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HCNNet: A Hybrid Convolutional Neural Network
for Spatiotemporal Image Fusion
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Abstract— In recent years, leaps and bounds have developed
spatiotemporal fusion (STF) methods for remote sensing (RS)
images based on deep learning. However, most existing methods
use 2-D convolution (Conv) to explore features. 3-D Conv can
explore time-dimensional features, but it requires more memory
footprint and is rarely used. In addition, the current STF methods
based on convolutional neural networks (CNNs) are mainly the
following two: 1) use 2-D Conv to extract features from multiple
bands of the input image together and fuse the features to
predict the multiband image directly and 2) use 2-D Conv to
extract features from individual bands of the image, predict
the reflectance data of individual bands, and finally stack the
predicted individual bands directly to synthesize the multiband
image. The former method does not sufficiently consider the
spectral and reflectance differences between different bands, and
the latter does not consider the similarity of spatial structures
between adjacent bands and the spectral correlation. To solve
these problems, we propose a 2-D/3-D hybrid CNN called HCN-
Net, in which the 2D-CNN branch extracts the spatial information
features of single-band image, and the 3D-CNN branch extracts
spatiotemporal features of single-band images. After fusing the
features of the dual branches, we introduce neighboring band
features to share spatial information so that the information
is complementary to obtain single-band features and images,
and finally stack each single-band image to generate multiband
images. Visual assessment and metric evaluation of the three
publicly available datasets showed that our method predicted
better images compared with the five methods.

Index Terms— Feature fusion, hybrid convolution (Conv), spa-
tiotemporal fusion (STF), spectral correlation.

I. INTRODUCTION

AS THE scientific research on the application of remote
sensing (RS) images becomes more and more extensive

and intensive [1], human beings can obtain data of electromag-
netic radiation reflected or emitted from various landscapes.
There is an increasing demand for high spatial resolution
images to monitor rapid temporal changes on the Earth’s
surface [2]. Due to the limitations of satellite launch budget
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cost and key technologies, it is still not possible to obtain
RS image data with high spatial and temporal resolution at
the same time through a single satellite [3], [4]. In general,
high spatial resolution images have finer spatial details and
are widely used in urban spatial information extraction [5],
forest change monitoring [6], [7], and human-made landscape
monitoring [8], but such sensors have narrow widths and
long revisit cycles on one hand, and the lack of surface data
due to cloud cover on the other hand, making it difficult to
achieve the purpose of continuous dynamic monitoring on a
global scale with high spatial resolution image data in practical
applications [9], [10]. In contrast, sensors that obtain high tem-
poral resolution images usually have larger widths and shorter
revisit periods, but their low spatial resolution is insufficient
for quantitative monitoring of land cover change [11], [12].
If we can solve the problem of mutual constraints in the time
and space of RS images and obtain features with both high
temporal and high spatial resolution, it will help increase the
value of RS data in practical applications [13], [14].

The current spatiotemporal fusion (STF) methods are
mainly divided into weight function-based, unmixing-based,
and learning-based algorithms. Among the weight function-
based methods, the spatial and temporal adaptive reflectance
fusion model (STARFM) proposed by Gao et al. [15] is the
most influential. STARFM assumes that one coarse pixel only
includes one land cover type. However, this ideal situation
cannot be satisfied when coarse pixels are mixed, having a
mixture of different land cover types [16]. The prediction
performance of STARFM is affected by the characteristic
patch size of the landscape. The STARFM was later modi-
fied and improved for more complex situations, resulting in
the spatio-temporal adaptive algorithm for mapping reflection
changes (STAARCH) [17], which improves the performance
of the STARFM model in the presence of land-cover-type
changes and disturbances. An enhanced spatial and temporal
adaptive reflectance fusion model (ESTARFM) [18] based on
the existing STARFM algorithm improves the accuracy of pre-
dicted fine-resolution reflectance, especially for heterogeneous
landscapes.

The unmixing-based methods use spectral unmixing tech-
nology to estimate the selected endmember fractions of high
temporal low spatial (HTLS) image pixels to reconstruct
the corresponding low temporal high spatial (LTHS) image.
Ming-Quan et al. [19] proposed the spatial and temporal data
fusion model (STDFM) algorithm, which can obtain the
reflectance of different endmembers. Zhang et al. [20] pro-
posed an enhanced STDFM (ESTDFM) based on the STDFM
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algorithm by introducing a patch-based ISODATA classifica-
tion method, the sliding window technology, and the temporal-
weight concept. The spatial–temporal data fusion approach
(STDFA) [21] is based on the assumption that the temporal
variation properties of each land cover class are constant.
To avoid the limitations including the constant window for
disaggregation and sensor difference, Wu et al. [22] intro-
duce an adaptive window size selection method and a mod-
ified spatial and temporal data fusion approach (MSTDFA)
to generate daily synthetic Landsat imagery. The flexible
spatiotemporal data fusion (FSDAF) approach proposed by
Zhu et al. [16] combines two types of algorithms based on
spatial pixels unmixing and spatiotemporal change filtering
ideas. It introduces a thin plate spline (TPS) interpola-
tion technique to identify feature type changes, significantly
improving the fusion effect for heterogeneous ground cover
and feature type changes. Furthermore, improved algo-
rithms based on FSDAF have been proposed successively,
which improve the accuracy of fused images to different
degrees [23]–[25].

The learning-based approach builds association models
by learning the mapping relationships between LTHS and
HTLS images. SParse-representation-based SpatioTemporal
reflectance Fusion Model (SPSTFM) [26] based on sparse rep-
resentation is the first learning-based STF method. To explore
spatio-spectral–temporal features, Zhao et al. [27] propose a
novel sparse representation model to generate synthesized
frequent high spectral and high spatial resolution data by
blending multiple types. Techniques such as regression trees,
random forests, and extreme learning machines (ELMs) have
been widely used [28]. Boyte et al. [29] demonstrated that
the regression tree model could be used to downscale 250 m
enhanced moderate resolution imaging spectroradiometer
normalized difference vegetation index (eMODIS NDVI)
data using 30 m Landsat 8 operational land imager (OLI)
data relatively easily and effectively. Ke et al. introduced
machine learning approaches for MODIS evapotranspiration
(ET) downscaling. In this study, random forests is used to
implement the method [30]. Liu et al. [31] proposed a novel
STF using a powerful learning technique, i.e., an ELM, which
devotes itself to learning a mapping function on different
images directly and obtains better fusion results while achiev-
ing much greater speed. Song et al. [32] proposed a convo-
lutional neural network (CNN)-based fusion method, which
first learns the nonlinear mapping model between MODIS
and downsampled Landsat images and then learns the super-
resolution (SR) model between the downsampled Landsat
images and the original Landsat images. The deep convo-
lution STF network (DCSTFN) proposed by Tan et al. [33]
inputs a pair of LTHS and HTLS images for reference and
a pair of HTLS images for prediction. The information is
merged in the form of extracted feature images, and then
the merged features are reconstructed into prediction images.
Liu et al. [34] use temporal information in high-resolution
image sequences and solve the STF problem with a two-stream
CNN called StfNet. Tan et al. [35] propose an enhanced deep
convolutional model (EDCSTFN), which focuses on recon-
structing high-resolution images at reference time using two
pairs of low-resolution images and high-resolution images

at prediction time. Li et al. [36] proposed an STF method
AMNet, in which an attention mechanism and a multiscale
mechanism are incorporated. It differs from previous STF
methods in which the residual images obtained from the
MODIS images are twice subtracted and used directly for
network training. Two special structures, the multiscale and
attention mechanisms, are used to improve fusion accuracy.

Most of the previous STF methods use 2-D Conv for
feature extraction, and there are few methods to design net-
works by combining both 2-D and 3-D convolutions (Convs).
Li et al. [37] presented a new SR method for hyperspectral
images, which alternately uses 2-D and 3-D Convs to solve
the structural redundancy problem by sharing the spatial
information in the reconstruction process of the existing mod-
els and improving the learning capability in the 2-D spatial
domain. Wang et al. [38] proposed a new network structure
for hyperspectral image SR and designed with depth split-
ting (DS) to jointly use the information of single and adjacent
bands, which can effectively share spatial information com-
pared with a single 3-D CNN, thus improving the learning
ability in the 2-D spatial domain. The network structure uses
the current band and its two adjacent bands to reconstruct
the single-band SR and finally achieves the reconstruction
of hyperspectral images by recursive means. Inspired by
[37], [38], the HCNNet fusion model is designed to alleviate
the mentioned STF problem. Considering that RS images are
more challenging to acquire data in cloudy areas, HCNNet
uses a pair of reference images near the prediction moment
to make predictions on the target image. The novelty of the
fusion model proposed in this article is mainly reflected in the
following aspects.

1) A multiband–single-band–multiband structure is adopted
in this article. The multiband–single-band process can
fully consider the differences in reflectance of individual
bands. The single-band–multiband process is also not a
simple stacking of individual bands but fully considers
each band’s spatial structure similarity and spectral
connection through feature iteration.

2) Building a dual-branch hybrid CNN architecture. The
network uses the 2D-CNN branch to learn the spatial
features of the LTHS image at the reference moment
and the 3D-CNN branch to learn the spatiotemporal
variation features of the LTHS and HTLS images.
Finally, the dual-branch features are fused to improve
single-band feature extraction and image reconstruction
performance.

3) Linking 3D-CNN branching features with 2D-CNN
branching features through the permute (Pme) mod-
ules and introducing convolutional block attention mod-
ule (CBAM) to share spatial channel information and
enhance spatial information feature extraction in the
2D-CNN branch.

4) The spatial and spectral information of adjacent bands of
multiband images are associated, and the features of the
former band are transferred to the feature reconstruction
task of the next adjacent band after extraction. The
spatial attention mechanism is introduced to enhance
the spatial information extraction capability. With this
inter-band feature iteration strategy, the features of every
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single band are reconstructed, and the spatial–spectral
information between bands is shared and complemented.

The remainder of this article is organized as follows.
Section II presents the related research work. Section III
elaborates on the proposed network structure. Section IV
gives the experimental details, results, and performs ablation
experiments for validation. Section V concludes this article.

II. RELATED WORK

In this article, a novel hybrid convolutional module
(HCNNet) is proposed to extract the potential features by
2-D/3-D Conv instead of one Conv, which enables the network
to explore features of multiband images more. CBAM is an
attention module for feed-forward CNN and can be seamlessly
integrated into any CNN architecture by ignoring the overhead
of the module and can be trained end-to-end with the base
CNN. This section briefly introduces 2-D Conv, 3-D Conv,
and attentional mechanisms.

A. CNNs Based on 2-D Conv

CNNs can automatically learn features from data (usually
large-scale) and generalize the results to unknown data of the
same type. In 2D-CNN, the Conv operation is implemented
by computing the sum of dot products between the input data
and the corresponding convolution kernel (CK). Each channel
of the 2-D convolutional layer can be represented as

Di = �

⎛
⎝∑

j

(
wi · x j

) + bi

⎞
⎠ (1)

where Di is the ith channel of the convolutional feature
map, wi represents the ith CK, and bi is the bias term of
the ith feature map. x j is the jth channel of the previous
layer, · operator represents the Conv operation, and �(·)
represents the nonlinear Relu activation function. This function
can be used to improve CNN’s nonlinearity and speed up the
training process of the network model and can be expressed
by the following equation:

�(x) =
{

x, if x > 0

0, if x ≤ 0.
(2)

B. CNNs Based on 3-D Conv

To fully use the temporal variation features of HTLS
images at different moments, we use 3-D Conv to extract
spatiotemporal features from input images. 3-D Conv has an
additional depth channel compared with 2-D Conv, and this
depth channel is the temporal channel in the STF. A distinctive
feature of hyperspectral images is the strong correlation of
neighboring bands, and therefore there is much recent litera-
ture on SR of hyperspectral images using 3-D Conv [39]–[41].
There is also a strong correlation between different resolutions
of images in the STF task in terms of bands, so in this
article, we use 3-D Conv to extract spatiotemporal features.
In the 3D-CNN branch, the input data are convolved with

3-D CK. The activation value at spatial position (x, y, z) can
be formulated as

v
xyz
i j = �

⎛
⎝∑

t

Fi −1∑
f =0

Gi −1∑
g=0

Hi−1∑
h=0

w
f gh

i j t · v(x+ f )(y+g)(z+h)
(i−1)t + bi j

⎞
⎠

(3)

where �(x) is the activation function, and Gi and Fi are the
height and width of the spatial dimension of CK, respectively.
Hi is the spectral dimension of CK and the connection index
of the current (jth) feature map to the feature map of layer
i −1. w

f gh
i j t represents the connection value with the tth feature

map at position ( f , g, h). v
(x+ f )(y+g)(z+h)
(i−1)t is the value of the

t th feature map of layer i − 1 at position (x + f, y + g, z + h),
and bi j is the bias value.

C. Attentional Mechanisms

CBAM [42] introduces both spatial and channel attention
to enhance the representation of feature regions and determine
what the network model should focus on. The attention process
is divided into two parts: the channel attention module and
the spatial attention module, which saves parameters and
computational power and ensures that it can be integrated
into the existing network architectures as a plug-and-play
module. The two modules can be used separately or in combi-
nation. The CBAM network structure is shown in Fig. 1. In the
CBAM module, the input feature maps are first subjected
to global max-pooling (denoted by MaxPool2d) and global
average pooling (denoted by AvgPool2d). Then the resulting
feature maps are sent to a linear layer (denoted by Linear)
to reduce the number of feature maps, which are activated
by the Relu function (denoted by Relu) and then restored
to the original number of features by a linear layer. After
that, the output features are summed element by element
(represented by ⊕), and the final channel attention feature
map is obtained by the sigmoid activation function (denoted by
Sigmoid). The spatial attention feature map is operated to find
the maximum value (represented by Max) and the mean value
(represented by Mean), and the two obtained feature maps are
concatenated (represented by ©) by concatenation operation,
and then 2-D Conv (represented by Conv2d) is performed
to reduce the number of feature maps. The spatial attention
features are generated after the sigmoid activation function
and multiplied (represented by ⊗) with the input to get the
final generated features.

III. PROPOSED METHODOLOGY

In this section, we first introduce the principle of STF
and then introduce the architecture of the proposed HCNNet,
including the overall network structure, the dual-branch net-
work structure, the dual-branch feature fusion, and the band
feature iteration. Finally, the loss function of the model is
introduced.

A. Principle of STF

The STF methods in this article use satellite sensor data
from two different sources. M and L represent the HTLS
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Fig. 1. Convolutional block attention module. (a) Channel attention. (b) Spatial attention.

and LTHS images, respectively. We have now acquired HTLS
image M1 at the moment of forecast date t1, HTLS image Mk ,
and Landsat image Lk for the same geographical area at
the moment of reference date tk . The task of STF is to
use the already acquired images to predict the LTHS image
L1 at the moment t1. The reference moment tk is selected
near the predicted moment, and the timespan should not be
too large so that the predicted image L1 contains both the
time variation in the HTLS image and LTHS image detail
texture information. The above process can be abstracted to
establish a mapping relationship between the target image
and the acquired image, and this mapping relationship can
be expressed by the following equation:

L1 = ϕ(M1, Lk, Mk |θ), k �= 1 (4)

where the parameters θ represent a set of learnable parameters
that can be learned by training the STF model to build a
nonlinear mapping to approximate the actual function. In this
article, k = 0.

B. Overall Network Structure

The general architecture of HCNNet is shown in Fig. 2.
Unlike previous approaches, HCNNet deals with each band
separately but considers the associations between each
band. The overall structure includes 2D-CNN, 3D-CNN,
Pme modules, spatiotemporal feature fusion (TSFF), and
spatial–spectral feature fusion (SSFF) modules. The images
we input to the network are LTHS image L0 at the moment t0,
HTLS image M0 at the moment t0, and HTLS image M1 at
the moment t1, and the image to be predicted is L1 at the
moment t1. Each image consists of i bands. All the fine spatial
texture features of L1 come from the L0 image, so we input
each band of L0 into the 2D-CNN branch for spatial detail
feature extraction when rebuilding each band feature. Time
change information needs to be extracted from M0 and M1.
L0 can also reflect time change compared with M0. To make
full use of the observed data, we input M0, M1, and L0 together
into the 3D-CNN branch for spatiotemporal feature extraction
when reconstructing the time-varying features in each band.
The weights w1 and w2 are set for the dual branches, respec-
tively, to control the temporal and spatial feature learning
flexibly, and the outputs of the dual branches are connected
by the TSFF and SSFF modules.

The results of reconstructing the feature of each band are
shown below

Fi
1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C
[
w1 ∗ (

f2D
(

Li
0

) + P
(

f3D
(

Mi
0, Mi

1, Li
0

)))
,

w2 ∗ P
(

f3D
(

Mi
0, Mi

1, Li
0

))]
, i = 1

C
[
w1 ∗ (

f2D
(

Li
0

) + P
(

f3D
(

Mi
0, Mi

1, Li
0

)))
,

w2 ∗ P
(

f3D
(

Mi
0, Mi

1, Li
0

))
, Fi−1

1

]
, 1 < i ≤ B

(5)

where Fi
1 represents the i th band feature reconstructed at the

moment t1, C represents the concatenation operation, f2D(·)
and f3D(·) denote the operation of two channels, respectively,
and w1 and w2 represent the weights of the dual branches,
respectively. B represents the total number of bands of the
image. P represents the Pme module. After the 3D-CNN
branch goes through the Split-3d module, the output graph
size is B × C × 3 × W × H , where B is the batch size,
C denotes the number of channels, and W and H represent
the width and height, respectively. The Pme performs the
permutation operation, and the size of the output graph will
become 3 × B × C × W × H by the Pme module. The
original output of the 3D-CNN branch is converted into three
feature maps of size B × C × W × H and the feature
maps match the feature map size of the 2D-CNN branch.
The reconstructed image bands are spatially and spectrally
connected. In feature reconstruction of Fi

1 , we need to obtain
the band feature Fi−1

1 before the band, and we implement
each band feature reconstruction by multiple such steps. After
that, the single-band image reconstruction is completed by
a 2-D Conv operation, and the single-band image rebuild
will be introduced in detail in Section III. Finally, each
single-band image is used to generate multi-band RS images
by C operation, as shown below

L1 = C
(

L1
1, L2

1, . . . Li
1

)
, 1 ≤ i ≤ B (6)

where C represents the concatenation operation, and B denotes
the total number of bands of RS images. HCNNet adopts
a multiband–single-band–multiband structure to accomplish
the STF.

C. Dual-Branch Network Structure

Most previous CNNs use 2-D Conv to extract features, and
few have extracted spatiotemporal features by combining both
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Fig. 2. General structure of our proposed HCNNet. First, we feed the first band L1
0 of the L0 image into the 2D-CNN to learn spatial detail features and

feed the first band M1
0 , M1

1 , and L1
0 of each M0, M1, and L0 image together into the 3D-CNN branch to extract both spatial and temporal features. The Pme

module enhances the feature learning capability of the 2D-CNN branch. Then, the reconstruction of the first band features F1
1 and the first band image L1

1 is
completed by the TSFF module. The second-band feature extraction process of the L1 image is the same as that of the first band, and both are completed
by the 2-D, 3-D branch, and the TSFF module. The difference is that the spatial and spectral features F1

1 learned in the first band are incorporated into the
second band feature F2

1 of L1, and the second band features F2
1 of L1 and the second band image L2

1 are finally completed by the spatial–spectral feature
fusion (SSFF) module. The remaining features and images of each band of L1 images are reconstructed similar to the second band. Finally, we merge the
single-band images by concatenation (Concat) operation to obtain L1.

2-D and 3-D Convs. The architecture includes 3D-CNN and
2D-CNN branches which are shown in Fig. 3. Next, we present
the details of the network structure.

1) 2D-CNN: For the STF, the aim is to reflect the spa-
tiotemporal variation information finely. In the first band, for
example, we perform 2-D Conv to extract spatial features, and
then these features are followed by several CBAM modules to
extract deeper features further. Afterward, these features are
enhanced by branching features of 3D-CNN, which is done by
the Pme module. The output L D after the dth CBAM module
is as follows:

L D = C(X D(. . . C(X D−1(C(X1(L0), P(M1)) + L0),

P(MD) ) + L0 . . . )), P(MD+1) ) + L0 (7)

where X D denotes the operation of the dth CBAM module,
MD is the result after processing by the dth Split-3d module,
C represents the concatenation operation, and P(·) denotes
the operation of the Pme module. Because shallow features
retain more edge and texture features [38], we use a jump
connection to feed L0 into each CBAM module. To enhance
the spatial channel feature extraction capability of the CBAM
module, we connect the features extracted from the 3D-CNN
branch through the Pme module followed by the C opera-
tion to the CBAM module output results. The outputs from
different CBAM modules are connected by the C operation
and then passed through a convolutional layer with a CK size
of 1 × 1 to reduce the number of feature maps and improve
the model’s computational efficiency. The network details of
generation L D are shown in Fig. 4(a).
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Fig. 3. Dual-branch network structure.

Fig. 4. Network details. (a) Network details for generating L D . (b) Split-3d
module.

2) 3D-CNN: For the STF, we use the 3D-CNN branch
to perform feature extraction for each band of M0,
M1, and L0 images. If conventional 3-D Conv is used,
then the network parameters will increase significantly
and consume much memory. Therefore, instead of regular
3-D Conv, we used a separable 3-D Conv (represented by
Split-3d) by splitting the 3 × 3 × 3 CK into two sets
of 3 × 1 × 1 and 1 × 3 × 3 CK, and the Split-3d has
essentially the same effect as directly using 3 × 3 × 3 CK [41].
Take the first band of M0, M1, and L0 as an example.
At the beginning of the network, we stack them (denoted by
stack) in dimension (3 × H × W ), where H and W denote
the image height and width, respectively. The dimension is
expanded by twice decompression (represented by unsqueeze)
to 1 × 1 × 3 × H × W , the first dimension represents the
batch size, and the second dimension represents the number of
feature maps, after which the shallow features are obtained by
Split-3d module. Afterward, the in-depth features are further
extracted after several Split-3d modules, and the in-depth fea-
tures are connected to the shallow features by jump connection
and the output formula as

MD = YD(YD−1(. . . Y1(M0) + M0 . . . ) + M0) + M0 (8)

where YD denotes the operation of the dth Split-3d module,
MD is the result after processing by the dth Split-3d module,
and the outputs from different Split-3d modules are connected
by Concat and then passed through a convolutional layer with
a CK size of 1 × 1 × 1 to reduce the number of feature maps
and improve the efficiency of model computation.

In each Split-3d module [shown in Fig. 4(b)], spatiotempo-
ral features are extracted using 1 × 3 × 3 and 3 × 1 × 1 CKs,

and local residual connections are added to the module. Sim-
ilarly, the initial features M0 are connected to the end of each
Split-3d module. Compared with using 2-D Conv, 3-D Conv
can improve the reconstruction performance of individual
bands using the spatiotemporal variation information of both
M1

0 and M1
1 bands and L1

0 delicate spatial information, which
will be demonstrated in the ablation experiments in Section IV.

D. Dual-Branch Feature Fusion and Band Feature Iteration

The reconstruction of the first-band feature F1
1 and the

first-band image L1
1 is completed by the TSFF module. After

the dual-branch feature extraction is completed and the number
of feature maps is reduced by 1 × 1 and 1 × 1 × 1 CK,
respectively, we use the Pme module in the 3D-CNN branch
to achieve dimensionality reduction and match the size of
the 2D-CNN branch feature map. Then we use the Concat
module to realize the dual-branch feature fusion and use
2-D Conv to complete feature reconstruction and reduce the
number of feature maps to 1 to complete the first band image
reconstruction. There are certain spatial structural similarities
and spectral correlations between adjacent bands, and we use
these properties to introduce adjacent band features to improve
the reconstruction performance of individual band features.
The subsequent image reconstruction of each band feature set
will be done by the SSFF module. Take the rebuild of the
second-band feature F2

1 and the second-band image L2
1 as an

example. After the dual-branch feature extraction is completed,
the first-band feature F1

1 will be fused with it by the Concat
module. Then, the rebuild of the second-band feature F2

1 is
completed by the two-layer 2-D Conv, and the reconstruction
of the second-band L2

1 is completed by the SPA-Atten module.
The image reconstruction for each band is shown as follows:

Li
1 =

{
Conv3

(
Conv1

(
Fi

1

))
, i = 1

S
(
Conv3

(
Conv1

(
C

(
Fi−1

1 , Fi
1

))))
, 1 < i ≤ B

(9)

where Conv1(·) and Conv3(·), respectively, represent the dot
product operation using 1 × 1 and 3 × 3 CKs, S(·) represents
the SPA-Atten module, and the SPA-Atten module is the green
rectangular frame part of the CBAM module in Fig. 1.

E. Loss Function

Zhao et al. [43] showed the importance of structural sim-
ilarity (SSIM) loss and proposed a loss function consisting
of mean absolute error (MAE) loss and multi-scale SSIM
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(MS-SSIM) after comparing several loss functions, which has
a significant improvement in image restoration results without
changing the network structure [44]. Inspired by this, we use
a compound loss function for the STF, and this compound
loss function consists of content loss and vision loss, and the
formula is shown below

LHCNNet = Lcontent + αLvision. (10)

Lcontent is calculated using MAE. α is a balance factor
controlling visual loss, which is empirically set to 0.8. SSIM
belongs to the perceptual correlation index. In the image
reconstruction task, SSIM takes a value between 0 and 1,
and the closer to 1 means the more similar the two images
are. The SSIM index algorithm is a single-scale approach,
which is a drawback of the method because the correct
scale depends on viewing conditions (e.g., display resolution
and viewing distance). MS-SSIM is an approach for image
quality assessment, which provides more flexibility than the
single-scale approach in incorporating the variations in image
resolution and viewing conditions. The essence of multiscale
is to continuously downsample the generated image and the
actual image by a factor of 2 to obtain images with mul-
tiple resolutions. Furthermore, these images with different
resolutions are evaluated for SSIM in turn, and finally, these
SSIMs are fused into one value somehow. MS-SSIM is an
improvement of SSIM. It has been shown that MS-SSIM can
effectively preserve the high-frequency details of images [35].
Therefore, we use MS-SSIM for visual loss assessment and
define the Lvision loss as the following, where P is the patch
block of the predicted image

Lvision = 1 − MS-SSIM(P). (11)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, to validate the effectiveness of the proposed
method, we first present the dataset used by the model. After
that, we give the specific parameter settings of the HCNNet
network. Then we briefly introduce the image evaluation met-
rics. The experimental results are given and the performance of
HCNNet is evaluated by comparing it with five STF models.
Finally, we demonstrate the effectiveness of the proposed
network structure and the related modules in it by ablation
experiments.

A. Dataset Introduction

We conducted experiments on three publicly available
datasets. The first dataset is located in the Coleambally irri-
gation area (CIA) in southern New South Wales, Australia.
The CIA dataset consists of 17 cloud-free Landsat-MODIS
image pairs taken from October 2001 to May 2002, with an
image size of 3200 × 2720 and six bands per image. The
size of the fields within the CIA region is relatively small and
phenological variability dominates [45]. The second dataset,
the lower gwydir catchment (LGC), is located in northern
NSW, Australia. The LGC dataset consists of 14 cloud-free
Landsat-MODIS image pairs captured from April 2004 to
April 2005, with an image size of 1720 × 2040 and six bands

per image. The region experienced a significant flood in mid-
December 2004, which subsided in late December and was
dominated by the changes in surface cover type. The third
dataset, the Daxing dataset, includes 29 cloud-free Landsat-
MODIS image pairs from September 2013 to November 2019,
collected from the Daxing district located in the south of
Beijing city, with an image size of 1640 × 1640 and six
bands per image. The primary purpose of this dataset is to
provide a benchmark for evaluating the performance of STF
in detecting land cover changes [46]. The two short-wave
infrared bands in the MODIS images in the Daxing dataset
have significant band noise, and we did not consider these two
bands in our experiments. Both the public dataset images have
been atmospherically corrected. During the cropping process,
the images can be cropped randomly while ensuring that the
study area contains the main study target (e.g., fields, floods,
buildings), but the cropping area of the images should be kept
consistent across different datasets. We cropped three datasets
separately to a size of 1600 × 1600. Totally, 17 Landsat
and MODIS image pairs are available in the CIA dataset,
and each reference image pair (moment t0) is used to predict
the image at the closest future moment (moment t1) to it,
which can be divided into 16 datasets, each consisting of
two Landsat-MODIS image pairs, where M0, M1, and L0 are
used as training and L1 is used as the target for validation.
We randomly select 12 sets of data from the 16 sets as the
training set and four sets of data as the test set. Similar to the
CIA dataset, 14 Landsat and MODIS image pairs are available
in the LGC dataset, and we randomly select ten sets of data
from the 13 groups as the training set and three sets of data
as the test set. In all, 29 Landsat and MODIS image pairs
are available in the Daxing dataset, and we randomly select
23 sets of data from the 28 sets as the training set and five
sets of data as the test set.

B. Parameter Settings

HCNNet is implemented in the PyTorch architecture. The
network mainly uses 1 × 3 × 3, 3 × 1 × 1, 1 × 1 × 1,
1 × 1, and 3 × 3 CKs, with a small number of 7 × 7 CKs in
the CBAM module and SPA-Atten module. The whole fusion
model has 907 205 trainable weight parameters. We chose
the Adam-optimized stochastic gradient descent method to
optimize the network training parameters. The initial learning
rate is set to 1e-4, and the learning rate will decrease to
0.1 of the initial learning rate if the loss does not improve
for five consecutive epochs during the training process. Forty
epochs are trained for the LGC dataset, and 50 epochs are
trained for the CIA and Daxing datasets, which are larger
than the LGC dataset. w1 is taken as 0.4, and w2 is taken
as 0.6 for the dual-branch weights. The number of CBAM
modules and split-3d modules is set to 5. The size of RS
images is significant, and to reduce the memory occupancy,
we cut the original 1600 × 1600 image into smaller 160 ×
160 images, and the sliding step size is set to 160 × 160.
These hyperparameter settings can be adjusted according to
the experimenter’s hardware device conditions and dataset.
HCNNet is run in a Windows 10 Professional environment
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Fig. 5. Predicted results for the target Landsat image in CIA dataset. (a) Observed Landsat image (t0). (b) Predicted by STARFM. (c) Predicted by FSDAF.
(d) Predicted by DCSTFN. (e) Predicted by AMNet. (f) Predicted by EDCSTFN. (g) Predicted by the proposed method. (h) Observed Landsat image (t1).

with a hardware environment including 32 GB RAM, Intel(R)
Core(TM) i7-8700K CPU at 3.70 GHz, and an NVIDIA
GeForce RTX 3090 with 24 GB RAM.

C. Comparison and Evaluation

To verify the effectiveness of the proposed models in
this article, we compare the HCNNet model with the
weighting-based fusion model STARFM, the unmixing-based
model FSDAF, and the CNN-based DCSTFN, EDCSTFN, and
AMNet models. For the objectivity and fairness of the exper-
iments, we implemented the above fusion models in the same
environment. We used root mean square error (RMSE) [33],
SSIM, correlation coefficient (CC) [34], spectral angle mapper
(SAM) [47], and erreur relative global adimensionnelle de
synthese (ERGAS) [48] as objective evaluation metrics.

The CIA dataset has four sets of test data, and we selected
a set of 20 011 017-20 011 102 test data to visualize the experi-
mental results (20 011 017 represents the image observed at the
reference moment t0, i.e., October 17, 2001, and 20 011 102
represents the image observed at the prediction moment t1,
i.e., November 2, 2001), as shown in Fig. 5. The LGC
dataset has three sets of test data, and we selected a set of
20 041 212–20 041 228 test data to visualize the experimental
results. The number sequence represents the same meaning as
above, as shown in Fig. 6. The Daxing dataset has five sets of
test data, and we selected a set of 20 181 001–20 181 204 test
data to visualize the experimental results, as shown in Fig. 7.

In Fig. 5, the yellow and green rectangular boxes (both
650 × 650 in size) in the upper left and lower right corners
of each image are obtained by enlarging the small yellow and
central green rectangular boxes (both 130 × 130 in size) in the
upper right corner of the figure by a factor of 5, respectively.
Most of the area in the yellow rectangular box is planted

with rice. With the change in Landsat images from t0 to
t1 moments, we find that part of the crop in this region has been
harvested. Both the models, STARFM and FSDAF, are less
effective than DCSTFN, AMNet, and HCNNet in reflecting
this changing trend in this region, but both are better than
EDCSTF, with FSDAF slightly better than STARFM. The
DCSTFN and AMNet models lose some spatial details and
edge information in some local areas, although they better
rebuild this overall change trend in the region. In addition
to reflecting the overall trend of change, HCNNet is more
effective in rebuilding the spatial details of some local areas.

The CIA dataset is mainly characterized by the change in
phenology, with the color of the lower right area of the green
rectangular box zoomed in on the Landsat image changing
from blue to dark green from moment t0 to t1. The difference
in image color predicted by all the models compared with the
Landsat image at the prediction moment reflects the presence
of some degree of spectral distortion in all the models. Among
them, AMNet and EDCSTFN have the most severe distortion,
and the color of this area is blue, which differs significantly
from the actual surface, dark green. The STARFM and FSDAF
models rebuild the spectra closely, but both are inferior to
the DCSTFN and HCNNet models. HCNNet is close to
the spectral results compared with DCSTFN but outperforms
DCSTFN in local spatial detail reconstruction. From the above
visual comparison, it can be seen that the prediction results of
our proposed model are closest to the authentic Landsat images
compared with other models.

In Fig. 6, the green rectangular box in the upper left corner
of each image (both 1275 × 675 in size) is obtained by
enlarging the small green rectangular box in the lower right
corner (both 850 × 450 in size) by 1.5 times, respectively.
The LGC dataset is located in a study area dominated by
the changes in the land cover type, which experienced a
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Fig. 6. Predicted results for the target Landsat image in the LGC dataset. (a) Observed Landsat image (t0). (b) Predicted by EDCSTFN. (c) Predicted
by DCSTFN. (d) Predicted by AMNet. (e) Predicted by FSDAF. (f) Predicted by STARFM. (g) Predicted by the proposed method. (h) Observed Landsat
image (t1).

Fig. 7. Predicted results for the target Landsat image in the Daxing dataset. (a) Observed Landsat image (t0). (b) Predicted by STARFM. (c) Predicted
by FSDAF. (d) Predicted by DCSTFN. (e) Predicted by AMNet. (f) Predicted by EDCSTFN. (g) Predicted by the proposed method. (h) Observed Landsat
image (t1).

significant flood in mid-December 2004, followed by receding
floods in late December. We selected a set of 20 041 212–
20 041 228 test data to test the reconstruction effect of each
model for the area of land-cover-type change. The image
rebuilt by EDCSTFN is the worst, indicating that it has not
learned the complex mapping relationship between MODIS
and Landsat data, and the reconstruction result is influenced by

the reference image, and the fusion result is very similar to the
reference image. The DCSTFN model has a better result than
the EDCSTFN model in that it predicts the process of flood
receding in the local area. The AMNte model reconstruction
results are better than the DCSTFN model, which predicts a
larger area of flood recession. Both the STARFM and FSDAF
models outperformed EDCSTFN, DCSTFN, and AMNet in
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TABLE I

QUANTITATIVE ASSESSMENT OF DIFFERENT SPATIOTEMPORAL FUSION METHODS FOR THE CIA DATASET

TABLE II

QUANTITATIVE ASSESSMENT OF DIFFERENT SPATIOTEMPORAL FUSION METHODS FOR THE LGC DATASET

reflecting this changing trend of flood recession in this area,
indicating that these two models have some advantages in
rebuilding areas with abrupt changes in land cover types, with
the STARFM model predicting better results than FSDAF.
The HCNNet model, which is closest to the actual Landsat
observation data, predicts the flood receding process best
compared with other models and outperforms other models
in reconstructing spatial detail information in local areas.

The building in the center of the green rectangle
(380 × 380 in size) at the bottom right of Fig. 7 is Beijing
Daxing Airport, and the enlarged rectangle (760 × 760 in
size) at the top left corner shows that the land cover changes
around the airport during the construction process from t0 to t1.
Both STARFM and FSDAF perform less well than the deep-
learning-based models in predicting the change in the exten-
sive range of land cover changes around the airport, but
DCSTFN, AMNet, and EDCSTFN reconstruct the colors
of the area around the airport with significant differences
compared with the t1 image moment, and there is a problem
of spectral distortion. We selected two areas near the airport

for zooming in to compare the reconstruction effect of each
model, represented by a yellow rectangular box (88 × 156 in
size) and a blue rectangular box (77 × 77 in size) zoomed
in five times and six times, respectively. Compared with the
above methods, the proposed model performs better predicts
both land-type changes and mitigating spectral distortions.

The magnified yellow rectangular box (440 × 780 in size)
has buildings in the left half of the area, and its color changes
from light blue to white from t0 to t1 moments, while most
of the crops in the right half of the area are harvested and the
color of the change area changes from red to green. In this
region reconstruction process, the STARFM and FSDAF mod-
els reconstructed images are more influenced by the reference
moment image and closer to the reference moment image. The
proposed model has less spectral distortion than DCSTFN,
AMNet, and EDCSTF and retains more spatial details in
the local area. The magnified blue rectangular box region
(462 × 462 in size) shows significant phenological changes.
The reconstructed images from the STARFM and FSDAF
models are closer to the reference moment images and fail
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TABLE III

QUANTITATIVE ASSESSMENT OF DIFFERENT SPATIOTEMPORAL FUSION METHODS FOR THE DAXING DATASET

Fig. 8. Quantitative evaluation results of CIA four groups of test data (for root mean square error (RMSE), spectral angle mapper (SAM), relative dimensionless
global error (ERGAS), correlation coefficient (CC), and structural similarity (SSIM), the values are averaged among all the six bands). (a) RMSE. (b) SAM.
(c) ERGAS. (d) CC. (e) SSIM.

to reflect the significant phenological changes. The DCSTFN,
AMNet, and EDCSTF models reflect the phenological changes
to some degree but have severe spectral distortion compared
with the observed images at t1. Compared with the above
models, the proposed model reflects the phenological changes
in the region and alleviates the spectral distortion problem and
has a better visual effect than other models.

Tables I–III give the evaluation results of each algorithm
for the test data 20 011 017–20 011 102 in the CIA dataset,
20 041 212–20 041 228 in the LGC dataset, and 20 181 001–
20 181 204 in the Daxing dataset, respectively. Based on the
three sets of test data from the three datasets, we con-
clude that HCNNet can predict phenological changes and
predict more accurately the areas where abrupt changes in
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Fig. 9. Quantitative evaluation results of LGC three groups of test data (for root mean square error (RMSE), spectral angle mapper (SAM), relative
dimensionless global error (ERGAS), correlation coefficient (CC), and structural similarity (SSIM), the values are averaged among all the six bands). (a) RMSE.
(b) SAM. (c) ERGAS. (d) CC. (e) SSIM.

TABLE IV

AVERAGED QUANTITATIVE METRICS FOR CIA
AREA ON THE TEST DATASET

land cover types occur while retaining more spatial detail
information.

To verify the overall performance of each model on the
three publicly available datasets, we further compare the
performance of each algorithm. Fig. 8 shows the quantitative
metrics for the four sets of CIA test data. These metrics are
calculated for the entire image of each group. From the per-
spective of statistical error, the HCNNet prediction results have
higher accuracy than the other models. Second, the prediction
results of HCNNet remain relatively stable and show strong

TABLE V

AVERAGED QUANTITATIVE METRICS FOR LGC
AREA ON THE TEST DATASET

robustness compared with other methods. Table IV presents
the average quantitative metrics for the CIA region on the
entire test dataset. Each quantitative metric shows that the
HCNNet model outperforms other methods, which indicates
that the proposed model does improve the accuracy of the
fusion.

Fig. 9 shows the quantitative metrics for the three sets of
LGC test data. The HCNNet model shows significantly high
scores for the metrics, and predicted results remain stable
remain stable for all test data. The classical STARFM and
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Fig. 10. Quantitative evaluation results of Daxing five groups of test data (for root mean square error (RMSE), spectral angle mapper (SAM), relative
dimensionless global error (ERGAS), correlation coefficient (CC), and structural similarity (SSIM), the values are averaged among all the four bands).
(a) RMSE. (b) SAM. (c) ERGAS. (d) CC. (e) SSIM.

TABLE VI

AVERAGED QUANTITATIVE METRICS FOR DAXING

AREA ON THE TEST DATASET

FSDAF models have large fluctuations on different test data.
The large fluctuations in the datasets indicate that they are not
as robust as HCNNet. Table V presents the average quantitative
metrics for LGC regions over the entire test dataset. The rows
of the HCNNet model are shown in bold. Each quantitative
metric shows that the HCNNet model outperforms the other
methods, which is further evidence that our proposed approach
can truly improve fusion accuracy.

Fig. 10 shows the quantitative metrics for the five Daxing
test datasets. The predictions of HCNNet remain stable on all

test data and outperform most of the models in all test sets. The
classical STARFM and FSDAF models perform more consis-
tently on this test data. Table VI lists the average quantitative
metrics for the Daxing region on the entire test dataset. The
best metrics among each of the metrics measured by each
model are shown in bold, and the quantitative metrics all show
that the HCNNet model outperforms the other methods.

D. Ablation Experiments

We conducted ablation experiments on the three datasets
to analyze their impact on network performance by replacing
or removing different modules. To demonstrate the effect of
3D-CNN on the structure of the HCNNet network, we replaced
Split-3d with 2D-CNN, where the Pme module has no mean-
ingful existence, and removed it, leaving the rest of the
structure unchanged, defining this experimental method as
“No-3D-CNN.” To verify the effect of CBAM on the net-
work structure, we replace the CBAM module with 2D-CNN
and keep the rest of the structure unchanged, defining the
sub-method as “No-CBAM.” To verify the effect of Pme
on the network structure, we remove the Pme module and
leave the rest of the structure unchanged, and define this
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TABLE VII

PERFORMANCE OF DIFFERENT ABLATION METHODS ON THE THREE DATASETS

Fig. 11. Correlation between the NIR-band-predicted image and observed image on March 2, 2005, of LGC. (a) Result of No-3D-CNN. (b) Result of
No-CBAM. (c) Result of No-Pme. (d) Result of No-SPA. (e) Result of No-SSFF. (f) Result of the proposed.

method as “No-Pme.” To verify the effect of the SPA-Atten
module on the network structure, we remove the SPA-Atten
module and leave the rest of the structure unchanged, defining
this method as “No-SPA.” To verify the information sharing
and complementarity of adjacent bands, we omit the step of
feature transfer between adjacent bands, keep the rest of the
structure unchanged, and define this method as “No-SSFF.”
The experimental results are shown in Table VII.

The coefficient of determination R2 can effectively eval-
uate the correlation between the observed and predicted
images. Its purpose is to fit the pixel values of the predicted
and observed images to obtain a regression function and
to determine a statistical indicator of their proximity [40],

defined as follows:

R2 = 1 −
∑N

i=1(xi − yi)
2∑N

i=1(xi − x̄i)2
(12)

where x̄i represents the average pixel value of the observed
image, xi represents a certain pixel value of the observed
image, yi represents the corresponding pixel of the pre-
dicted image, and N represents the total number of pixels in
the image. The performance of the predicted image improves
when the value is closer to 1.

The metrics in Table VII show that the proposed complete
HCNNet has the best prediction results. By comparing the
results of objective evaluation metrics of the ablation methods
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corresponding to serial numbers (2), (3), (4), and (5) with those
of serial number (6), respectively, we can directly conclude
that the inclusion of CBAM, Pme, SPA, and SSFF modules
can effectively improve prediction results. By comparing the
serial numbers (1) and (3), we can indirectly demonstrate that
the inclusion of 3D-CNN can effectively improve prediction
accuracy. Fig. 11 depicts the observed surface reflectance
and prediction results for each ablation method. This figure
visually illustrates how well the predicted results match the
observed results under different experiments. We have chosen
the near-infrared (NIR) band as a representative for a detailed
presentation of the experimental samples. Although the “point
clouds” of each comparison experiment are more similar, the
point cloud of the proposed full HCNNet is more concentrated
on the fit straight line, with fewer points scattered outside and
smoother contour edges. The values of R2 and the slope of
the fit straight line with intercept in the figure also indicate
that the results predicted by the complete HCNNet have a
higher correlation with the observed images. The subjective
inspection of the statistical metrics and correlation graphs
indicates that the predicted images of the proposed complete
HCNNet are closer to the observed images.

V. CONCLUSION

The short timespan of the CIA and LGC datasets and the
relatively simple land cover scenarios make the prediction less
complicated, and the indicators obtained by each model in
the experiments of the CIA and LGC datasets were better
than those of the Daxing dataset. The land cover of the
LGC dataset changed abruptly, making prediction difficult,
and the prediction results of each model in this dataset were
more different, while the prediction results of HCNNet were
optimal in terms of indicator evaluation and visualization. The
experimental data in Tables I–III show that the strategy of
band feature iteration gradually improves the reconstruction
of subsequent bands. Compared with the six-band data from
CIA and LGC, only four bands were used for experiments
in the Daxing dataset. The prediction results of the proposed
model in this dataset are affected to some extent, and if
the two short-wave infrared bands of the Daxing dataset can
be subsequently denoised to introduce more band feature
information, the image spatial detail reconstruction effect may
be improved.

The proposed method differs from previous STF methods
in model data input and output, a multiband–single-band–
multiband network structure was used. In the process of
“multiband–single-band,” we make full use of the observed
data, consider the spectral and reflectance differences of
RS images in each adjacent band, use the 2D-CNN branch
to extract the spatial detail features of single-band images,
and use 3D-CNN branch to extract the temporal and spatial
variation features of images at the same time. The CBAM
mechanism is introduced, and the Pme module is added to
link the dual branches to further improve the feature extraction
capability of the dual-branch network. In the process of
“single-band–multiband,” we consider the similarity of spatial
structure and spectral correlation of each neighboring band,

transfer each single-band feature between neighboring bands
iteratively, and introduce the spatial attention mechanism
to achieve spatial information sharing and complementarity
between bands finally. The experimental results on three
publicly available datasets show that HCNNet can effectively
extract time change and spectral information while maintain-
ing as many spatial details as possible. Compared with other
fusion models, HCNNet is also more robust and has great
potential to improve the prediction accuracy in landscapes with
heterogeneous and large-scale abrupt land cover changes.
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