: See [34, Sec. 2]. Alternative forms of the pdf are

given in [35, eq. (12)] and [36, eq. (10)].

This expression is, if anything, even more unwieldy
than (15). However, after plotting the pdf (18) for many values
of ρ and N , we observed that it always has the same basic
shape as the von Mises distribution. This is one of the most
basic probability distributions in circular statistics and can be
thought of as the circular analog of the normal distribution.
Its pdf is

f (θ |μ, κ) = eκ cos(θ−μ)

2π I0(κ)
(20)

where μ and κ are the parameters of the distribution. They
correspond to the parameters of the normal distribution in the
following sense: when κ → ∞, the von Mises distribution
approaches the normal distribution with mean μ and variance
1/κ (on an appropriate interval of length 2π). Thus, μ is the
mean, and κ is a “concentration parameter”: the higher the κ ,
the narrower the distribution.

In fitting the von Mises distribution to (18), choosing μ is
simple enough: since (18) is symmetric about ς, we simply
choose μ = ς. The concentration parameter κ , however, is less
straightforward to choose. To fit a value for κ , we begin by
calculating the so-called “mean resultant length”

R =
����
� π

−π

fς̂ (θ |ρ, ς, N)e jθ dθ

����. (21)

In [37], an approximation of the parameter κ is given in
terms of the mean resultant length by

κ ≈ R(2 − R2)

1 − R2
. (22)

In Fig. 4, we use (21) and (22) to plot κ as a function
of Nρ2. The reason why we plot κ against Nρ2 is that κ
appears to depend on ρ and N only through this combination.
This is not evident from (18), but, nevertheless, this behavior
holds good for a wide variety of values for ρ and N . From
this plot, we find that when Nρ2 ≤ 1, κ ≈ 2

�
Nρ2; otherwise,

κ ≈ 2 Nρ2. These approximations are also shown in Fig. 4.
This leads to the following proposition.
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Fig. 4. Concentration parameter κ from the von Mises distribution when
fit to the distribution of ς̂, plotted as a function of Nρ2. Also plotted are
approximations to the best-fit κ .

Fig. 5. TVD between the exact pdf of ς̂ and the approximation described
in Proposition 6, plotted as a function of N , for ρ ∈ {0.05, 0.1, 0.15, 0.2}.

Proposition 6: The estimator ς̂ approximately follows a
von Mises distribution with parameters:

μ = ς (23a)

κ =
�

2
�

Nρ2, Nρ2 ≤ 1

2 Nρ2, Nρ2 > 1.
(23b)

To show the plausibility of this empirical result, we again
turn to the TVD. Fig. 5 shows the plots of TVDς̂ as a function
of N for various values of ρ. (Unfortunately, numerical
instabilities prevented us from producing plots when ρ is
large, but we expect the behavior to be largely the same.)
Unlike TVDρ̂ , TVDς̂ does not appear to decay fully to 0 as N
increases. However, an inspection of the vertical axis in Fig. 5
shows that TVDς̂ is small for all values of N . There are peaks
corresponding to Nρ2 = 1, which may perhaps be expected:
this point marks the transition between the square-root and
linear regimes in Fig. 4. We conclude that Proposition 6 is
well substantiated by numerical evidence.

Fig. 6 shows the plots of fς̂ (θ |ρ, 0, N) for various values of
ρ and N , as well as the corresponding von Mises distribution
approximations. (We show only the case ς = 0, because

Fig. 6. PDF of ς̂, together with the von Mises distribution approxima-
tion described in Proposition 6. In (a), N = 10 and ρ ∈ {0, 0.2, 0.4}.
In (b), ρ = 0.1 and N ∈ {25, 50, 250}. For all cases, ς = 0.

the shape of the plots remains the same for any value of ς;
only the location of the peak changes.) In all cases, the exact
distribution is well approximated by a von Mises distribution.

V. TARGET DETECTION AND THE

CORRELATION COEFFICIENT

In this section, we apply the preceding results to the analysis
of detection performance for noise-type radars. Of the four
parameters that appear in (1), the correlation coefficient ρ
is the most important for target detection. In the absence of
clutter, the presence or absence of a target can be reduced to
a hypothesis test on ρ

H0 : ρ = 0, Target absent

H1 : ρ > 0, Target present. (24)

The reason for this is as follows. If there exists a correlation
between the reference and received signals, there must be a
target to reflect the transmitted signal to the receiver. If there
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were no target, the only signal received by the radar would
be uncorrelated background noise. Now, it is obvious from
the form of (1) that any correlation between signals can only
occur when ρ > 0. This explains the form of the hypothesis
test (24).

A. GLR Test

One of the best-known methods for hypothesis testing
is the generalized likelihood ratio (GLR) test. This entails
maximizing the likelihood function under the two hypotheses.
In previous work, we considered the case where the values of
the nuisance parameters σ1, σ2, and ς were known [38]. In this
article, since we have ML estimates for those parameters,
we need not make the same assumption. In fact, calculating
the GLR test statistic—or the GLR detector—is a simple task,
since we have the ML parameters.

Unlike the complicated GLR detector derived in [38] under
the assumption that σ1 = σ2 = 1 and ς = 0, the GLR detector
takes on a relatively simple form when all the parameters are
unknown. In fact, it is equivalent to ρ̂ itself, as we will now
prove.

Proposition 7: The GLR test is equivalent to using ρ̂ as a
test statistic.

Proof: The GLR test statistic for the hypotheses (24) may
be written as a difference of log-likelihoods

DGLR = −2[�(σ̂1, σ̂2, 0, ς̂) − �(σ̂1, σ̂2, ρ̂, ς̂)]. (25)

Notice that the same estimators appear in both terms. This
is permissible, because the ML estimates σ̂1 and σ̂2 are the
same under both hypotheses in (24). (The likelihood function
does not depend on ς when ρ = 0, so it does not matter what
value of ς is substituted.) See Appendix B for details.

Substituting (11a)–(11d) into (7), we obtain

DGLR = 2N ln


P̄1 P̄2

P̄1 P̄2 − R̄2
c − R̄2

s

�
= −2N ln(1 − ρ̂2). (26)

This is a strictly increasing function of ρ̂. Since applying
a strictly increasing function to a test statistic is equivalent to
reparameterizing the decision threshold, the test itself does not
change. The proposition follows.

The gold standard for evaluating radar detection perfor-
mance is the ROC curve, which plots the probability of
detection pd against the probability of false alarm pfa. In the
case where ρ̂ is used as a detector, obtaining the exact ROC
curve requires an integration of (15), which is extremely
difficult. However, with the help of Proposition 4, we can
derive a closed-form approximation of the ROC curve.

Proposition 8: When N � 100, the ROC curve for the ρ̂
detector is

pd(pfa|ρ, N) = Q1

⎛
⎝ρ

√
2N

1 − ρ2
,

�
2N

�
1 − p1/(N−1)

fa

�
1 − ρ2

⎞
⎠ (27)

where Q1(·, ·) is the Marcum Q-function of order 1 (not to
be confused with the quadrature voltage Q1).

Proof: In the case where ρ = 0, the hypergeometric
function in (15) drops out, and it is possible to integrate the
expression directly, yielding the cumulative density function
(CDF)

Fρ̂ (x |0, N) = 1 − (1 − x2)N−1. (28)

For a given detection threshold T , the probability of false
alarm is the probability that ρ̂ > T given that ρ = 0. This is
given by

pfa(T ) = 1 − Fρ̂ (x |0, N) = (1 − T 2)N−1. (29)

Inverting this, we obtain

T =
�

1 − p1/(N−1)
fa . (30)

Because ρ̂ ≥ 0, we retain only the positive square root.
To obtain the probability of detection, we make use of the

Rician approximation described in Proposition 4. The CDF of
the Rice distribution is

FRice(x |α, β) = 1 − Q1


α

β
,

x

β

�
. (31)

Substituting (17a) and (17b) yields

F(x |ρ, N) = 1 − Q1

�
ρ
√

2N

1 − ρ2
,

x
√

2N

1 − ρ2

�
. (32)

The probability of detection is

pd(T ) = 1 − F(T |ρ, N) (33)

the proposition follows upon substituting (30).
Remark: In [26], a slightly different expression for the ROC

curve was derived

pd(pfa|ρ, N) = Q1

�
ρ
√

2N

1 − ρ2
,

�−2 ln pfa

1 − ρ2

�
. (34)

This form arises from using the Rician approximation to
calculate both pd and pfa. In the abovementioned proposition,
we have replaced the latter with the exact value of pfa. There
is, however, not much difference between the two for large N .
The reader may notice a curious connection between (29), the
appearance of ln pfa in (34), and the well-known represen-
tation of the exponential function as a limit, ex = limN→∞
(1 + x/N)N .

Fig. 7 shows ROC curves for the ρ̂ detector together
with corresponding approximations obtained using (27). In all
cases, the approximation gives a fair idea of the behavior of
the exact ROC curve. But, even at N = 50—half the stated
value of N = 100 for the validity of the approximation—the
approximate curve is visually indistinguishable from the exact
curve.

B. Target Detection and MFN Estimation

Dawood and Narayanan [4] proposed and analyzed a design
for a noise radar receiver, which, in effect, calculates the
detector

DDN = N

4

�
R̄2

c + R̄2
s . (35)
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Fig. 7. ROC curves for ρ̂, together with approximations calculated using (27). In (a), N = 10 and ρ ∈ {0.2, 0.4, 0.6, 0.8}. In (b), ρ = 0.2 and
N ∈ {10, 50, 100, 200}.

Comparing this with (11c), the connection between DDN

and ρ̂ is obvious. It bears a similar relation to ρ̂ as covariance
does to correlation, one being a normalized form of the other.

The main motivation for DDN is that it arises naturally from
performing matched filtering on the complex-valued signal
I1[n] + j Q1[n] using the reference signal I2[n] + j Q2[n].
However, it is interesting to note that DDN can also be
motivated using the MFN approach outlined in Section III-A.
One way is to calculate the norm of the difference between (1)
under the two hypotheses (24)

��(σ1, σ2, 0, ς) − �(σ1, σ2, ρ, ς)�F = 2ρσ1σ2. (36)

Substituting the MFN parameter estimates (11a)–(11c)
yields (R̄2

c + R̄2
s )

1/2 = 4DDN/N . The factor of 4/N , of course,
does not affect the performance of the detector in any way.

Another way to see the connection between DDN and MFN
parameter estimation is inspired by the GLR test. Instead of
calculating the difference between log-likelihoods, we cal-
culate the difference between the squares of the minimized
Frobenius norms

min
���(σ1, σ2, 0, ς) − Ŝ

��2

F
− min

���(σ1, σ2, ρ, ς) − Ŝ
��2

F

= R̄2
c + R̄2

s . (37)

The second line follows from (53) and (55) in Appendix A.
This can be interpreted as the (squared) excess error that
accrues from modeling the radar measurement data using the
diagonal covariance matrix �(σ1, σ2, 0, ς) as opposed to the
more general form �(σ1, σ2, ρ, ς). If the excess error is small,
then the data is well described by a diagonal covariance matrix,
and the target is probably absent, while the opposite is true if
the excess error is large. When considered as a detector, this
excess error is equivalent to DDN.

For completeness, we quote the expressions for the pdf and
CDF of DDN that were derived by Dawood and Narayanan.

Proposition 9: The pdf of DDN for x ≥ 0 is

fDN(x |σ1, σ2, ρ, N)

= 8x̃ N

σ1σ2(1 − ρ2)�(N)
KN−1


2x̃

1 − ρ2

�
I0


2ρ x̃

1 − ρ2

�
(38)

where x̃ ≡ 2x/(σ1σ2), and KN−1 is the modified Bessel
function of the second kind of order N − 1. The CDF is

FDN(x |σ1, σ2, ρ, N)

= 1 − 2x̃ N

�(N)

∞�
m=0

ρm KN+m


2x̃

1 − ρ2

�
Im


2ρ x̃

1 − ρ2

�
. (39)

Proof: See [4, Sec. V].
Similar to (15) and (18), these expressions are rather cum-

bersome to work with. In the spirit of the approximations
given in Propositions 4 and 6, we now derive an approximate
expression for the distribution of DDN. This time, however,
we are able to supply a proof of the proposition.

Proposition 10: In the limit N → ∞ and to first order in ρ,
DDN follows a Rice distribution with parameters:

α = N

2
ρσ1σ2 (40a)

β =
�

N

8
σ1σ2. (40b)

Proof: According to the central limit theorem, the random
vector [R̄c, R̄s ]T follows a bivariate normal distribution when
N → ∞:�

R̄c

R̄s

�
∼ N

�
2ρσ1σ2 cos ς
2ρσ1σ2 sin ς

�
,

σ 2
1 σ 2

2

2N
[12 + ρ2R�(2ς)]

�
. (41)

The mean vector is obtained by simply reading off and
summing the appropriate entries in (1). The covariance matrix
can be calculated by repeatedly applying [39, eq. (13)], which
gives an expression for the expected value of the fourth-order
terms, such as E[I1 I2 Q1 Q2]. It is evident that, to first order
in ρ, the covariance matrix of [R̄c, R̄s]T is proportional to the
identity matrix.
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Fig. 8. TVD between the exact pdf of DDN and the approximation described
in Proposition 10, plotted as a function of N , for ρ ∈ {0.2, 0.4, 0.6}.

Recall that, for any θ , the Rice distribution arises from
the Euclidean norm of a bivariate normal random vector as
follows:

X ∼ N
�

α cos θ
α sin θ

�
, β212

�
�⇒ �X� ∼ Rice(α, β). (42)

Therefore, to first order in ρ, (R̄2
c + R̄2

s )
1/2 follows a Rice

distribution with parameters α = 2ρσ1σ2 and β = σ1σ2/
√

2N
when N → ∞. The proposition follows upon rescaling
(R̄2

c + R̄2
s )

1/2 by a factor of N/4.
Remark: Dawood and Narayanan [4] observe that when

ρ = 0 and N is large, DDN is Rayleigh distributed with scale
parameter σ = σ1σ2

√
N/8. The Rice distribution reduces to

the Rayleigh distribution when α = 0, so our result is in
agreement with Dawood and Narayanan’s observation.

To quantify the goodness of the approximation in Propo-
sition 10, we use the TVD as we did previously. Fig. 8
shows the plots of TVDDDN as a function of N . We see
that as N becomes large, TVDDDN decreases to a steady-state
value, which increases with ρ. Hence, as expected, the Rician
approximation becomes better when N is large, but is only
good when ρ is small. Moreover, the smaller the value of ρ,
the smaller the N required for the approximation to be a good
one.

In Fig. 9, we plot fDN(x |σ1, σ2, ρ, N) as a function of
the normalized detector output x̃ ≡ 2x/(σ1σ2). By this
normalization, we eliminate the need for separate plots in
which σ1 and σ2 are varied, and we need to only consider ρ
and N . Fig. 9 also shows the corresponding Rice distribution
approximations. Note that as ρ increases, the approximation
becomes worse and worse; conversely, as N increases, the
approximation becomes better and better.

Finally, we use the approximation in Proposition 10 to give
a closed-form approximation for the ROC curve of the DDN

detector.
Proposition 11: In the limit N → ∞ and to first order in ρ,

the ROC curve for the detector DDN is

pd(pfa|ρ, N) = Q1

	
ρ
√

2N ,
√−2 ln pfa



. (43)

Proof: When the radar target is absent (ρ = 0), the Rice
distribution reduces to the Rayleigh distribution, the CDF of

Fig. 9. PDF of DDN as a function of the normalized detector output x̃ ≡
2x/(σ1σ2), together with the Rice distribution approximation described in
Proposition 10. In (a), N = 10 and ρ ∈ {0, 0.3, 0.6}. In (b), ρ = 0.1 and
N ∈ {25, 50, 75, 100}.

which is well known. Using Proposition 10, it is easy to show
that

pfa(T ) = exp


− 4T 2

Nσ 2
1 σ 2

2

�
. (44)

The remainder of the proof is the same as that of
Proposition 8, except that we use the parameters listed in
Proposition 10.

Fig. 10 shows the ROC curve plots for the DDN detector,
together with approximations obtained from (43). We see that
the approximation is good for small values of ρ, but (43)
overestimates the performance of the detector when ρ is large.
Incidentally, Fig. 10(b) shows the value of the approximations
derived in this article: numerical instabilities prevented us from
plotting the ROC curve for ρ = 0.2, N = 200, and we were
only able to plot the approximate curve.

C. Comparison of ROC Curves for ρ̂ and DDN

It should come as no surprise that the ROC curves for ρ̂
and DDN are the same when N → ∞ and ρ � 1. To see
this, consider the ROC curve for ρ̂ in the form (34); this
is a good approximation to (27) when N is large. When
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Fig. 10. ROC curves for DDN, together with approximations calculated using (43). In (a), N = 10 and ρ ∈ {0.2, 0.4, 0.6, 0.8}. In (b), ρ = 0.2 and
N ∈ {10, 50, 100, 200}. Due to numerical instabilities, the ROC curve for ρ = 0.2, N = 200 has been omitted, and only the approximation is shown.

Fig. 11. Comparison of ROC curves for ρ̂ and DDN when N = 10 and
ρ ∈ {0.2, 0.5, 0.8}.

ρ � 1, the ρ2 terms in (34) may be ignored; the result
is exactly (43). Hence, under the stated conditions, the two
detectors are essentially equivalent.

We should note that the conditions N → ∞ and ρ � 1
have more than a purely mathematical significance. In fact, the
correlation coefficient ρ is a decreasing function of range [40];
it also depends on factors such as the radar cross section of
the target. Thus, the small-ρ limit corresponds to the case
where the target of the radar is small or far away. Under such
conditions, the easiest way to compensate is by increasing the
integration time—in other words, increasing N . (One could
also compensate by increasing the transmit power; this would
increase ρ instead.) In summary, ρ̂ and DDN perform similarly
when the target of the radar is small, far away, or difficult to
detect in general. In this case, it may be preferable to use DDN,
if only because [4] includes an explicit block diagram showing
how to build the detector using analog components such as
mixers.

At the opposite extreme, however, it turns out that the two
detectors can behave quite differently. When ρ is large and N

is small, it is possible for ρ̂ to outperform DDN. In Fig. 11,
we plot (exact) ROC curves for the two detectors for N = 10.
When ρ = 0.2, the two detectors remain indistinguishable,
but as ρ increases, ρ̂ achieves a far higher pd for a given pfa.
Therefore, when it is desired to detect a nearby target quickly,
it is advantageous to use ρ̂.

VI. CONCLUSION

This article focused on deriving estimators for the four
parameters that appear in the noise/QTMS radar covariance
matrix (1) and elucidating certain statistical properties of these
estimators. Our results may be summarized as follows: we
derived estimators for the parameters, we characterized the
probability distributions of the estimators, and we applied the
results to the problem of target detection.

In Section III, we considered two methods for obtaining
estimates of the parameters σ1, σ2, ρ, and ς. One of them was
based on minimizing the Frobenius norm between the sample
covariance matrix (calculated directly from radar measurement
data) and the structured matrix (1). The other was ML esti-
mation. Remarkably, both methods give the same estimates.

In Section IV, we gave expressions for the pdf’s for each
of the four estimators. Another remarkable coincidence mani-
fested here: for ρ̂ and ς̂, we were able to reuse results from the
theory of two-channel SAR, saving us the trouble of deriving
the pdf’s from scratch. Unfortunately, these pdf’s were very
complicated, involving the use of hypergeometric functions.
However, we empirically found that these distributions could
be approximated by much simpler distributions, namely, the
Rice distribution (for ρ̂) and the von Mises distribution (for ς̂).

Finally, in Section V, we applied our results to the noise
radar target detection problem. We found that the GLR test
was equivalent to using ς̂ as a detector; we also showed
connections between the MFN method for parameter estima-
tion and the detector DDN previously studied by Dawood and
Narayanan [4]. Using the approximations from Section V-C,
we found closed-form equations for the ROC curves of ρ̂
and DDN.
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In summary, this article represents a broad overview of the
basic statistical behavior of noise-type radars. We hope, in par-
ticular, that the various approximations will be found enlight-
ening. The idea that ρ̂ roughly follows a Rice distribution, for
example, tells us more about ρ̂ than the bare fact that it follows
the exact pdf (15). Also, from a more practical perspective, the
estimators (11a)–(11d) are not computationally onerous and
should not be too difficult to incorporate into radar systems.

The results in this article suggest several avenues for future
research. For example, we assumed that all external noise was
additive white Gaussian noise. It is necessary to test, using
an experimental noise radar (or even a QTMS radar), how
well that assumption holds up in practice. Another subject
for future research is the properties of other parameters that
could be estimated from radar data, such as bearing or range.
Range, in particular, is related to phase, an estimator for which
is given in (11d). The peculiar square-root/linear behavior of
this estimator, as seen in Fig. 4, suggests that the statistical
properties of any estimator of the radar range should be
carefully studied. Finally, we were able to reuse several results
from the theory of two-channel SAR in this article. It would
be fascinating if we could unearth a deeper mathematical
connection between noise radars and SAR in future work.

APPENDIX A
DERIVATION OF THE MFN ESTIMATORS

For convenience, instead of performing the minimization (5)
directly, we will minimize the square of the norm. The squared
Frobenius distance between the theoretical QTMS covariance
matrix �(σ1, σ2, ρ, ς) and the sample covariance matrix Ŝ
was given in (9). To represent the equations more compactly,
we define

g(σ1, σ2, ρ, ς) ≡ ���(σ1, σ2, ρ, ς) − Ŝ
��2

F
. (45)

The estimators are obtained by minimizing g(σ1, σ2, ρ, ς)
subject to the conditions 0 ≤ σ1, 0 ≤ σ2, and 0 ≤ ρ ≤ 1.

The minimum of g(σ1, σ2, ρ, ς) must lie either at a sta-
tionary point or on the boundary of the parameter space over
which we maximize. It turns out that the minimum does not
occur on the boundary, but we will leave an analysis of the
boundary for later and focus on the stationary points for now.
The stationary points of g(σ1, σ2, ρ, ς) can be obtained by
setting ∇g(σ1, σ2, ρ, ς) = 0 and solving for the parameters σ1,
σ2, ρ, and ς. The four elements of ∇g(σ1, σ2, ρ, ς) are

∂g

∂σ1
= 4σ1(2σ 2

1 + 2ρ2σ 2
2 − P̄1) − 4ρσ2(R̄c cos ς + R̄s sin ς)

(46a)
∂g

∂σ2
= 4σ2(2σ 2

2 + 2ρ2σ 2
1 − P̄2) − 4ρσ1(R̄c cos ς + R̄s sin ς)

(46b)
∂g

∂ρ
= ρσ 2

1 σ 2
2 − 4σ1σ2(R̄c cos ς + R̄s sin ς) (46c)

∂g

∂ς
= 4ρσ1σ2(R̄c sin ς − R̄s cos ς). (46d)

Solving ∂g/∂ς = 0 immediately yields the MFN estimator
for ς

ς̂ = atan2(R̄s , R̄c). (47)

Substituting this into (46c) and rearranging the equation
∂g/∂ρ = 0 gives

ρ =
�

R̄2
c + R̄2

s

2σ1σ2
. (48)

Substituting (47) and (48) into (46a) yields

0 = 8σ 3
1 − 4P̄1σ1 (49)

which yields the MFN estimator for σ1

σ̂1 =
�

P̄1

2
. (50)

The MFN estimator for σ2 can be obtained from (46b) in
exactly the same manner

σ̂2 =
�

P̄2

2
. (51)

Finally, substituting σ̂1 and σ̂2 into (48) yields

ρ̂ =
�

R̄2
c + R̄2

s

P̄1 P̄2
. (52)

To complete the proof, we will now show that g is not
minimized on the boundaries of our optimization problem.
First, note that

g(σ̂1, σ̂2, ρ̂, ς̂) = �Ŝ�2
F − P̄2

1 + P̄2
2

2
− R̄2

c − R̄2
s . (53)

It is easy to show that in the case where σ1 = 0

min
σ2,ρ,ς

g(0, σ2, ρ, ς) = �Ŝ�2
F − P̄2

2

2
. (54)

This is manifestly greater than (53), so the minimum does
not occur when σ1 = 0. A similar result occurs when σ2 = 0.
Likewise, when ρ = 0

min
σ1,σ2,ς

g(σ1, σ2, 0, ς) = �Ŝ�2
F − P̄2

1 + P̄2
2

2
(55)

which again is greater than (53), so the minimum does not
occur when ρ = 0, either. The final case is ρ = 1, which,
in fact, is a very complicated case requiring the use of
a computer algebra system. Although we omit the relevant
expressions here, we have verified that the minimum does not
occur at ρ = 1. We may conclude, therefore, that the MFN
estimators are indeed as given earlier.

APPENDIX B
DERIVATION OF THE ML ESTIMATORS

Maximizing the likelihood function is equivalent to maxi-
mizing the log-likelihood function (10). As mentioned earlier,
we impose the conditions 0 ≤ σ1, 0 ≤ σ2, and 0 ≤ ρ ≤ 1.

The maximum of �(σ1, σ2, ρ, ς) must lie either at a sta-
tionary point or on the boundary of the parameter space over
which we maximize. Some parts of the boundary are easily
taken care of: when σ1 = 0, σ2 = 0, or ρ = 1, �(σ1, σ2, ρ, ς)
is undefined, so no maximum can occur at those points. This
leaves only ρ = 0. For now, we will assume ρ �= 0 and return
to this case later.
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The stationary points of �(σ1, σ2, ρ, ς) can be obtained
by setting ∇�(σ1, σ2, ρ, ς) = 0 and solving for the four
parameters. The elements of ∇�(σ1, σ2, ρ, ς) are

∂�

∂σ1
= − 4

σ1
+ 2

1 − ρ2


P̄1

σ 3
1

− ρ(R̄c cos ς + R̄s sin ς)

σ 2
1 σ2

�
(56a)

∂�

∂σ2
= − 4

σ2
+ 2

1 − ρ2


P̄2

σ 3
2

− ρ(R̄c cos ς + R̄s sin ς)

σ1σ
2
2

�
(56b)

∂�

∂ρ
= 4ρ

1 − ρ2
+ 2(R̄c cos ς + R̄s sin ς)

σ1σ2(1 − ρ2)

− 2ρ

(1 − ρ2)2


P̄1

σ 2
1

+ P̄2

σ 2
2

− 2ρ(R̄c cos ς + R̄s sin ς)

σ1σ2

�
(56c)

∂�

∂ς
= 2ρ(R̄s cos ς − R̄c sin ς)

σ1σ2(1 − ρ2)
. (56d)

To begin, note that ∂�/∂ς = 0 can be solved immediately
to yield the ML estimator for ς

ς̂ = atan2(R̄s , R̄c). (57)

Next, we combine (56a) and (56b) as follows:
0 = σ1

∂�

∂σ1
− σ2

∂�

∂σ2

= 2

1 − ρ2


P̄1

σ 2
1

− P̄2

σ 2
2

�
. (58)

It follows that σ2 = σ1

�
P̄2/P̄1. Substituting this and (57)

into (56c), we find that, up to an unimportant prefactor

0 =
�

R̄2
c + R̄2

s

P̄1 P̄2
(1 + ρ2) + 2σ 2

1 ρ(1 − ρ2)

P̄1
− 2ρ. (59)

Rearranging, we obtain

σ 2
1 = P̄1

⎡
⎣ 1

1 − ρ2
−
�

R̄2
c + R̄2

s

P̄1 P̄2

1 + ρ2

2ρ(1 − ρ2)

⎤
⎦. (60)

Substituting this, (57), and (58) into (56a) yields, after much
simplification

0 = R̄2
c + R̄2

s − ρ
�

P̄1 P̄2
�

R̄2
c + R̄2

s

�
. (61)

From this, we obtain the ML estimator for ρ

ρ̂ =
�

R̄2
c + R̄2

s

P̄1 P̄2
. (62)

Once we substitute (57), (58), and (62) into (56b), we find
that

0 = P̄2 − 2σ 2
2 . (63)

The ML estimators for σ1 and σ2 follow immediately:

σ̂1 =
�

P̄1

2
(64)

σ̂2 =
�

P̄2

2
. (65)

We now return to the possibility that the maximum of
�(σ1, σ2, ρ, ς) may occur at the boundary where ρ = 0.
It turns out that in this case, the estimators σ̂1 and σ̂2 remain
the same; this is easily verified by substituting ρ = 0 into (56a)
and (56b) and solving. As for ς̂, it loses all meaning, because
ς does not enter into the likelihood function when ρ = 0.
But, which estimator, ρ̂ = 0 or (62), actually maximizes
�(σ1, σ2, ρ, ς)? This is exactly the question that the likelihood
ratio detector (25) is designed to answer. Therefore, the
appropriate estimator for ρ depends on whether the target is
predicted to be present or absent: if present, use (62); if absent,
ρ̂ = 0.
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