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Endmember-Assisted Camera Response Function
Learning, Toward Improving Hyperspectral Image
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Abstract— The camera response function (CRF) that projects
hyperspectral radiance to the corresponding RGB images is
important for most hyperspectral image super-resolution (HSI-
SR) models. In contrast to most studies that focus on improving
HSI-SR performance through new architectures, we aim to
prevent the model performance drop by learning the CRF of any
given HSIs and RGB image from the same scene in an unsuper-
vised manner, independent of the HSI-SR network. Accordingly,
we first decompose the given RGB image into endmembers and
an abundance map using the Dirichlet autoencoder architecture.
Thereafter, a linear CRF learning network is optimized to project
the reference HSIs to the RGB image that can be similarly decom-
posed like the given RGB, assuming that objects in both images
share the same endmembers and abundance map. The quality of
the RGB images generated from the learned CRFs is compared
with that of the corresponding ground-truth images based on the
true CRFs of two consumer-level cameras Nikon 700D and Canon
500D. We demonstrate that the effectively learned CRFs can pre-
vent significant performance drop in three popular HSI-SR mod-
els on RGB images from different categories of standard datasets
of CAVE, ICVL, Chikusei, Cuprite, Salinas, and KSC. The
successfully learned CRF using the method proposed in this study
would largely promote a wider implementation of HSI-SR models
since tremendous performance drop can be prevented practically.

Index Terms— Abundance map, camera response function
(CRF), endmember, hyperspectral image (HSI), super-resolution,
unsupervised deep learning.

I. INTRODUCTION

YPERSPECTRAL images (HSIs) capture the radiation
of chemicals and biological substances by capturing
spectra in the visible to the short-wave infrared region and are
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therefore advantageous compared with regular RGB [1]. The
additional information contained in HSIs enables its widescale
employment in research and industry, including remote sensing
[2], [3], ecology [4], health care [5], and the wood and food
industries [6]—[8].

Despite the broad application potential, further expansion of
HSI application is limited by the inadequacies of the devices
used to capture HSIs. Two types of hyperspectral imaging
devices are commercially available. Scanning-based imaging
systems are limited by the complicated setups, low portability,
and low temporal resolution [9]. Snapshot-based imaging
systems capture the target entirely in a single integration, but
multiple filters need to be mounted on the sensor, resulting in
larger sensor size and consequently lower spatial resolution of
the captured images [10], [11]. Although the loss of temporal
resolution is compensated, HSIs that are high in both spatial
and spectral resolutions, that is, high-resolution HSI (HR-
HSI), are ideal for real-world applications [12]. However, the
limitations of the scanning and snapshot-based hyperspectral
imaging devices make HR-HSIs acquisition extremely diffi-
cult. To overcome the limitations of the hyperspectral imaging
systems, that is, the low temporal or spatial resolution, some
coding-based approaches in computational photography have
been developed based on compressive sensing theory. Compli-
catedly designed hyperspectral cameras using coded apertures
have been proposed as a solution [13]-[15]. Furthermore,
a fusion-based snapshot camera generates HR-HSIs by fusing
the low-resolution HSIs (LR-HSIs) and a high-resolution RGB
image (HR-RGB) captured by the constituent hyperspectral
and RGB camera inside [11], [15], [16]. However, the broader
application scenarios of these hyperspectral imaging systems
are limited owing to the highly complicated design and expen-
sive production.

HSI super-resolution (HSI-SR) approaches have been estab-
lished to bypass these restrictions of hardware and imag-
ing conditions to acquire high-quality HR-HSIs at a low
cost [17]-[22]. Deep learning approaches are increasingly
applied in many areas of research and industry [23]-[25] and
have been implemented to solve HSI-SR problems as well
[26]. The consumer-level RGB imaging sensors can easily
capture images with high spatial resolution at the cost of fewer
spectral bands and provide the spatial details and color basis
for HSI-SR tasks. Currently, there are two major approaches to
realize HSI-SR models through deep learning. One is a direct
reconstruction model that is developed based on low-resolution
RGB images (LR-RGBs) and LR-HSIs [19], [27]. The trained
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model can subsequently be used to reconstruct HR-HSIs based
on the HR-RGB. The alternative is a fusion-based model
that generates HR-HSIs by fusing HR-RGB with LR-HSIs
from the same scene directly [28], [29]. Both have their own
merits and limitations. Direct reconstruction models in HSI-SR
can be easy to train because no registration is needed as
the LR-RGB that is used for training is converted directly
from LR-HSIs given that the camera response function (CRF)
of the HR-RGB is known [30]. However, because the spa-
tial information of HR-RGB images is not considered when
building direct reconstruction models, the model performance
can suffer severely from the low SR scale and increased
spectral distortion [31]. In contrast, fusion-based HSI-SR
models generally achieve higher-quality HR-HSIs and a larger
super-resolution scale than direct reconstruction methods [18].
Nonetheless, strict registration between HR-RGB and LR-
HSIs is usually required additionally to allow fusion-based
HSI-SR models to achieve excellent performance.

HR-RGB plays a key role in developing both types of the
aforementioned HSI-SR models. Based on the theory of HSI-
SR, the recovery of HSIs from the RGB images is ill-posed
because it is a regression from a lower-dimensional pixel
vector, RGB, to a higher-dimensional hyperspectral counter-
part, for example, [31], [32]. The intuitive HSI-SR theory
strongly suggests that the output hyperspectral reflectance is
highly dependent on the input pixel values, that is, either the
magnitude or the vector direction, as confirmed in several
studies [18], [19], [30].

The different pixel values or appearances of RGB images
of the same object are mainly determined by the CRF that
projects the spectral radiance to the RGB values mimicking
the human perception of these real-world objects [33]. Given
the spectral radiance X (x, y, 4) at location (x, y), the intensity
recorded by the commercial RGB camera for the pth color
filter can be expressed as follows:

%Wﬁ=/@ﬂﬂ@m@ﬂ

where AC,(4) is the corresponding CRF at channel p. The
discrete form of (1) can be written as follows:

ey

B
Yp(6,3) =Y Cpn)X(x, y, Ap)

(2)

b=1
where 1, (b = 1,2,..., B) is the discrete representation of
wavelength 1, and B is the number of spectral bands that is

mostly 31.

Most of HSI-SR models are input RGB image appearance-
dependent [19], [34]. Several studies have confirmed that the
performance of HSI-SR models is highly sensitive to the CRFs
used to prepare the input RGB images [17], [30]. The pre-
diction performance of a direct reconstruction HSI-SR model
benefited significantly from the selection of the optimal CRF
that is close enough to the ground-truth CRF of the existing
HR-RGB image [35]. Fusion-based HSI-SR models have also
shown improved performance by selecting the optimal CRF
from the existing CRF dictionaries [17], [30]. Therefore, the
correct CRF of the input RGB image must be used along with
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HSIs for both the training and the subsequent predictions of
HSI-SR models.

However, the main drawback of most of the current HSI-
SR models, that is, of both the direction reconstruction-based
models [18]-[20], [36] and fusion-based models [11], [37],
[38] is that they assume that the CRF of HR-RGB used for
training is known beforehand and it will stay the same when
testing on new RGB images [39]. The outstanding fusion-
based HSI-SR model, unregistered and unsupervised mutual
Dirichlet-Net (#?MDN), generates HR-HSIs based on unreg-
istered LR-HSIs and HR-RGB images in an unsupervised
manner, however, still strongly depends on a solid CRF to
manage the task [18]. The CRF selection strategy used in
the outstanding direct reconstruction HSI-SR model proposed
by Fu et al. [17] in 2021 relied entirely on the existence of
adequately calibrated CRF dictionaries; the model would not
function effectively when the RGB images were sourced from
a new camera with unknown CRF. Once the CRF dictionary
is not given or input RGB images are produced by cameras
with unknown CRFs, current HSI-SR models will suffer from
a severe decrease in HSI-SR performance and be much less
effective in real-world applications. Therefore, a method that
can be easily employed to learn a CRF from any given
reference HSIs and RGB image is urgently required. Based
on the learned CRF, the performance of the HSI-SR models
could be largely maintained at least in future studies.

Therefore, in this study, we propose a novel network that can
learn the CRF from any given reference HSIs and RGB image
of the same scene from random initiation in an unsupervised
manner. The major aim is to relieve the CRF dependence that
is currently a big limitation for most HSI-SR models through
learning the highly faithful CRF between the acquired low-cost
LR-HSIs and HR-RGB easily. A specifically designed autoen-
coder is first trained to decompose the existing HR-RGB into
endmembers and the corresponding HR-abundance map—the
weights of different endmembers of each pixel. An LR-RGB
is first generated from the existing LR-HSIs through a linear
network and subsequently decomposed into endmembers and
an LR-abundance map using the same autoencoder used in
HR-RGB decomposition. Based on the assumption that the
same object in both LR-RGB and HR-RGB is composed of
the same endmembers and thus the same abundance map, only
when the LR-RGB shares the same color space as HR-RGB,
can the same endmembers and abundance map be decomposed
by the same decomposition autoencoder. In this manner, the
CRF that is embedded in the linear network can be learned to
project LR-HSIs onto the target LR-RGB that shares the same
color space as the HR-RGB. The fidelity of the learned CRFs
from the two cameras is further tested on three categories of
datasets using three sets of state-of-the-art HSI-SR models,
residual convolutional neural network for the hyperspectral
reconstruction (HSCNNR), ,uzMDN, and weighted low-rank
tensor recovery (WLRTR).

The main contributions of this study are summarized as fol-
lows: First, we propose an RGB image decomposition network
as an intermediate step for CRF learning. Second, we propose
to calculate the loss of the Gram matrix of abundance maps
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in different sizes during CRF learning. Third, integrated loss
functions, combining /; j-norm loss and spectral information
divergence (SID) loss, are used to direct the convergence of
the CRF learning model. With the above stand-alone CRF
learning network, excellent CRFs can be found to generate
RGB images that are in the same color space as target RGB
ones, which ultimately preserves the performances of HSI-SR
models while without relying on any existing CRFs.

II. RELATED WORK
A. Camera Response Functions

The appearances of produced RGB images differ in different
camera brands because of the CRFs used [33], [40]. The CRF
of a specific camera brand is determined by the preferences
of the manufacturer and is mostly unavailable to consumers
[30]. The CRF of a set of RGB images is unavailable if the
source device capturing them is missing. Extensive research
has been conducted to search for a CRF of a camera. The
commonly used experimental approach to determine the CRF
is to record the spectral response by exposing the target to
monochromatic light [41]. However, this procedure is costly
and time-consuming and must be repeated for RGB images
from which the camera settings are changed. Although a
variety of statistical methods can be used for CRF estimation,
an object of known specific radiance spectrum is generally
used in the scene to impose additional information [33], [40],
[42]-[46]. Therefore, more effective methods that can be easily
used to determine a CRF between the scene radiance and RGB
values are highly preferred. In addition, most of the studies
focus only on CRF searching, and few have used the learned
CRFs to solve practical problems pertaining to HSI-SR.

B. Hyperspectral Image Super-Resolution

HSI-SR is an approach that can generate HR-HSIs with-
out complex designed coded-aperture sensors or precisely
arranged hybrid systems that overcome the existing hard-
ware limitations and expands the application areas of HSIs
by increasing accessibility [19]-[22]. HSI-SR models take
advantage of the existing LR-HSIs and HR-RGBs, both of
which are available from the existing devices at low cost
[17], [18], for the production of HR-HSIs. Fusion-based
HSI-SR methods can be grouped into two categories: one
category is traditional statistic-based methods including pan-
sharpening [47], [48], matrix factorization [49], [50], and
tensor representation [51]-[54]; the other category is a deep
convolutional neural network (CNN)-based one [17], [55],
[56]. However, fusion-based approaches are generally limited
by both registration issues, the point spread function (PSF),
and the spectral relationship, the CRF, of the existing image
pairs [18], [57]. The recently proposed x*MDN successfully
solved the dependence on image registration and ended with
much less performance loss when testing on unregistered
image pairs [18]. Another group of HSI-SR methods is to
reconstruct HSIs from a single RGB image using CNN-based
networks [34], [58], [59]. Because the generated HR-HSIs rely
on the spatial resolution of the HR-RGB totally and thus do
not have image registration problems like fusion-based ones.
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However, the CRF has to be known in advance in order to
prepare the LR-HSIs and LR-RGB pairs for model training.
The direct reconstruction methods are also limited by the
smaller SR scale which is generally around 8, while it can be
as large as 32 for fusion-based approaches [31]. As the strong
dependence on well-registered image pairs during HSI-SR is
now largely solved, its broader application potential is still
mainly and strongly restricted by the heavy reliance on the
existing CRF [57].

We focus on the effective learning of the faithful CRF
between any given HSIs and RGB pair of the same scene.
The excellent performance of the learned CRF is confirmed
not only by their abilities to render high-quality RGB from the
corresponding HSIs, but also by their capability to prevent the
performance drop of the adequately trained HSI-SR models,
HSCNNR, ,uZMDN, and WLRTR, on the RGB images gener-
ated from three different benchmark HSIs datasets of indoor,
natural scene, and remote sensing, using two CRFs of two
consumer-level cameras, Canon 500D and Nikon 700D.

II1. PROBLEM FORMULATION

HR-RGB X e R#W*! where H, W, and [ are the height,
weight, and a number of spectral bands, respectively. LR-HSIs
Y € R"*L where h, w, and L represent the corresponding
height, weight, and spectral bands, respectively. The aim is
to learn a CRF that maps LR-HSIs to their low-spectral-
counterpart LR-RGB R""*!,

It has been shown that RGB images can be decomposed
into an abundance map and the corresponding endmembers
[60]. This decomposition is formulated as follows:

XHW><I — AHWXHEHXI (3)

where X#"*! is the 2-D matrix unfolded from the RGB
image, H W is the total number of pixels, and / = 3 is the RGB
color channels; A?Wx¢ represents the abundance map matrix
with HW rows and 6 columns, E?* is the endmember matrix
with € rows, and [ = 3 is the RGB channel. 8 represents
the number of endmembers to be determined based on the
complexity of the image that is generally greater than the
number of RGB channels. Because both HR-RGB and LR-
HSIs belong to the same scene, we assume that the same
material of the same scene in both HR and the converted
LR-RGB images should share the same endmembers, E, and
thus the corresponding coefficients in abundance map A as
well. X"**! is the unfolded 2-D matrix of the LR-RGB, where
hw is the number of pixels and /[ = 3 is the RGB channel.
Decomposition can be formulated as follows:

thxl — AhwxﬁEé’xl (4)

where hw in A"*? represents the number of pixels of the
LR-RGB image, and 6 in AM>0 is the same number of
endmember shared by the HR-RGB image.

IV. PROPOSED APPROACH
A. Network Architecture

The entire network is separated into subnetworks of end-
member decomposition and CRF learning.
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(1) Decouple HR-RGB into Abundance and Endmember

HR-RGB

LR-HSIs LR-RGB

Encoder
(3 layers)

HR-RGB

Dirichlet
Representation

Abundance
Decoder
(1 layer)

Tnd -

Abundance

Dirichlet
Representation

LR-RGB

(2) Search CRF between LR-HSIs and LR-RGB using learned Abundance and Endmember

Fig. 1.
the abundance maps of HR-RGB and generated LR-RGB.

1) Endmember Decomposition: A specifically designed
autoencoder was used to decompose the HR-RGB image into
endmembers and the corresponding abundance map, high-
lighted in the red rectangle in Fig. 1 (top). We first define the
input HR-RGB image as X, the feature representation A, and
the endmembers as E. The encoder was composed of a fully
connected three-layer linear network f.,: X — A, which maps
the input data to the latent feature representation. To improve
the representation ability of the final output layer of the
encoder f.,, the previous layers were densely connected with
the final layer. In order to transform the feature representation
A, to the abundance map A, meeting the physical constraints
of nonnegative and sum-to-one, a stick-breaking algorithm
that has been successfully used by Qu er al. [18], [61], [62]
in several studies is applied. The derived abundance map,
A, follows a Dirichlet distribution that satisfies the physical
constraints of nonnegative and sum-to-one naturally.

The decoder, fg.: A — X, is a one-layer-only nine-node
linear network that attempts to reconstruct the input HR-RGB
image from an extracted abundance map A. Thus, the derived 9
x 3 weight matrix, E, of the decoder can be treated as
the endmembers of the input HR-RGB image X. There are
nine endmembers in £ and each endmember is composed
of three elements. Endmembers should also follow the same
value range as the reflectance used in this study during the
decomposition process.

2) CRF Learning: Because the LR-HSIs and HR-RGB
images belong to the same scene, the assumption is that objects
of the same material appearing in both HR-RGB and LR-RGB
that are projected from LR-HSIs by a target CRF share the
same endmembers E, and the corresponding abundance map
indicating the weights of endmembers composing each pixel
of the RGB image. Moreover, the output abundance map of
the encoder is dependent on the input RGB vectors, as per
the characteristic of a linear network. Therefore, if both the
HR-RGB and LR-RGB can be decomposed into the same
endmembers using the same encoder f., and decoder fj.,
setup, then they will also share the same color space which
is determined by the CRF. Based on the theory mentioned
above, a one-layer three-node linear CRF learning network

Architecture of the endmember-assisted CRF learning. Both /> 1-norm and SID losses are used to measure the differences of these Gram matrices of

St 1s developed to map the LR-HSIs to an LR-RGB that is
to share the same endmembers E and abundance map A, with
the HR-RGB. Therefore, the decomposed abundance maps,
Apr and Apg, are forced to be as similar as possible during
the optimization of f.¢ for CRF learning.

3) Gram Matrix of Abundance Map: Almost all loss func-
tions require the input matrices to be of the same dimen-
sion. However, the abundance maps, A7W*° and A"w*9,
decomposed from HR-RGB and LR-RGB differ in size. The
challenge for CRF learning is the transformation of differently
sized abundance maps to the same size, such that regular
loss functions can be used to quantify their differences. The
Gram matrices of these abundance maps are one of the few
options that can represent abundance maps of different sizes
excellently. The product of the transposed abundance map
and the abundance map itself is treated as its Gram matrix
that is a square matrix with the same number of rows and
columns as the number of endmembers GM**°. For example,
the abundance maps of an HR-RGB and LR-RGB can be for-
mulated in 9 x 9 matrices as GMpy and GM] 3”, respectively.
Commonly used effective loss functions can be used as the
Gram matrices of both HR and LR abundance maps, GM};y’
and GME§9, are of the same size, 9 x 9. Another reason why
the Gram matrix is used is that the coupled features of spatial
and abundance information suggested by intuitive calculation
are effective in representing the abundance map [63]. Regular
loss functions can thereafter be applied to help the CRF
learning through regulating the Gram matrices indirectly.

B. Optimization and Implementation Details

1) Loss Function: Loss functions play a key role in regu-
lating model convergence in deep learning. To best facilitate
the convergence of the CRF learning model, a composite loss
function—a combination of collaborative /5 j-norm and SID
loss—was incorporated into the CRF learning network, instead
of the conventional counterparts. The /; j-norm loss is the
sequential application of the /,-norm and /;-norm loss on each
pixel vector to better regulate the model convergence during
spectral recovery [18]. SID [64] measures the vector shape
dissimilarity that is complementary to /> ;-norm that is the
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magnitude difference. The combination of collaborative /5 ;-
norm loss (5) and SID loss (6) between the Gram matrices
is supposed to facilitate the model convergence, as both
functions provide complementary measures of both magnitude
and similarity of a vector. The final loss of a model is the sum
of the individual loss that can be formulated as (7)

m n 12
lZ,lloss = XX Z Z ((GMIQ-ITQQ - GMEEQ)Z) (5)

i=1 j=1
( 1 ) S M My
m) i \IGMi| - [GM

GM9><9 GM9><9
x |log| b5 | —log[ ——2%-]]. (6
|GMpix |GM}}

GMy and GMR’ are the Gram matrices of the abundance
maps corresponding to HR-RGB and LR-HSIs, respectively;
m and n represent the number of rows and columns of the
matrices, respectively,

Lossioa = /1112,lloss + A2SIDjgss. @)

SIDloss =

A1 and A, represent the different weights given to the subcom-
ponents of the total loss.

2) Training: Before feeding into the network, the spectral
vectors in the LR-HSIs and HR-RGB images were transformed
to zero-mean vectors. The number of output nodes of the
encoder was determined by the scene complexity of the
HR-RGB image, and nine were selected after preliminary
screening. The weights of both the decoder and CRF learning
networks were randomly initiated as default in the Pytorch
framework [65]. The detailed structure of the RGB image
decomposition network is illustrated in Fig. 1. Both the HR-
RGB image decomposition and CRF learning processes stop
until the losses no longer decrease any further for over
1000 epochs. The weights of the CRF network are extracted
as the CRF that is used to map the LR-HSIs to the LR-RGB
image in preparation for the HSI-SR models.

V. EXPERIMENTS AND RESULTS

In this section, we first review the HR-HSIs datasets and the
setup of our experiments. Thereafter, we provide the results of
HR-RGB image decomposition, learned CRFs, and the quality
of the RGB generated with learned CRFs to demonstrate
the effectiveness of the proposed method in CRF learning.
With the RGB images rendered by the learned CRF (learned
RGB images for short), HSI-SR models from two categories,
HSCNNR, ,uzMDN, and WLRTR, were trained and externally
tested on RGB images with CRFs of two consumer-level
cameras, Canon 500D [40] and Nikon 700D [18]. Extensive
experiments were conducted on benchmark datasets of indoor
and natural scenes and remote sensing.

A. Dataset and Experimental Setting

Six widely used benchmark HSI datasets are investigated
in this section, including the CAVE [66], ICVL [19], Chiku-
sei [21], Cuprite [67], Salinas [68], and KSC datasets [69].
The CAVE dataset includes images of 32 indoor scenes. Each
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Fig. 2. Comparisons of the learned CRFs and true CRFs of Canon 500D
camera on three datasets CAVE, ICVL, and Chikusei. (a)—(c) Learned and true
Canon CRFs are indicated by dashed—dotted and solid lines, respectively. (d)—
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Fig. 3. Comparisons of the learned CRFs and true CRFs of Nikon 700D
camera on three datasets Cuprite, Salinas, and KSC. (a)—(c) Learned and true
Canon CRFs are indicated by dashed—dotted and solid lines, respectively. (d)—
(f) Learned and true Nikon CRFs are indicated by dashed—dotted and solid
lines, respectively.

image is 512 x 512 pixels, with 31 spectral bands ranging
from 400 to 700 nm. The ICVL dataset contains natural scenes
captured by the Specim NIR sensor in Israel in 2017. The
original HSIs are 1000 x 1000 pixels with 31 spectral bands.
The Chikusei dataset was acquired by a hyperspectral imaging
sensor over Chikusei, Japan, in 2014. The original HSIs
consist of 2517 x 2335 pixels and 128 bands with a spectral
range of 363-1018 nm. In our study, we cropped a 1000 x
1000 patch from the center. “f970619t01p02_r02_sc03.a.rfl”
from online Cuprite data was included in this study. Cuprite
was captured by the airborne visible/infrared imaging spec-
trometer (AVIRIS) sensor over the Cuprite mine district in
Nevada, USA; it contains 224 spectral bands in the range of
400-2500 nm. Salinas was collected in the 224 band using
an AVIRIS sensor over Salinas Valley, California. The KSC
dataset was collected by NASA AVIRIS, with spectral bands
from 0.4 to 2.5 um, a spatial resolution of 18 m, spatial size of
(512, 614), and spectral bands of 176 totally. Only 31 spectral
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Fig. 4. SAM and average absolute difference of the learned Nikon RGB
images of CAVE, ICVL, and Chikusei datasets. (a), (e), and (i) Learned
Nikon RGB images. (b), (f), and (j) True Nikon RGB images. (c), (g), and
(k) Average absolute differences. (d), (h), and (1) SAMs.
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Fig. 5. SAM and average absolute difference of the learned Nikon RGB
images of Cuprite, Salinas, and KSC datasets. (a), (e), and (i) Learned
Nikon RGB images. (b), (f), and (j) True Nikon RGB images. (c), (g), and
(k) Average absolute differences. (d), (h), and (1) SAMs.

0.150
0.125
0.100
0.075
0.050
0.025

0.000
0.150

0.125
0.100
0.075
0.050
0.025

0.000
0.150

0.125
0.100
0.075
0.050
0.025

0.000

@

Fig. 6. SAM and average absolute difference of the learned Canon RGB
images and CAVE, ICVL, and Chikusei datasets. (a), (e), and (i) Learned
Canon RGB images. (b), (f), and (j) True Canon RGB images. (c), (g), and
(k) Average absolute differences. (d), (h), and (I) SAMs.

bands considered within the wavelength range of 400-700 nm
from the Chikusei, Cuprite, Salinas, and KSC datasets were
used in this study.
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images of Cuprite, Salinas, and KSC datasets. (a), (e), and (i) Learned
Canon RGB images. (b), (f), and (j) True Canon RGB images. (c), (g), and
(k) Average absolute differences. (d), (h), and (1) SAMs.
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Fig. 8. Comparisons between the learned CRFs with different loss functions
and true CRFs of Nikon 700D cameras. (a) Learned CRF using combined
loss functions of /> j-norm and SID versus true Canon CRF are indicated by
dashed—dotted and solid lines, respectively. (b) Learned CRF using /> |-norm
loss only versus true Nikon CRF are indicated by dashed—dotted and solid
lines, respectively. (c) Learned CRF using SID loss only versus true Nikon
CRF are indicated by dashed—dotted and solid lines, respectively.
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Fig. 9. SAM and average absolute differences of the learned Nikon RGB
images using different loss functions. (a), (e), and (i) Nikon RGB images
converted with combined, /> ;-norm and SID loss, respectively. (b), (f), and
(j) True Nikon RGB images. (c), (g), and (k) Average absolute differences.
(d), (h), and (1) SAMs.

Two commonly used CRFs of both Nikon 700D (Nikon)
[18] and Canon 500D (Canon) [33] cameras were employed in
the generation of ground-truth HR-RGB images. We adopted
a Gaussian filter to obtain the LR-HSIs from the HR-
HSIs by constructing a filter with the same width as the
super-resolution scale and 0.5 valued deviations. A super-
resolution scale of 8 was set for all six datasets.
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TABLE I

EVALUATIONS ON LEARNED RGB IMAGES OF BOTH CANONS500D AND NIKON 700D CAMERAS ON CAVE, ICVL, CHIKUSEI, CUPRITE, SALINAS, AND
KSC DATASETS

Evaluation CAVE ICVL Chikusei Cuprite Salinas KSC
method  fean0n | Nikon | Canon | Nikon | Canon | Nikon | Canon | Nikon | Canon | Nikon | Canon | Nikon
SAM | 250 | 2.05 | 0.50 | 0.81 1.15 1.37 | 027 | 0.53 1.01 | 098 | 0.78 | 0.84
PSNR 1 43.03 | 41.84 | 55.0 | 39.85] 39.03 | 5091 | 53.30 | 36.93 | 48.12 | 44.40 | 45.74 | 43.12

ERGAS | 8.62 | 1039 2.65 | 464 | 1622 | 6.02 | 096 | 4.12 | 2.73 | 3.09 | 541 | 6.83

* Arrows indicate the direction towards the best performance
TABLE II

PERFORMANCES OF THE LEARNED NIKON MODELS OF /ﬁMDN ON TRUE NIKON AND CANON HR-RGB IMAGES OF CAVE, ICVL, CHIKUSEI, CUPRITE,
SALINAS, AND KSC DATASETS

Dataset Training Testing
Learned Nikon RGB True Nikon RGB True Canon RGB

SAM | |PSNRt [ERGAS!| |SAM| [PSNR*! [ERGAS| [SAM{ |PSNRt |[ERGAS |
CAVE 4.79 42.33 0.44 7.53 35.38 0.47 28.17 20.49 2.14
ICVL 9.53 41.06 1.58 8.55 43.19 1.32 19.61 26.57 2.38
Chikusei 6.68 50.94 1.64 8.59 47.23 2.67 16.10 34.87 6.43
Cuprite 16.22 46.08 0.12 9.94 40.00 0.15 39.42 26.63 0.61
Salinas 7.92 45.11 1.08 7.88 4487 1.04 26.26 28.92 4.11
KSC 10.95 51.10 8.26 12.11 49.40 8.16 31.76 39.33 18.80

* Arrows indicate the direction towards the best performance
TABLE III

PERFORMANCES OF LEARNED NIKON MODELS OF HSCNNR ON TRUE NIKON AND CANON HR-RGB IMAGES OF CAVE, ICVL, CHIKUSEI, CUPRITE,
SALINAS, AND KSC DATASETS

Dataset Training Testing
Learned Nikon RGB True Nikon RGB True Canon RGB

SAM | [PSNR*t [ERGAS{ [SAM{ [PSNRt [ERGAS| [SAM{ [PSNRt |ERGAS |
CAVE 5.18 39.66 1.82 5.53 38.58 1.55 21.55 26.72 4.92
ICVL 9.11 40.14 1.44 8.70 40.51 1.68 17.55 32.49 2.55
Chikusei 7.57 49.11 5.03 7.90 48.08 11.62 33.75 34.34 6.17
Cuprite 13.60 37.90 0.74 12.9 38.16 0.67 24.27 30.63 1.06
Salinas 8.28 44.46 1.49 7.57 44.43 3.05 42.24 28.03 5.95
KSC 11.03 50.17 2.16 12.55 48.43 2.06 32.55 38.20 10.74

* Arrows indicate the direction towards the best performance

B. HSI-SR Models

To test the fidelity of the learned CRF for HSI-SR tasks,
three state-of-the-art architectures, HSCNNR [20], ,uZMDN
[18], and WLRTR [52] were tested in this study. The models
were trained using the suggested hyperparameters and tuned
to maximize their performance. With two reference CRFs
from Nikon 700D and Canon 500D, three categories of
HSI-SR models, six models in total were built for each
dataset. Further tests were done on HR-RGB images that
were rotated by 90° in an anticlockwise direction to check
the abilities of #>MDN and WLRTR in handling unregistered
image pairs during HSI-SR.

C. Evaluation Metrics

Three complementary and widely used evaluation metrics,
including a peak signal-to-noise ratio (PSNR), a spectral
angle mapper (SAM) [63], and erreur relative globale adi-
mensionnellede synthese (ERGAS) [71], are used to quan-
titatively measure the quality of reconstructed HR-HSIs.
SAM measures the spectral angle difference between the
predicted and ground-truth reflectance of each pixel. PSNR
and ERGAS are mean square error (mse)-based bandwise
indices indicating spatial fidelity and global quality, respec-
tively. The best model performance results from the predic-
tion with the maximized PSNR, while minimizing SAM and
ERGAS.
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TABLE IV

PERFORMANCES OF LEARNED CANON AND NIKON CRFs oF WLRTR ON TRUE CANON AND NIKON HR-RGB IMAGES OF CAVE, ICVL, CHIKUSEI,
CUPRITE, SALINAS, AND KSC DATASETS

Dataset Learned Nikon CRF Learned Canon CRF
True Nikon RGB True Canon RGB True Nikon RGB True Canon RGB
SAM | |PSNR t [ERGAS | |[SAM | |PSNR t |[ERGAS | |SAM | [PSNR t |ERGAS | [SAM | |PSNR t [ERGAS |
CAVE 1.62 | 44.40 2.23 3.85 | 26.79 | 17.97 4.85 | 33.17 | 10.40 219 | 39.45 2.94
ICVL 5.54 | 45.01 4.85 9.62 | 29.81 6.33 9.46 | 33.34 3.98 6.68 | 43.05 3.89
Chikusei| 8.29 | 42.13 7.05 16.70 | 32.67 | 14.31 | 16.04 | 35.89 9.20 11.40 | 42.95 9.77
Cuprite | 10.62 | 39.05 0.60 24.58 | 29.43 1.87 21.18 | 32.45 0.86 17.59 | 34.63 1.38
Salinas 5.48 | 43.75 2.14 12.48 | 29.23 2.89 11.71 | 31.53 2.29 7.56 | 40.81 1.19
KSC 10.93 | 49.08 3.71 20.53 | 37.92 | 14.32 | 18.29 | 40.69 5.21 15.43 | 46.60 3.77
* Arrows indicate the direction towards the best performance
TABLE V
PERFORMANCES OF THE LEARNED NIKON MODELS OF #>MDN ON II{)CLT&TSEEDTSTRUE NIKON AND CANON HR-RGB IMAGES OF CAVE AND SALINAS
Dataset Training Testing
Learned Nikon RGB True Nikon RGB True Canon RGB
SAM | |PSNRt |[ERGAS! [SAM{ [PSNRt [ERGAS{ [SAM ! |PSNRt [ERGAS/
CAVE 4.30 42.20 0.38 4.51 41.35 0.40 21.94 26.65 0.94
Salinas 7.02 46.11 0.80 7.02 46.45 0.61 37.04 28.34 2.04

* Arrows indicate the direction towards the best performance
TABLE VI

PERFORMANCES OF LEARNED CANON AND NIKON MODELS OF WLRTR ON ROTATED TRUE CANON AND NIKON HR-RGB IMAGES OF CAVE AND
SALINAS DATASETS

Dataset Learned Nikon CRF Learned Canon CRF
True Nikon RGB True Canon RGB True Canon RGB True Nikon RGB
SAM | [PSNR t |[ERGAS | [ SAM{ [PSNR t [ERGAS || SAM | | PSNR*t |ERGAS{ |SAM | | PSNR*t |ERGAS |
CAVE | 1597 | 27.81 | 12.84 16.37 | 23.84 | 22.34 15.03 28.18 14.66 | 15.02 | 25.53 14.98
Salinas | 42.74 | 28.85 2.97 48.74 | 26.12 3.00 37.80 29.53 2.87 | 4132 | 27.61 2.61

* Arrows indicate the direction towards the best performance

1) Evaluations on Learned CRFs: Because pixel values
of RGB images are calculated from the integrated radiance
through CRF, and pixel values are important for HSI-SR
models, different CRFs may result in the same RGB image.
Therefore, the final quality of the CRFs is evaluated based on
the differences between the regenerated RGB images and the
corresponding ground-truth images in this study.

2) Evaluations on HR-HSIs Recovery: We focus on testing
the performance of the HSI-SR models trained on the learned
RGB images of Nikon and Canon cameras (learned Nikon
and Canon RGB images), within which the trained models
are called learned Nikon or Canon ,uZMDN, learned Nikon
or Canon HSCNNR, and learned Nikon or Canon WLRTR,
respectively. The performances of the learned u>MDN,

HSCNNR, and WLRTR are based on the quality of the
reconstructed HR-HSIs in comparison to ground-truth images
through testing on RGB images converted by the true CRFs
of both Nikon and Canon cameras (true Nikon and Canon
RGB images).

3) Results on Learned CRFs: The learned CRFs are shown
in Figs. 2 and 3, all of which are evidently different from the
true CRFs of both Nikon and Canon cameras, regardless of
the dataset used. Interestingly, the peaks of the corresponding
channels in these learned and true CRFs are located extremely
close to each other in most cases (see Figs. 2 and 3).

4) Quality of RGB Images With Learned CRFs: The SAM
and average absolute differences between the learned RGB
images (leftmost column) and true RGB images (second
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TABLE VII

PERFORMANCES OF LEARNED CANON MODELS OF szDN ON TRUE CANON AND NIKON HR-RGB IMAGES OF CAVE, ICVL, CHIKUSEI, CUPRITE,
SALINAS, AND KSC DATASETS

Dataset Training Testing
Learned Canon RGB True Canon RGB True Nikon RGB
SAM | |PSNR ' | ERGAS | |SAM | |PSNRt | ERGAS | |SAM { [PSNR*t [ ERGAS |

CAVE 4.79 42.33 0.44 7.53 35.38 047 28.17 20.49 2.14
ICVL 9.53 41.06 1.58 8.55 43.19 1.32 19.61 26.57 2.38
Chikusei | 6.68 50.94 1.64 8.59 47.23 2.67 16.10 34.87 6.43
Cuprite 11.21 39.02 0.19 11.26 39.58 0.16 26.63 21.71 0.97
Salinas 6.57 46.35 0.80 8.62 41.88 1.45 21.22 26.78 7.23
KSC 11.37 50.61 3.69 12.05 48.98 3.68 35.29 31.30 29.73

* Arrows indicate the direction towards the best performance

TABLE VIII

SALINAS, AND KSC DATASETS

PERFORMANCES OF LEARNED CANON MODELS OF HSCNNR ON TRUE CANON AND NIKON HR-RGB IMAGES OF CAVE, ICVL, CHIKUSEI, CUPRITE,

Dataset Training Testing
Learned Canon RGB True Canon RGB True Nikon RGB
SAM{ [PSNRt [ ERGAS | [SAM{ [PSNRt [ ERGAS{ |SAM | |PSNRt | ERGAS |

CAVE 7.65 37.18 6.08 7.45 36.67 4.27 2212 | 2142 17.03
ICVL 8.34 40.67 1.03 8.92 41.15 0.96 28.55 | 22.89 3.32
Chikusei | 13.97 | 44.28 2.41 14.36 | 43.46 6.94 20.05 | 33.25 13.88
Cuprite 16.28 | 35.28 1.23 16.28 | 35.36 1.34 33.05 | 22.63 2.95
Salinas 7.54 45.33 0.39 9.19 41.02 0.72 2598 | 24.67 4.09
KSC 16.30 | 47.67 11.13 1598 | 47.14 10.16 27.34 | 3475 16.94

* Arrows indicate the direction towards the best performance

TABLE IX

PERFORMANCES OF LEARNED CANON MODELS OF szDN ON ROTATED TRUE CANON AND NIKON HR-RGB IMAGES OF CAVE, ICVL, CHIKUSEI,
CUPRITE, SALINAS, AND KSC DATASETS

Dataset Training Testing
Learned Canon RGB True Canon RGB True Nikon RGB
SAM | [PSNR t [ ERGAS | [SAM | |PSNR*t | ERGAS | |SAM ! [PSNR t | ERGAS |
CAVE 4.78 42.39 0.24 5.51 39.83 0.47 30.33 20.08 1.87
Salinas 6.99 45.51 1.57 8.72 42.14 1.90 19.70 27.90 7.11

* Arrows indicate the direction towards the best performance

to the human eye. More quality parameters between learned
and true RGB images are summarized in Table I. Slightly
more obvious errors can be found on the learned Nikon RGB

leftmost column) of the Nikon and Canon cameras are shown
in Figs. 4-7, respectively. Generally, the differences between
learned and ground-truth RGB images are hardly noticeable
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Fig. 10. Performances of learned Nikon #?>MDN model in HR-HSI
generation based on the true Nikon and Canon RGB images of CAVE. (a)—(c)
Learned and true Nikon and true Canon RGB images. (d)—(f) Average absolute
difference. (g)—(i) SAMs. (j)—(1) Visualization of reflectance differences of
three selected pixels circled in the RGB images in (a)—(c).
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Fig. 12.  Performances of the learned Nikon HSCNNR model in HR-HSI
generation based on the true Nikon and Canon RGB images of CAVE. (a)—(c)
Learned and true Nikon and true Canon RGB images. (d)—(f) Average absolute
difference. (g)—(i) SAMs. (j)—(1) Visualization of reflectance differences of
three selected pixels circled in the RGB images in (a)—(c).
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Fig. 11.  Performances of the learned Nikon x>MDN model in HR-HSI
generation based on the true Nikon and Canon RGB images of Salinas. (a)—(c)
Learned and true Nikon and true Canon RGB images. (d)—(f) Average absolute
difference. (g)—(i) SAMs. (j)—(1) Visualization of reflectance differences of
three selected pixels circled in the RGB images in (a)—(c).

images of ICVL that can also be seen more clearly in the
error maps of SAM and average absolute differences shown
in subplots g and / in Fig. 4. The variances in the quality of
the learned RGB images probably resulted from the interaction
of the selected CRFs and the benchmark datasets used because
they were trained similarly with the same model architectures.

5) Ablation Study on Loss Functions: The CRF learning
using individual loss functions of either /5 ;-norm loss or SID
loss are compared with CRF learned using combined losses
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Fig. 13.  Performances of the learned Nikon HSCNNR model in HR-HSI
generation based on the true Nikon and Canon RGB images of Salinas. (a)—(c)
Learned and true Nikon and true Canon RGB images. (d)—(f) Average absolute
difference. (g)—(i) SAMs. (j)—(1) Visualization of reflectance differences of
three selected pixels circled in the RGB images in (a)—(c).

of I ,1-norm loss and SID loss (see Figs. 8 and 9). Individual
loss cannot help, while only when they are combined can
high-quality CRFs be learned.

6) Performance of Models Developed Based on Learned
Nikon RGB Images: The performances of x>MDN, HSCNNR,
and WLRTR models that were trained on the registered
pairs of learned Nikon RGB images of different datasets,
as shown in Tables II-IV, respectively, with the best results
highlighted in bold. All three models involving learned Nikon
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Fig. 14.  Performances of the learned Nikon WLRTR model in HR-HSI
generation based on the true Nikon and Canon RGB images of CAVE.
(a) and (b) True Nikon and true Canon RGB images. (c) and (d) Average
absolute difference. (e) and (f) SAMs. (g) and (h) Visualization of reflectance
differences of three selected pixels circled in RGB images in (a) and (b).
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Fig. 15.  Performances of the learned Nikon WLRTR model in HR-HSI
generation based on the true Nikon and Canon RGB images of Salinas.
(a) and (b) True Nikon and true Canon RGB images. (c) and (d) Average
absolute difference. (e) and (f) SAMs. (g) and (h) Visualization of reflectance
differences of three selected pixels circled in RGB images in (a) and (b).

CRF as a component, £*MDN, HSCNNR, and WLRTR, suffer
from slight to no performance drop when testing on true
Nikon RGB images, while a significant performance drop
is observed when testing on true Canon RGB images. The
visualized error maps of two example datasets, CAVE, Salinas

5531314

400 450 500 550 600 630 700
)

400 450 500 550 600 €50 700
avebands ) )

400 450 500 550 600 650 700
javebands (nm) W )

Wavebands (nm

Fig. 16.  Performances of the learned Nikon x>MDN model in HR-HSI
generation based on the rotated true Nikon and Canon RGB images of
CAVE. (a)—(c) Learned and true Nikon and true Canon RGB images. (d)—(f)
Average absolute difference. (g)—(i) SAMs. (j)—(1) Visualization of reflectance
differences of three selected pixels circled in RGB images in (a)—(c).
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Fig. 17.  Performances of the learned Nikon WLRTR model in HR-HSI
generation based on the rotated true Nikon and Canon RGB images of CAVE.
(a) and (b) Learned and true Nikon and true Canon RGB images. (c¢) and
(d) Average absolute difference. (e) and (f) SAMs. (g) and (h) Visualization
of reflectance differences of three selected pixels circled in RGB images in
(a) and (b).

for £>MDN, HSCNNR, and WLRTR models are shown in
Figs. 10-15, respectively. The performances of #?MDN and
WLRTR models with rotated HR-RGB images as input are
shown in Tables V and VI, where models of ,uzMDN are
invariant to the image rotation, while WLRTR models suffer



5531314

from a big performance drop. Examples of error maps of
#>MDN and WLRTR models on rotated image pairs of the
CAVE dataset are shown in Figs. 16 and 17, respectively.

7) Performance of Models Built Based on Learned Canon
RGB Images: Both types of HSI-SR models, learned Canon
u>MDN (see Table VII), learned Canon HSCNNR (see
Table VIII), and learned from WLRTR (see Table IV),
performed equally on the true Canon RGB images, while
exhibiting a tremendous performance decrease on true Nikon
RGB images of all six datasets CAVE, ICVL, Chikusei,
Cuprite, Salinas, and KSC. The rotation of input HR-RGB
images has a marginal effect on the model performance of
u>MDN (see Table IX) while is detrimental to WLRTR
models.

VI. CONCLUSION

In this study, we demonstrate the stand-alone network to
learn the CRF between any given HSIs and RGB image of
the same scene in an unsupervised manner, which significantly
preserved the performance of HSI-SR models. Additionally,
the simple yet effective CRF learning process can largely
replace the conventional extensive searching or supervised
learning methods based on the selected corresponding pixels in
HSIs and RGB images. Similar strategies can be implemented
to learn mapping functions that map images covering different
wavebands of the same scene, for example, multispectral
image (MSI) to RGB or HSIs to MSI when we would like
to apply SR models under these situations; RGB images of
different appearances can also be mapped from one to another
similarly. Through learning a CRF that is specific to the
target set of RGB images with the proposed network, the
heavy dependence of all HSI-SR models, including HSCNNR,
#>MDN, and WLRTR models in this study, on RGB images
with known CRFs can be largely relieved. Higher-fidelity
RGB images might be generated through embedding CRF
in nonlinear networks and thus the performances of HSI-SR
models be better preserved with future efforts.
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