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Semi-Supervised Building Footprint Generation
With Feature and Output Consistency Training
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Abstract— Accurate and reliable building footprint maps are
vital to urban planning and monitoring, and most existing
approaches fall back on convolutional neural networks (CNNs)
for building footprint generation. However, one limitation of
these methods is that they require strong supervisory information
from massive annotated samples for network learning. State-
of-the-art semi-supervised semantic segmentation networks with
consistency training can help deal with this issue by leveraging a
large amount of unlabeled data, which encourages the consistency
of model output on data perturbation. Considering that rich
information is also encoded in feature maps, we propose to
integrate the consistency of both features and outputs in the end-
to-end network training of unlabeled samples, enabling to impose
additional constraints. Prior semi-supervised semantic segmenta-
tion networks have established cluster assumption, in which the
decision boundary should lie in the vicinity of low sample density.
In this work, we observe that for building footprint generation,
low-density regions are more apparent at the intermediate feature
representations within the encoder than the encoder’s input
or output. Therefore, we propose an instruction to assign the
perturbation to the intermediate feature representations within
the encoder, which considers the spatial resolution of input
remote sensing imagery and the mean size of individual buildings
in the study area. The proposed method is evaluated on three
datasets with different resolutions: Planet dataset (3 m/pixel),
Massachusetts dataset (1 m/pixel), and Inria dataset (0.3 m/pixel).
Experimental results show that the proposed approach can well
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extract more complete building structures and alleviate omission
errors.

Index Terms— Building footprint, consistency training, seman-
tic segmentation, semi-supervised.

I. INTRODUCTION

BUILDING footprint generation is a hot topic in the
community of remote sensing, which involves numerous

applications such as identifying undocumented buildings and
assessing building damage after natural disasters. Remote
sensing imagery that offers potential for meaningful geospatial
target extraction on a large scale becomes a fundamental data
source for building footprint generation. However, obtaining
accurate and reliable building footprint maps from remote
sensing imagery is still challenging due to several reasons.
On one hand, complex and heterogeneous appearance of
buildings leads to internal variability. On the other hand, mixed
backgrounds and other objects with similar spectral signatures
further limit the class separability.

Nowadays, convolutional neural networks (CNNs) have
been widely used for remote sensing tasks [1]–[3], as they
surpass conventional methods in terms of accuracy of effi-
ciency. CNNs are capable of directly learning hierarchical
contextual features from the original input, which have greater
generalization capabilities for building footprint generation
from remote sensing imagery. Although the existing CNNs
are able to deliver very promising results [2], [4]–[6], there
remains a challenge for extracting building footprints on a
large scale. This challenge arises from that CNNs require
massive annotated data to obtain strong supervisory informa-
tion. However, manual annotation of reference data is a time-
consuming and costly process.

To address this issue, a straightforward idea is to use
semi-supervised learning, which can leverage a large amount
of unlabeled data and alleviate the need for labeled exam-
ples. In general, the semi-supervised semantic segmentation
methods are summarized into three types: weakly supervised
training-based, adversarial training-based, and consistency
training-based. Nevertheless, weakly supervised training-based
methods need additional annotations, e.g., image-level labels
or region-level labels. The adversarial training-based methods
are able to make use of unlabeled data but are difficult to
train. The consistency training-based approaches not only are
simple to implement but also require no additional weakly
labeled examples. The core idea of consistency training-based
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methods is to encourage the network to give consistent outputs
for unlabeled inputs that are perturbed in various ways, thus
improving the generalization of the network [7].

The state-of-the-art consistency training-based methods
exploit the teacher–student framework [8]. Specifically, a stu-
dent model is applied to the unlabeled sample, while a teacher
model is applied to a perturbed version of the same sample.
Afterward, the consistency is imposed between the outputs
of two models to improve the performance of the student
model [8]. However, there is still a certain gap in performance
between these two models when the outputs are not completely
correct during training. Inspired by [9] that feature maps can
capture more discriminative contextual information, we further
improve the performance of consistency training by proposing
a new consistency loss that measures the discrepancy between
both feature maps and outputs of the student model and those
of the teacher model. By doing so, it can offer a strong
constraint to regularize the learning of the network.

The effectiveness of the consistency training-based
approaches depends heavily on the behavior of data distribu-
tion, i.e., cluster assumption, where the classes must be
separated by low-density regions. However, the low-density
regions separating the classes are not within the inputs, which
offers an explanation for why semi-supervised is a challenging
problem for semantic segmentation [10]. [11] observes that
for natural images, low-density regions separating the classes
are present at the encoder’s output, thus proposing to assign
the perturbation at this position. However, for remote sensing
imagery with low spatial resolution, we observe that the
presence of low-density regions separating the classes is
within the intermediate feature representations in the encoder
rather than the encoder’s input or output. Motivated by this
observation, in this work, we propose to enforce consistency
over perturbation applied to feature representations at a
certain depth within the encoder, where this depth should be
in line with the spatial resolution of remote sensing imagery
and the mean size of individual buildings in the study area.

Specifically, we consider a shared encoder and a main
decoder that are trained together using labeled examples.
To leverage unlabeled data, we then consider an auxiliary
decoder whose inputs are perturbed versions of the shared
encoder’s output. The consistency is imposed between outputs
and feature maps of the main decoder and those of the auxil-
iary decoder. By doing so, the shared encoder’s representation
is enhanced using the additional training signal extracted from
the unlabeled data.

This work’s contributions are threefold.
1) We propose a semi-supervised network for building

footprint generation, which has not been adequately addressed
in the current literature. When the annotated samples are
insufficient, the proposed method can leverage a large amount
of unlabeled data to improve the performance of a model.

2) Our proposed method integrates consistency training
of features and outputs into a unified objective function,
which formulates an efficient end-to-end training framework.
Compared with other competitors, our approach gains signif-
icant improvements.

3) Observing that the low-density regions separating the
classes are within the intermediate feature representations in
the encoder, we propose an instruction, in which the pertur-
bation is applied on the feature representations at a certain
depth within the encoder according to the spatial resolution of
input remote sensing imagery and the mean size of individual
buildings in the study area.

The remainder of this article is organized as follows. Related
work is reviewed in Section II. Section III details the proposed
network for building footprint generation. The experiments
are described in Section IV. The results and Discussions
are provided in Sections V and VI, respectively. Eventually,
Section VII summarizes this work.

II. RELATED WORK

A. Building Footprint Generation

A tremendous amount of remote sensing imagery can be
collected with recent technological advances, providing huge
potential for mapping buildings. A variety of methods have
been proposed to generate building footprints from remote
sensing imagery.

Early studies can be categorized into four types: geomet-
rical primitive-based, index-based, segmentation-based, and
classification-based methods. The geometrical primitive-based
methods [12] first extract geometric primitives (e.g., build-
ing edges and corners) and then group them to form
building hypotheses. In the index-based methods [13],
an index is designed to discriminate buildings from other
objects. Afterward, buildings are extracted by selecting an
empirical threshold. Using over-segmentation algorithms, the
segmentation-based methods [14] aim at partitioning an image
into different segments, so-called superpixels, and identify
those belonging to buildings. In the classification-based meth-
ods [15], spectral and/or spatial features of each pixel are
taken as input of classifiers to differentiate building from other
classes. Nonetheless, a general limitation of these methods
is that they rely heavily on manually defined rules and
handcrafted features, resulting in a decrease in accuracy and
efficiency.

In the past few years, deep-learning-based methods have
shown remarkable performance on this task, as discriminative
features from raw images can be automatically and adap-
tively learned. Early methods [16], [17] use a patch-wise
classification framework and assign the label to each pixel
according to the class of its enclosing patch. However, the
large overlap among patches leads to redundant operation
and low efficiency. Therefore, semantic segmentation networks
that can efficiently perform pixel-wise segmentation have
become more popular in the task of building footprint gener-
ation [5], [6], [18]–[25]. The commonly used network archi-
tectures involve fully convolutional networks (FCNs) [26] and
encoder–decoder based architectures (e.g., DeepLabv3+ [27]
Efficient-UNet [28], FC-DenseNet [29]). To take the char-
acteristics of buildings in remote sensing imagery into
account, some methods (e.g., efficient separable factor-
ized network (ESFNet) [30], multiscale aggregation (MA)-
FCN [31], holistically-nested attention (HA) U-Net [32], and
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Multitask [33]) have made some specific adaptations to these
network architectures, e.g., attention block and multiscale
feature aggregation. More recently, instance segmentation net-
works are exploited to delineate individual building instances
in several novel studies [34], [35]. Instance segmentation
networks can not only assign a semantic label to each pixel
with the class of its enclosing object but also distinguish
different instances. The commonly used instance segmentation
architecture for this task is Mask R-CNN [36].

B. Semi-Supervised Semantic Segmentation
The deep learning methods require strong supervisory infor-

mation for network training; however, collection of large
volumes of annotated data is time-consuming and costly.
Especially for the task of semantic segmentation, acquisition of
pixel-level labels is more expensive and laborious. Therefore,
semi-supervised learning is favored in this task, and it can
leverage a large amount of unlabeled data to compensate
for limited supervisory information. In general, the semi-
supervised semantic segmentation methods are summarized
into three types: weakly supervised training-based, adversarial
training-based, and consistency training-based.

Weakly supervised training-based methods [37]–[40] inte-
grate weakly supervised learning in their approaches. Apart
from the limited pixel-level labels, they still require weaker
labels that can be regarded as supervisory information for
network training. For the application of building footprint
generation, weaker labels include image-level labels, bounding
boxes, and point labels. The image-level label has two classes,
where “building” refers to the images occupying building
pixels more than a certain amount of the total pixels, and
“nonbuilding” corresponds to images without building pixels
[41], [42]. In [43], bounding box annotations are used to gen-
erate probabilistic masks using bivariate Gaussian distribution
for every image. Point labels (two points inside and outside
each small building, respectively) are used in [44], which are
helpful to detect small buildings. Nevertheless, weakly super-
vised training-based methods fail to take advantage of massive
unlabeled data. The adversarial training-based methods [45],
[46] are able to exploit unlabeled samples, which adapt gen-
erative adversarial networks (GANs) [47] for semi-supervised
semantic segmentation. Both the generator and the discrim-
inator are first trained by labeled samples. Afterward, the
generator outputs the segmentation masks of unlabeled images,
while the discriminator distinguishes trustworthy regions in
their predicted results to provide additional supervisory sig-
nals. Considering that the adversarial training strategy may
be insufficient to guide network training, pseudo labels are
generated by selecting high-confident segmentation predictions
for unlabeled images [48]. Afterward, pseudo-building masks
are incorporated to expand the training data and the generator
is retrained. However, the adversarial training-based methods
are very hard to train due to the instability of GANs [49].
In contrast, consistency training-based methods not only can
leverage unlabeled images to improve the performance of the
segmentation network but also are simple and efficient to
implement. The goal of consistency training is to enforce the
consistency of model’s predictions for unlabeled inputs that are

applied by small perturbations. By doing so, the robustness of
the learned model will be enhanced.

Recently, several consistency training-based methods are
proposed for the task of semi-supervised semantic seg-
mentation, e.g., CutMix [10] and cross-consistency train-
ing (CCT) [11]. CutMix [10] applies perturbations to raw
input and uses MixUp [50] to enforce the consistency
between mixed outputs and outputs from mixed inputs.
CCT [11] imposes an invariance of the model’s outputs
over small perturbations applied to the encoder’s output.
In the remote sensing community, two consistency training-
based methods have been proposed for the application of
building footprint generation, i.e., consistency regularization
(CR) [51] and PiCoCo [52]. Color jitter and random noise
are chosen as the perturbation for CR [51] and are applied to
raw input. Then, the consistency of their outputs is enforced.
PiCoCo [52] is also an input perturbation method, which
augments the input images randomly and imposes the consis-
tency constraint between the predictions of augmented images.
In addition, it implements contrast learning on labeled images,
which can regularize the compactness of intra- and interclass
latent representation spaces [52].

However, these consistency training-based methods still
have two limitations. On one hand, these methods ignore the
rich information encoded in feature maps and generally impose
consistency only over the outputs of the models. On the other
hand, they add perturbations over the raw input or encoder’s
output for all types of data, failing to take the characteristics
of target objects into consideration when selecting the optimal
position to apply perturbations.

III. METHODOLOGY

In this section, the consistency training-based methods are
first introduced. Afterward, the proposed framework in the
end-to-end network learning procedure is described. Finally,
we propose an instruction to assign perturbation for the
task of building footprint generation, which is based on our
observation and analysis of cluster assumption.

A. Consistency Training-Based Methods
Given a small set of n input–target pairs Sl = {(xl

1, y1), . . . ,
(xl

n, yn)} sampled from an unknown joint distribution β(x, y),
the goal of supervised learning (SL) is to derive a prediction
function fθ (x) parametrized by θ , and this prediction function
is able to assign the correct target y to an unseen sample from
β(x). In semi-supervised learning, a larger set of m unlabeled
examples Su = {xu

1 , . . . , xu
m} is additionally provided. Semi-

supervised learning aims to derive a more accurate predic-
tion function than what is obtained by only using Sl . For
instance, additional structure about input distribution β(x) can
be learned from Su to produce an estimate of the decision
boundary, which makes a better separation of samples into
different classes [53].

The consistency training-based methods follow an intuitive
goal to perform semi-supervised learning: when a perturbation
is assigned to the data points x ∈ Su as x̂ , the output of fθ (x)
should not be significantly changed. Therefore, the objective
of the consistency training-based methods is to minimize the
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Fig. 1. Overview of the proposed semi-supervised building footprint generation network.

following loss function:
L = Ls + λu · Lcons (1)

where Ls is a supervised loss on labeled data. λu is a weighting
function to control the importance of a consistency loss term
Lcons which is formalized as

Lcons = T( fθ (x), fθ (x̂)) (2)

where T(., .) measures a discrepancy between the outputs of
prediction functions. In this regard, the unlabeled data can
be leveraged to find a smooth manifold where the dataset
lies [54].

Different settings in assigning perturbation or minimiz-
ing the Lcons lead to a wide variety of approaches for
semi-supervised classification, e.g., virtual adversarial training
(VAT) [55] and interpolation consistency training (ICT) [56],
and those from semi-supervised semantic segmentation, e.g.,
CutMix [10], CCT [11], CR [51], and PiCoCo [52]. These
methods are conducted in teacher–student frameworks, where
a teacher model is first constructed from data perturbation,
and then the output of the teacher model on unlabeled data
is used to supervise a student model [8]. However, they have

not fully leveraged the information of the teacher model. This
is because they fail to use intermediate feature maps of the
teacher model that can also be regarded as knowledge to guide
the learning of the student model. Therefore, a more precise
consistency toward the underlying invariance of features and
outputs between the student model and the teacher model is
preferable in our research.

B. Proposed Framework in End-to-End Network Learning

Recently, the perceptual mechanism has achieved promising
results for image reconstruction [9], and they make use of
extracted high-level feature maps to improve the network
performance. Inspired by it, we propose to impose consistency
on both features and predictions for the training of unlabeled
data, which is capable of fully harnessing information in
deep features and output predictions. As a consequence, our
network can guarantee that deep feature maps are consistent,
alleviating the loss of detailed information during network
training.

As shown in Fig. 1, the proposed framework is composed
of a shared encoder E , a main decoder D, and an auxiliary
decoder G. The segmentation network F is constituted as
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F = E ◦ D and is trained on the labeled set in a fully
supervised manner. The auxiliary network A = E ◦ G is
trained on the unlabeled examples by enforcing the consistency
of both features and outputs between D and G. D takes
as input the encoder’s output zout, but G is fed with its
perturbed version z̃out, in which the perturbation p is applied
to feature representations zin at a certain depth within E .
By doing so, the representation learning of E can be further
improved by unlabeled examples, and subsequently, that of the
segmentation network F .

For each iteration of training, a labeled input image xl and
its label y are sampled together with an unlabeled image xu.
Both xl and xu are passed through E and D, obtaining two
main predictions ŷl and ŷu , respectively. The supervised loss
Ls is computed with y and ŷl . For xu, the perturbation p is
applied to zin with zin being its feature representation within E
and its output from E is z̃out. Afterward, an auxiliary prediction
ŷu

a is generated from G using z̃out. The consistency loss Lcons

consists of two parts Luf and Lup, where Luf is computed
between the features of G and those of D, and Lup is computed
between the outputs of G and that of D.

In the proposed approach, Sl and Su are jointly trained by
minimizing a global loss function L as (1). Following [57],
λu is set to ramp up starting from zero along a Gaussian
curve up to a fixed weight α, which can avoid the use of
initial noisy output from the main encoder. The total loss
L is derived and backpropagated to train the segmentation
network F and the auxiliary network A. Note that Lcons is not
backpropagated through D, and D is trained only by labeled
examples. By doing so, D is only trained on the original
input data. This is helpful from two aspects. On one hand,
it can avoid collapsing solutions. If Lcons is backpropagated
through both main decoder D and auxiliary decoder G, the
main decoder D will collapse since Lcons will be minimized
if predictions of both D and G are zeros. On the other hand,
the method can be better adapted to the test stage since no
perturbation is applied to test images.

For the labeled set, a supervised loss Ls is exploited to train
the segmentation network F . To avoid overfitting, an annealed
version of the bootstrapped cross-entropy loss [11] is chosen
to compute the supervised loss Ls , and it is denoted as

Ls = 1

|Sl |
∑

xl
i ,yi ∈Sl

{
F

(
xl

i

)
< η

}
H(yi, F(xi )) (3)

where F(xi) is the output probability from F for a labeled
example xi , yi is its ground reference label, and H(., .) is
the cross-entropy-based loss. In semi-supervised learning, the
model is often overfitted to the limited amount of labeled data
while being underfit to unlabeled data. To address this issue,
a labeled example is used only if the model’s confidence in it
is lower than a predefined threshold η. In other words, Ls is
computed only over pixels with a probability less than the
threshold η that serves as a ceiling to prevent overtraining on
easy labeled data [58]. Following [11], we gradually increase
η from 0.5 to 0.9 during the beginning of training.

For an unlabeled example xu
i , zout is derived as the output

from the shared encoder E . One contribution in our approach

is to apply perturbation to feature representation zin for xu

within the encoder E according to our proposed instruction.
Afterward, the perturbed feature representations z̃in will be
fed to the subsequent layers in the encoder to generate the
perturbed encoder’s output z̃out. Finally, zout and z̃out are taken
as input for D and G, respectively.

The training objective of the unlabeled set is to minimize a
consistency loss Lcons, which is defined as

Lcons = Lup + ωu · Luf (4)

where Luf and Lup measure the discrepancy between the
features and outputs of D and those of G, respectively. ωu is
a hyperparameter to introduce a weight to model the relative
importance of two losses. More specifically, Lup is defined as

Lup = 1

|Su|
∑

xu
i ∈Su

T(D(zout), G(z̃out)) (5)

where T(., .) is the mean-squared-error-based loss.
Note that a contribution of our approach is that a loss term

Luf is introduced into the proposed network by imposing the
consistency on features between the main decoder and the aux-
iliary decoder, which is able to harness detailed information
in feature maps. Let φ j(q) be the activations of the j th layer
of the network φ when processing the input q . For D and G,
D j (zout) and G j(z̃out) will be the corresponding feature maps
at j th depth in the decoder. Here, j represents the position
where upsampling operations are applied in the decoder. Then,
Luf is denoted as

Luf = 1

|Su |
∑

xu
i ∈Su

J∑
j=1

T
(

D j(zout), G j(z̃out)
)

(6)

where J is the total number of depth in the decoder. In other
words, J represents how many upsampling operations are
applied in the decoder.

The proposed semi-supervised method can be summarized
by the following Algorithm 1:

C. Instruction to Assign Perturbation for the Task of
Building Footprint Generation

The effectiveness of consistency training-based methods
relies on cluster assumption, i.e., two samples belonging to
the same cluster in the input distribution are likely to have the
same label [59]. In this case, the decision boundary should
lie in low-density regions [60]. In other words, if a decision
boundary crosses a high-density region, it will divide a cluster
into two different classes, which violates cluster assumption.
From the formal analysis, the expected value of Lcons is
proportional to the squared magnitude of the Jacobian of the
network’s outputs with respect to its inputs [7]. Therefore,
minimizing Lcons indicates that the decision function in the
regions of unsupervised samples will be flattened, and the
decision boundary will be moved into the vicinity of low
sample density [10].

The cluster assumption has inspired many recent consis-
tency training-based methods for semi-supervised semantic
segmentation [10], [11] which propose to assign perturbation
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Algorithm 1 Algorithm for Feature and Output Consistency
Training

Input: Labeled image xl and pixel-level label y, as well as
unlabeled image xu

Require: Shared encoder E , main decoder D with the total
depth number J , and auxiliary decoder G

1: Forward xl through E and D: ŷl = D(E(xl))
2: Forward xu through E : zout = E(xu)
3: Generate the main decoder’s feature maps for zout :
4: For j = 1 to J do

Derive D j (zout)
5: End for
6: Generate the main decoder’s output for zout :

Derive D(zout)
7: Forward xu through E and apply a noise perturbation N to

feature representations zin : z̃in = (zin � N) + zin

8: Forward z̃in through subsequent layers in E to generate the
perturbed encoder’s output z̃out

9: Generate the auxiliary decoder’s feature maps for z̃out :
10: For j = 1 to J do

Derive G j (z̃out)
11: End for
12: Generate the auxiliary decoder’s output for z̃out :

Derive G(z̃out)
13: Training the network.

Ls = {ŷl < η}H(y, ŷl)
Lup = T(D(zout ), G(z̃out))

Lu f = ∑J
j=1 T(D j (zout), G j (z̃out))

Update the network by L = Ls + λu · (Lup + ωu · Lu f )

to the raw input or encoder’s output. However, they are not
suitable for the task of building footprint generation, as the
characteristics of both building objects and remote sensing
imagery have not been taken into account. Therefore, we pro-
pose an instruction to assign perturbation for this task, which is
inspired by the observation and analysis of cluster assumption
in building footprint generation from remote sensing imagery.
To examine cluster assumption, the local variations at an
encoder depth d are measured between the value of each
pixel and its local neighbors, and local variations with high
values depict the presence of low-density regions [10]. Here, d
represents the position where many downsampling operations
are applied in the encoder. For instance, when d = 1, the
spatial size (i.e., height and width) of feature representation
is half of that of the raw input. Similarity, when d = 2,
the spatial size (i.e., height and width) of feature represen-
tation is 1/4 of that of the raw input. Following [11], the
average Euclidean distance at each spatial location and its
eight intermediate neighbors is computed for the encoder’s
input (d = 0), and the feature representations of both the
intermediate layer (d = 2) and encoder’s output (d = 5). Both
feature representations are first resampled to the input size, and
then the average distance between the neighboring activations
is calculated. Fig. 2 illustrates the example results for Planet
satellite imagery (3 m/pixel). The feature representations from
intermediate layer and encoder’s output are 24-dimensional

Fig. 2. Cluster assumption in consistency training-based methods for
building footprint generation. Examples from (a) Planet satellite imagery
(3 m/pixel), (b) pixel-level labels, and local variations at (c) encoder’s input,
(d) intermediate layer in the encoder, and (e) encoder’s output. Bright regions
indicate large variation.

and 1280-dimensional feature vectors learned from Efficient-
UNet [28], respectively. It can be observed that low-density
regions are not aligned with the class boundaries at the
encoder’s input or encoder’s output, where cluster assumption
is violated. In contrast, the cluster assumption is maintained
at the intermediate layer, given that the class boundaries
with high average distance coincide with low-density regions.
This observation may be related to the receptive field of
the network. The receptive field will be enlarged when the
depth increases within the encoder, but when the receptive
field exceeds a certain value that is much beyond the size
of target objects, it might introduce more noise for network
learning [61]. Furthermore, for remote sensing imagery with
varying resolutions, the receptive fields of the network are
various at the same depth within the encoder, when the unit
is meters.

Based on the above observation and analysis, we propose an
instruction to assign perturbation. The perturbation should be
added to feature presentations at depth d within the encoder
according to the spatial resolution of remote sensing imagery
and the mean size of individual buildings in the study area.
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Fig. 3. Satellite imagery of Lisbon in the Planet dataset (spatial resolution:
3 m/pixel) and three zoomed-in areas.

More specifically, d is computed as

d =
⌊

log2

(
lmin + lmax

2r

)⌋
(7)

where r is the spatial resolution of the remote sensing imagery,
and lmin and lmax are the mean values of max and min lengths
that are derived from the ground reference of individual
buildings in the study area. � � is the rounding down function,
which aims to get the largest integer that does not exceed the
original value.

A noise tensor N ∼ μ(−0.3, 0.3) of the same size as
feature presentations zin is uniformly sampled as perturbation
p. It is first multiplied with zin to adjust its amplitude, and
then injected into zin to get perturbed feature maps z̃in

z̃in = (zin � N) + zin (8)

where � denotes element-wise multiplication. Afterward,
it will be fed to subsequent layers in the encoder to generate
perturbed intermediate representation z̃out of the unlabeled
input sample xu .

IV. EXPERIMENT

A. Dataset

The effectiveness of the proposed method is validated on
three datasets with different spatial resolutions, i.e., Planet
dataset [62], Massachusetts dataset [16], and Inria dataset [18].

1) Planet dataset: In this research, PlanetScope satellite
imagery is collected from eight European cities (Amsterdam,
Berlin, Lisbon, Madrid, London, Paris, Milan, and Zurich) to
create a Planet dataset. The PlanetScope satellite images have
three bands (i.e., red, green, and blue) at a spatial resolution
of 3 m/pixel. The corresponding building footprints that are
stored as vector files are acquired from OpenStreetMap. Fig. 3
presents example imagery of Lisbon.

2) Massachusetts dataset: The Massachusetts dataset is
composed of 151 tiles of aerial imagery over the city of
Boston. Each aerial imagery has three bands (i.e., red, green,
and blue) at a spatial resolution of 1 m/pixel, and its size
is 1500 × 1500 pixels. A sample aerial image is illustrated

Fig. 4. Aerial image in the Massachusetts dataset (spatial resolution:
1 m/pixel)and three zoomed-in areas.

TABLE I

STATISTICS OF THE SELECTED DATASETS USED IN THIS RESEARCH

in Fig. 4. The corresponding ground reference building masks
are also included in this benchmark dataset.

3) Inria dataset: The Inria dataset is a benchmark dataset
consisting of 360 large-scale aerial images, in which each
image is of the size 5000 × 5000 and has three bands
(i.e., red, green, and blue) at a spatial resolution of 0.3 m/pixel.
A sample aerial image is shown in Fig. 5. The ground refer-
ence building masks of this dataset are only publicly released
for five cities (Austin, Chicago, Kitsap County, Western Tyrol,
and Vienna).

For all three datasets, all the remote sensing images and
ground-truth building masks are cut into small patches with
the size of 256 × 256 pixels. For the Planet dataset, we have
manually selected 1100 pairs of proper patches for each of
eight European cities. The selected pairs are then separated
into three parts, and the ratio of the train, validation, and
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Fig. 5. Aerial image in the Inria dataset (spatial resolution: 0.3 m/pixel) and
three zoomed-in areas.

test sets is 6:2:3. The data split in the Inria dataset are
according to the setup in [18], [33]. More specifically, for
each city, images with ids 1–5 are used for validation, and the
remaining 31 images are for training. The statistics are derived
from the validation set. The training/validation/test split of
the Massachusetts dataset follows [16], where 137 tiles are
used for training, 4 tiles are for validation, and the remaining
10 tiles are used to test models. The numbers of patches
collected from each dataset for network training, validation,
and test are reported in Table I.

B. Experiment Setup

Since the semantic segmentation network is an essential
part of our approach, we first investigate which CNN
modelx (i.e., Efficient-UNet [28], FC-DenseNet [29],
DeepLabv3+ [27], ESFNet [30], MA-FCN [31],
HA U-Net [32], and Multitask [33]) has a better performance
for the task of building footprint generation. The CNN model
achieving the best results under the fully supervised setting
is selected as the backbone. Afterward, for each dataset,
we randomly split the training data into two parts, which are
labeled set and unlabeled set, and pixel-level annotations are
excluded from the unlabeled set. Under the semi-supervised
setting, the ratios of labeled data to unlabeled data are set as
three different ratios (e.g., 1:2, 1:5, and 1:10). To validate the
superiority of the proposed method, we make a comparison
with other competitors, including SL, supervised learning +
data augmentation (SL + DA), ICT [56], VAT [55],
CutMix [10], CCT [11], CR [51], and PiCoCo [52]. The
settings of λu and ωu being the weights of consistency loss
term and feature consistency loss term, respectively, and the
position of the assigned perturbation in different methods

are shown in Table II for a better understanding of their
differences. Furthermore, the effectiveness of our proposed
feature and output consistency, being imposed between
the main decoder and the auxiliary decoder, is analyzed.
The position within the encoder to apply perturbation is
also carefully investigated for different datasets. Finally,
we explore whether the auxiliary decoder is able to improve
the performance of the proposed method.

C. Training Details

Our experiments are conducted within a Pytorch framework
on an NVIDIA Tesla with 16 GB of memory. For all the
methods, the optimizer is stochastic gradient descent (SGD)
with a learning rate of 0.1 and a momentum of 0.9, and the
training batch size is set as 4. Detailed configurations of all
the methods included in our experiments are listed as follows:

1) Efficient-UNet [28]: EfficientNet [63] is adopted as the
encoder to learn feature maps. The decoder comprises five
transposed convolutional layers that upsample the convolved
image to predict segmentation masks.

2) DeepLabv3+ [27]: The feature extractor in DeepLabv3+
is the Xception model [64].

3) FC-Densenet [29]: Both the encoder and the decoder in
FC-DenseNet are composed of five dense blocks, and each
dense block has five convolutional layers.

4) ESFNet [30]: This method uses separable factorized
residual block (SFRB) as the core module. The encoder is
composed of 16 blocks, where 3 blocks are downsampling
blocks and 13 blocks are SFRB. The decoder consists of seven
blocks for transposed convolutions and SFRB.

5) MA-FCN [31]: This approach has proposed a feature
fusion structure to aggregate multiscale feature maps. It uses
a feature pyramid network (FPN) [65]-based structure as the
backbone where the encoder is a four-layer visual geome-
try group (VGG)-16 [66] architecture, and a corresponding
decoder implements lateral connections between them.

6) HA U-Net [32]: The encoder of this network adopts
ResNet34 [67]. The decoder comprises four modules that
include up-sampling module, attention module, overall nesting
module, and auxiliary loss module.

7) Multitask [33]: This method is based on SegNet [68].
It first adds one convolutional layer after the decoder to learn
the distance to the border of buildings. Afterward, this learned
distance mask and feature maps produced by the decoder are
concatenated and fed into another convolutional layer to learn
the final building masks.

8) Proposed method: The hyperparameter α in the unsu-
pervised loss weighting function λu is set as 0.6. The loss
term weighting parameter of feature consistency ωu is chosen
as 0.2. The network architectures of F and A are the same as
that of the backbone.

9) SL: The backbone is learned from labeled samples. Note
that unlabeled samples are not considered during training.

10) SL + DA: Following [69], data augmentation is first
performed by randomly horizontally or vertically flipping,
or rotating the image patches before training. Afterward, the
backbone is trained on labeled samples.
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TABLE II

SETTINGS OF ALL METHODS USED IN THIS RESEARCH. λu AND ωu REPRESENT THE WEIGHTS OF
CONSISTENCY LOSS TERM AND FEATURE CONSISTENCY LOSS TERM, RESPECTIVELY

TABLE III

ACCURACIES OF DIFFERENT SEMANTIC SEGMENTATION NETWORKS FOR SL ON THREE DATASETS. (%)

11) ICT [56] and VAT [55]: Following [10], we adapt these
two semi-supervised classification methods for the task of
semantic segmentation. The CNN model is the same as the
backbone in our proposed method.

12) CutMix [10], CCT [11], CR [51], and PiCoCo [52]: For
a fair comparison, we replace the CNN model with the same
backbone in our proposed method.

D. Evaluation Metrics

The performance of models is evaluated by two metrics: F1
score and intersection over union (IoU). They can be computed
as follows:

F1 score = 2 × precision × recall

precision + recall
(9)

IoU = TP

TP + FP + FN
(10)

precision = TP

TP + FP
(11)

recall = TP

TP + FN
(12)

where TP indicates the number of true positives, FN is the
number of false negatives, and FP is the number of false pos-
itives. F1 score realizes a harmonic mean between precision
and recall.

V. RESULTS

A. Results of Different Semantic Segmentation
Networks for SL

The comparisons among different semantic segmentation
networks for SL are presented in this section. Their respec-
tive performance is evaluated according to both quantitative
(cf. Table III) and qualitative results (cf. Figs. 6–8) on three
datasets, respectively. The goal of this comparison is to select

the best semantic segmentation network as the backbone for
different learning methods in further experiments. In this case,
we can avoid potential impacts due to convolutional layers and
architectural differences.

Among these semantic segmentation networks, Efficient-
UNet [28] performs better than DeepLabv3+ [27],
FC-DenseNet [29], ESFNet [30], HA U-Net [32], and
Multitask [33] on all three datasets. Especially for the
Planet dataset that has a relatively low spatial resolution,
Efficient-UNet [28] obtains increments of 13.04% and
12.01% in F1 score and IoU, respectively, when compared
with DeepLabv3+ [27]. Although MA-FCN [31] is superior
to Efficient-UNet [28] on the Massachusetts dataset, Efficient-
UNet surpasses it by about 0.5% in IoU on both the Planet
and Inria datasets. Fig. 8 presents a visual comparison among
different methods on three datasets. For the Inria dataset
with relatively high spatial resolution, some nonbuilding
objects are wrongly identified as buildings by other methods.
On the contrary, Efficient-UNet [28] is able to avoid such
false alarms. The superiority of Efficient-UNet [28] on
different resolution data can be attributed to its capability
of systematically improving performance with all compound
coefficients of the architecture (width, depth, and image
resolution) balanced [28]. Thus, we take Efficient-UNet [28]
as the backbone in both SL and semi-supervised learning
approaches for further comparisons.

B. Comparison With Other Competitors

Furthermore, we make comparisons among the proposed
method, SL, SL + DA, ICT [56], VAT [55], CutMix [10],
CCT [11], CR [51] and PiCoCo [52]. Here, the ratios of
labeled data to unlabeled data are designed as 1:2, 1:5, and
1:10, respectively. SL is regarded as the baseline method that
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Fig. 6. Results obtained from (a) Efficient-UNet [28], (b) DeepLabv3+ [27], (c) FC-DenseNet [29], (d) ESFNet [30], (e) MA-FCN [31], (f) HA U-Net [32],
and (g) Multitask [33]. (h) Satellite imagery from the Planet dataset (spatial resolution: 3 m/pixel). Pixel-based true positives, false positives, and false negatives
are marked in white, green, and red, respectively.

Fig. 7. Results obtained from (a) Efficient-UNet [28], (b) DeepLabv3+ [27], (c) FC-DenseNet [29], (d) ESFNet [30], (e) MA-FCN [31], (f) HA U-Net [32],
and (g) Multitask [33]. (h) Satellite imagery from the Massachusetts dataset (spatial resolution: 1 m/pixel). Pixel-based true positives, false positives, and false
negatives are marked in white, green, and red, respectively.

TABLE IV

ACCURACIES OF DIFFERENT METHODS ON THE PLANET DATASET (3 m/pixel). (%)

is only trained with the labeled data, while SL + DA is trained
on the labeled data that are already augmented. Labeled and
unlabeled data are jointly trained for the proposed method,

ICT [56], VAT [55], CutMix [10], CCT [11], CR [51], and
PiCoCo [52]. Their performance is evaluated from quantitative
(cf. Tables IV–VI) perspectives. As an example, experiments
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Fig. 8. Results obtained from (a) Efficient-UNet [28], (b) DeepLabv3+ [27], (c) FC-DenseNet [29], (d) ESFNet [30], (e) MA-FCN [31], (f) HA U-Net [32],
and (g) Multitask [33]. (h) Satellite imagery from the Inria dataset (spatial resolution: 0.3 m/pixel). Pixel-based true positives, false positives, and false
negatives are marked in white, green, and red, respectively.

TABLE V

ACCURACIES OF DIFFERENT METHODS ON THE MASSACHUSETTS DATASET (1 m/pixel). (%)

TABLE VI

ACCURACIES OF DIFFERENT METHODS ON THE INRIA DATASET (0.3 m/pixel). (%)

are carried out for five runs on the Massachusetts dataset where
the ratio of labeled data to unlabeled data is 1:2. This provides
a fair comparison, and the corresponding F1 score and IoU
are shown as mean and variance. Figs. 9–11 illustrate visual
results obtained by different methods for the ratio 1:10.

It can be seen from the statistics of three datasets that
the proposed approach significantly boosts performance in
F1 score and IoU when compared with other methods.
The challenge induced by the ratio of 1:10 is the limited

data representation for buildings; however, we note that the
proposed method still manages to perform better on three
datasets when compared with its competitors. Our method
gains improvements of 5.18%, 10.40%, and 7.91% in IoU
than SL for the Planet, Massachusetts, and Inria datasets,
respectively. In particular, on the Massachusetts dataset, the
IoU of the proposed approach is improved by more than 7%
when compared with other methods. When the ratio of labeled
data to unlabeled data is 1:2, the number of labeled samples
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Fig. 9. Results obtained from (a) proposed method, (b) SL, (c) SL + DA, (d) ICT [56], (e) VAT [55], (f) CutMix [10], (g) CCT [11], (h) CR [51], and
(i) PiCoCo [52]. In this experiment, the ratio of labeled data to unlabeled data is 1:10 (400 labeled, 4400 unlabeled). (j) Satellite imagery from the Planet
dataset (spatial resolution: 3 m/pixel). Pixel-based true positives, false positives, and false negatives are marked in white, green, and red, respectively.

Fig. 10. Results obtained from (a) proposed method, (b) SL, (c) SL + DA, (d) ICT [56], (e) VAT [55], (f) CutMix [10], (g) CCT [11], (h) CR [51], and
(i) PiCoCo [52]. In this experiment, the ratio of labeled data to unlabeled data is 1:10 (300 labeled, 3124 unlabeled). (j) Aerial imagery from the Massachusetts
dataset (spatial resolution: 1 m/pixel). Pixel-based true positives, false positives, and false negatives are marked in white, green, and red, respectively.

is already sufficient for SL, but our method still provides
advantages over it. Note that the proposed approach performs
even better than the other semantic segmentation networks
(cf. Table III) that are trained on the full labeled sets. This
proves that the effectiveness and robustness of the proposed
approach for the task of building footprint generation.

The accuracy metric of IoU obtained by our method for
the ratio of 1:2 is higher than that for the ratio of 1:10. This
suggests that using more labeled samples increases the overall
performances (42.20% versus 36.78% in the Planet dataset,
54.15 ± 0.68% versus 51.16% in the Massachusetts dataset,
75.22% versus 72.03% in the Inria dataset). It should be

mentioned that the proposed approach is capable of reducing
the gap between different ratios. For instance, Table V shows
that the IoU produced by our method, which is trained on
the data of ratio of 1:10, only drops 1% than that of ratio
of 1:5. This demonstrates that our method can obtain reliable
segmentation results even when there is only a small number
of annotated samples.

The visual results on the Planet dataset are illustrated in
Fig. 9. There is a lot of missed detection in results provided
by SL, VAT [55], CCT [11], CR [51], and PiCoCo [52], as the
number of labeled samples is insufficient. On the contrary, our
method can extract more building structures. Fig. 11 presents
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Fig. 11. Results obtained from (a) proposed method, (b) SL, (c) SL + DA, (d) ICT [56], (e) VAT [55], (f) CutMix [10], (g) CCT [11], (h) CR [51], and
(i) PiCoCo [52]. In this experiment, the ratio of labeled data to unlabeled data is 1:10 (3600 labeled, 36252 unlabeled). (j) Aerial imagery from the Inria
dataset (spatial resolution: 0.3 m/pixel). Pixel-based true positives, false positives, and false negatives are marked in white, green, and red, respectively.

TABLE VII

ABLATION STUDY OF THE IMPOSED CONSISTENCY ON THREE DATASETS. (%)

the results on the Inria dataset. It can be clearly seen that our
method is able to avoid more false alarms than its competitors.
This suggests that the proposed method has a better capability
of using unlabeled data to improve network performance.

VI. DISCUSSION

As shown in the results on three datasets for a semi-
supervised setting, our proposed method with a ratio of 2:1
can deliver the best results. Therefore, in this section, we carry
out ablation studies of the proposed method under this data
split.

A. Ablation Study of the Imposed Consistency

One contribution of our approach worthy of being high-
lighted is that we introduce a novel objective function by
imposing consistency on both features and outputs between
the main decoder and the auxiliary decoder.

The statistical results of different types of the imposed
consistency are reported in Table VII. The experimental results
show that implementing feature and output consistency for
this task is helpful to improve the network performance, and
we can see nearly 1% gains in IoU on all the datasets when
compared with solely output consistency. This may be because
more abstract and invariant information are included in feature
representations [70], and the network is able to learn more
knowledge when feature consistency is additionally imposed.

Fig. 12. Results obtained from different methods on (a) Planet dataset
(spatial resolution: 3 m/pixel), (b) Massachusetts dataset (spatial resolution:
1 m/pixel), and (c) Inria dataset (spatial resolution: 0.3 m/pixel). Pixel-based
true positives, false positives, and false negatives are marked in white, green,
and red, respectively.

Fig. 12 illustrates a visual comparison between different
types of the imposed consistency. Some buildings are omit-
ted in the results provided by sole output consistency in
the example areas of the National Institute for Research in
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TABLE VIII

ABLATION STUDY OF THE ASSIGNED PERTURBATION ON THREE DATASETS. (%)

Fig. 13. Summarized statistics of (a) max length and (b) min length of individual buildings on three datasets.

Digital Science and Technology (INRIA) dataset. The reason
is that the sole output consistency ignores the rich information
in feature representations. On the contrary, building masks
obtained by the feature and output consistency are much
closer to real building shapes. This suggests that our method
can capture information in both feature representations and
outputs, enabling the enhancement of semantic information of
buildings.

B. Ablation Study of the Assigned Perturbation
For the perturbation being assigned to feature representa-

tions within the encoder, we propose an instruction to select
the optimal position: the encoder depth d . To verify this
instruction, we apply the perturbation to five different positions
within the encoder, respectively. Specifically, d is first set as
five numbers i.e., 1, 2, 3, 4, and 5, to investigate its impact
on final results. The spatial size of their corresponding feature
maps is 128 × 128, 64 × 64, 32 × 32, 16 × 16, and 8 × 8.

The statistical results of the perturbation applied to different
depths within the encoder are shown in Table VIII. We can
see that the best position to assign the perturbation is varied
across different datasets. Moreover, increasing the value of
the depth will promote the improvement of the results on
higher resolution dataset (Inria dataset). However, we note that
a large value of d will lead to a reduction in accuracy metrics
on the relatively low-resolution dataset (Planet dataset). The
best results are obtained when d = 2 for the Planet dataset,
d = 4 for the Massachusetts dataset, and d = 5 for the Inria
dataset. This coincides with our proposed instruction to apply
the perturbation.

Taking the spatial resolution of remote sensing imagery
into consideration, the respective fields of these positions
are corresponding to 3 × 22 = 12 m (Planet dataset),
1 × 24 = 16 m (Massachusetts dataset), and 0.3 × 25 = 9.6 m
(Inria dataset), which are close to the size of a building that
usually has a length within the range from 10 to 20 m.
Afterward, we calculate the statistics of individual buildings of
all three datasets, i.e., max length and min length (cf. Fig. 13).
We found that the mean values of the max length of individual
buildings are 19 m for the Planet dataset, 17 m for the
Massachusetts dataset, and 16 m for the Inria dataset. The
mean values of the min length of individual buildings are 17 m
for the Planet dataset, 14 m for the Massachusetts dataset, and
12 m for the Inria dataset. That is to say, the mean values of
max length and min length of individual buildings also range
from 10 to 20 m among all the datasets. This indicates that
the geometrical characteristics of the building are related to
the effective receptive field of the network, which may place
an emphasis on how to select the optimal position to assign
the perturbation in the whole framework. Therefore, we infer
that the perturbation should be assigned to different positions
within the encoder according to the spatial resolution of remote
sensing imagery and the mean size of the individual buildings
in the study area.

C. Ablation Study of the Auxiliary Decoder

In our approach, an auxiliary decoder is used to train the
unlabeled set, and additional training signals can be extracted
by enforcing the consistency of features and predictions
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TABLE IX

ABLATION STUDY OF THE AUXILIARY DECODER ON THREE DATASETS. (%)

Fig. 14. Results obtained from different methods on (a) Planet dataset
(spatial resolution: 3 m/pixel), (b) Massachusetts dataset (spatial resolution:
1 m/pixel), and (c) Inria dataset (spatial resolution: 0.3 m/pixel). Pixel-based
true positives, false positives, and false negatives are marked in white, green,
and red, respectively.

between the main decoder and the auxiliary decoders. To val-
idate the effectiveness of the auxiliary decoder, we perform
an ablation study with another competitor, i.e., the proposed
method without auxiliary decoder. That is to say, the auxiliary
decoder is removed, and the main decoder takes as input both
uncorrupted and perturbed versions of the encoder’s output to
impose consistency on their features and outputs.

The ablation study is carried out on the Planet, Massa-
chusetts, and Inria datasets. The numerical results are shown
in Table IX. As can be seen in the statistical results on all three
datasets, an auxiliary decoder brings a nearly 1% improvement
in IoU, leading to a positive influence on the performance
of our network. Fig. 14 shows a visual comparison of seg-
mentation results, which demonstrates that the performance
of our approach can be boosted up by the leverage of an
auxiliary decoder. In Fig. 14 (e) and (h), the method without
auxiliary decoder wrongly identifies cars as buildings on both
the Massachusetts and Inria datasets. This is because the colors
of cars are similar to those of buildings, which leads to a
misjudgment. The use of an auxiliary decoder is able to avoid
such false alarms. The main reason is that supervision from the
same decoder might guide the network to better approximate
the features and outputs of the perturbed inputs, making
the network converge in the wrong direction. In contrast,
supervision by the features and predictions from the other
decoder is able to avoid overfitting the wrong direction.

VII. CONCLUSION

Considering that the performance of semantic segmentation
networks is limited when the annotated training samples are
insufficient, a novel semi-supervised building footprint gener-
ation method with feature and output consistency training is
proposed in this article. The proposed model comprises three
modules: a shared encoder, a main decoder, and an auxiliary
decoder. More specifically, the shared encoder and the main
decoder are designed to learn from labeled data in a fully
supervised manner. Afterward, we assign the perturbation at
intermediate feature representations within the encoder and
aim to encourage the auxiliary decoder to give consistent
predictions for unlabeled inputs as the main decoder. The
consistency is imposed between the outputs and features of
the main decoder and those of the auxiliary decoder. The
performance of the proposed end-to-end network is assessed
on three datasets with different resolutions: Planet dataset
(3 m/pixel), Massachusetts dataset (1 m/pixel), and Inria
dataset (0.3 m/pixel). The experimental results suggest that
the incorporation of both feature and output consistency in
our method can offer more satisfactory building footprints,
where omission errors can be alleviated to a large extent.
Therefore, we believe that our method is a robust solution
for building footprint generation when dealing with scarce
training samples. Furthermore, the best position to assign the
perturbation has been investigated that the perturbation should
be applied to different depths within the encoder according
to the spatial resolution of input remote sensing imagery and
the mean size of the individual buildings in the study area.
This practical strategy is beneficial to other semi-supervised
building footprint generation works that use remote sensing
imagery. A subsequent study will intend to investigate the
potential of the feature and output consistency training in the
instance segmentation of buildings.
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