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Abstract— Visual question answering (VQA) for remote sens-
ing scene has great potential in intelligent human–computer
interaction system. Although VQA in computer vision has been
widely researched, VQA for remote sensing data (RSVQA) is
still in its infancy. There are two characteristics that need
to be specially considered for the RSVQA task: 1) no object
annotations are available in the RSVQA datasets, which makes
it difficult for models to exploit informative region representation
and 2) there are questions with clearly different difficulty levels
for each image in the RSVQA task. Directly training a model
with questions in a random order may confuse the model and
limit the performance. To address these two problems, in this
article, a multi-level visual feature learning method is proposed
to jointly extract language-guided holistic and regional image
features. Besides, a self-paced curriculum learning (SPCL)-based
VQA model is developed to train networks with samples in an
easy-to-hard way. To be more specific, a language-guided SPCL
method with a soft weighting strategy is explored in this work.
The proposed model is evaluated on three public datasets, and
extensive experimental results show that the proposed RSVQA
framework can achieve promising performance. Code will be
available at https://gitlab.lrz.de/ai4eo/reasoning/VQA-easy2hard.
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I. INTRODUCTION

IMAGES from spaceborne and airborne platforms usually
cover large-scale geographical areas and provide important

data bases for many Earth observation (EO) applications [1].
With the development of EO technology, there have been an
increasing number of works on remote sensing image analysis,
such as land use classification [2], [3], object detection [4], [5],
road extraction [6], and change detection [7]–[9]. However,
due to the specialized nature of remote sensing tasks, the
ability to carry out such tasks is limited to experts in the
related fields. The obtained semantic information from some
remote sensing tasks is not intuitive to common users, which
makes it difficult to deliver the image information to users in
domain-specific applications.

Fortunately, novel tasks such as image captioning [10], [11]
and visual question answering (VQA) [12], [13] have recently
been explored for visual data. These tasks take both natural
language and imagery as inputs and output easy-to-understand
text in natural language. Among them, VQA has become a hot
research topic in artificial intelligence community [14]. Given
an input image and a natural language question, VQA aims
to generate a textual answer to the question based on image
content [15]. It is an interdisciplinary research area between
computer vision and natural language processing [16]. It is
also a challenging task that requires a model to jointly learn
multi-modal representation from both imagery and language
data. More specifically, a VQA model needs to learn visual
representation to understand the input image and effective
features for natural language to gain an answer conditioned
on image content [17].

As for remote sensing data, VQA enables end-users to better
understand a complicated remote sensing image and has great
potential in human–computer interaction applications [18].
A pioneer work can be found in [19], where the authors created
two datasets and proposed a baseline model of VQA for
remote sensing data (RSVQA). Although VQA in computer
vision has been widely studied [20]–[23], VQA for remote
sensing imagery is still in its infancy. Due to different image
characteristics, VQA methods for natural images may not
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Fig. 1. Motivation of the proposed method: learning features from easy
samples to hard ones.

work well on remotely sensed images. Specifically, two main
challenges for the RSVQA task are summarized as follows.

1) No object annotations available in the RSVQA datasets.
In computer vision, VQA models are able to make
use of the existing object annotations to learn features
tailored to objects, which helps a lot to improve per-
formance [24], [25]. In contrast, there are no object
annotations available in the RSVQA datasets, making
it difficult for the RSVQA models to take advantage of
informative region information.

2) Questions of different difficulty levels. Questions about
each remote sensing image have significantly different
difficulty levels. Fig. 1 shows several examples. Usually,
upon learning a VQA model, training image–question–
answer triplets get shuffled. By doing so, the model can
see different samples in no particular order and learn
the task evenly without getting stuck in local optima.
However, this may confuse the model and hence affect
the final performance, as easy and difficult questions are
in the same batch.

Aiming at the above-mentioned two challenges, our motiva-
tions are explained from two aspects. First, both holistic and
region features should be well-exploited to enhance visual rep-
resentation for RSVQA. Though the holistic feature provides
global information of the input image, it may neglect some
important details, whereas the region feature can provide more
detailed semantic information, which is critical for answering
complicated questions. Moreover, due to the fact that remote
sensing images usually contain objects of various scales, using
region representation is also helpful for addressing the scale-
variation problem. To harness both the features, we propose
a multi-level visual feature learning method. Specifically, the
language-guided holistic image feature and the region feature
are jointly learned to improve the performance of RSVQA
models.

Second, the model should be trained in ascending order of
learning difficulty. We humans tend to learn from easy to hard.
Inspired by the human learning process, self-paced curriculum
learning (SPCL) is explored in this work and shows promising
results. It considers question attributes and model feedback to
dynamically adjust the question sequence for model training
in ascending order of difficulty [26], [27], namely, from easy
samples to hard ones. Albeit successful in many problems,
SPCL for the RSVQA task still remains underexplored.

To sum up, the main contributions of this work can be
summarized as follows.

1) A multi-level visual feature learning method is pro-
posed to jointly exploit both holistic and region fea-
tures. Specifically, a cross-modal global attention (CGA)
module is devised to learn the language-guided holis-
tic image feature, and a cross-modal spatial trans-
former (CST) module is developed to learn the
question-related region feature.

2) The proposed CST module applies affine transforma-
tion to visual features to automatically crop informa-
tive regions without object annotations. Moreover, the
language feature is also used as guidance to generate
multiple spatial transformation parameters for obtaining
richer region features.

3) A language-guided SPCL method with a soft weighting
strategy is devised for RSVQA. It takes question length
and type as prior knowledge and dynamically adjusts
question sequence to enable a more effective training
process: learning with easy questions and then with hard
ones.

The rest of this article is organized as follows. Related
works about VQA for both natural images and remote sensing
images are introduced in Section II. The methodology is
described in Section III. Section IV presents the experimental
results and discussion. Finally, this article is concluded in
Section V.

II. RELATED WORK

Multi-modal feature learning [28]–[30] plays an important
role in both remote sensing and computer vision tasks. For a
typical VQA framework, learning multi-modal representation
is also one of the core components. Malinowski and Fritz [31]
combined semantic segmentation of scenes and symbolic
reasoning over questions to learn multi-modal features. With
the development of deep learning, convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs) are
usually used for visual and language feature encoding and
have become mainstream feature learning methods [17], [32],
[33]. Antol et al. [15] introduced the task of free-form and
open-ended VQA and used VGGNet and LSTM to extract
multi-modal features.

Besides, visual attention mechanism is also widely used
in VQA tasks to make the model focus on important pixels.
Chen et al. [34] proposed a language-guided attention method
that projects question embeddings into a visual space and to
learn multi-modal features. Fukui et al. [35], Kim et al. [36],
and Ben-Younes et al. [37] designed different multimodal
bilinear pooling methods to integrate visual features with lan-
guage features. Yu et al. [38] further reduced the co-attention
method into question self-attention and question-conditioned
attention for learning better visual features. However, softly
attended visual features are still holistic representations of the
image. The detailed region information is neglected by these
methods, which is critical for alleviating the scale-variation
problem in the RSVQA task.

To leverage the object-level semantic information of the
input image, patch-based and object-based feature learning
methods are proposed to extract more representative local
features. For VQA models in computer vision, object detectors
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Fig. 2. Main architecture of the proposed VQA method. 1) First, multi-modal features are extracted from the two types of inputs, including visual features
from the given image and language features from the question; 2) then, visual features and language features are somehow fused to get the multi-modal
representation; and 3) finally, the answer is predicted via a classifier.

are usually used to represent the image as a collection of
bounding boxes [39]–[41]. Recently, vanilla grid convolutional
feature maps [42] are also proven to be effective for visual
feature learning in VQA and image captioning tasks. However,
these methods all rely on bounding box annotations, which are
not available in the RSVQA datasets.

Compared with VQA for natural imagery, the research for
RSVQA is still in its early stage. The first work for VQA
on remote sensing data was introduced by Lobry et al. [19],
where a template-based automatic method was designed
to build two remote-sensing-oriented datasets. The image–
question–answer triplets of the two datasets were constructed
via the information from OpenStreetMap and pre-defined
templates. They used a CNN to extract visual features and
an RNN to learn language features. After point-wise fusion of
multimodal features, an answer is predicted by a classification
task. This work paves the way for RSVQA by providing
datasets and a baseline method for further research. However,
due to unique characteristics of remote sensing imagery, more
specific feature learning algorithms need to be investigated and
explored for this task.

III. METHODOLOGY

As mentioned above, this work focuses on two problems.
On one hand, how can we adaptively exploit both holistic
and regional visual features for answering different types of
questions. On the other hand, how can we more effectively
train a model with questions of different difficulty levels.
The whole architecture of the proposed RSVQA framework
is shown in Fig. 2. It consists of two parts: 1) CGA and CST
modules that intend to learn multi-level visual features with
multiple spatial contexts and 2) SPCL-based network training,
which aims to train a model in an easy-to-hard way. Following
prior works [19], [43], we formulate predicting the answer
conditioned on the input image and question as a classification
task instead of a sentence generation task. Specifically, the
final answer can be selected from the class with the highest
probability. In Sections III-A and III-B, the two parts of our
RSVQA framework will be described in detail.

A. Multi-Level Visual Feature Learning With Multiple Spatial
Contexts

Compared with natural images, remote sensing data usually
contain much richer content due to top–down views, which
enables people to ask various types of questions for the same
input image. The existing RSVQA datasets in [19] contain the
following five types of questions, and an example is given for
each type.

1) Rural/Urban: “Is it a rural or an urban area?” The
answer to this question can be deemed as a typical binary
classification task.

2) Presence: “Is a road present?” To answer presence-
related questions, a VQA model needs to predict whether
there exist specific objects.

3) Comparison: “Are there more roads than residential
buildings?” We need to compare the areas or objects
involved.

4) Area: “What is the area covered by residential areas?”
The model needs to seek out the target according to the
question.

5) Count: “What is the amount of small buildings?” To
answer count-related questions, the numbers of specific
objects need to be predicted.

As can be seen, different image regions and spatial contexts
need to be used to answer various types of questions. Thus,
we propose to combine holistic (global) and region (local)
features to learn multi-level visual representation with multiple
spatial contexts. Specifically, CGA is designed to extract
global visual features with the guidance of language. CGA
uses language features as the guidance to generate global
attention maps on the whole image. Meanwhile, the CST
module is proposed to extract region features in an adaptive
way. CST learns to spatially transform feature maps to be of
different scales and poses, and the transformed features can
be used to enhance visual representations. Details of the two
proposed modules are illustrated in Fig. 3 and are introduced
in Section III-A.
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Fig. 3. Illustration of the proposed CGA and CST visual feature learning
modules. Using the proposed two modules, cross-modal global and spatially
transformed visual features can be learned jointly.

1) CGA Module: Attention mechanism has shown its effec-
tiveness in many computer vision tasks [28], [44], [45]. This
is mainly because focusing on some important regions of an
image can improve the discriminability of visual features. For
object recognition or semantic segmentation tasks, only one
modality, i.e., vision, is input to the model, and self-attention is
used. However, there are two modalities in our case. Therefore,
we propose a cross-modal global attention, i.e., CGA, which
exploits the language feature as guidance to generate global
attention maps on all the locations.

Formally, let x be the input image, and the corresponding
question is denoted as q. For visual and language modalities,
CNNs and RNNs are commonly used as feature encoders. Cor-
respondingly, visual feature Fx ∈ R

N×C×H×W and language
feature vector vq ∈ R

N×L can be obtained with the networks.
N is the batch size, C is the number of channels, and H andW
represent the height and width of the input image, respectively.
L denotes the dimension of the language feature vector. The
typical, single-modality attention mechanism first encodes the
visual feature Fx into three independent features: the query Q,
key K , and value V . The key idea of attention mechanism is
to assign weights to the input value V according to a similarity
function. Usually, the attention weights are computed by the
compatibility between the input query and the corresponding
key. Generally, the attention [44] for the single-modality input
can be calculated by

Attention( Q, K , V ) = softmax

(
Q K T

√
dk

)
V (1)

where dk is the number of channels of Fx .
However, for RSVQA, we make use of the information

of the natural language question to assign weights for visual
features. To this end, we devise a multi-modal compatibility
function to compute the similarities between language and

visual features at different locations. First, a 1 × 1 convolution
layer and a fully connected (FC) layer are used to transform
the visual and language features into Fattn

x ∈ R
N×C×H×W and

V attn
q ∈ R

N×C . Then, we expand the dimension of V attn
q to the

same dimension as Fattn
x . Afterward, the query Qattn can be

computed as

Qattn = Conv1×1

(
ReLU

(
Fattn

x∥∥Fattn
x

∥∥
2

+ V attn
q∥∥V attn

q

∥∥
2

))
. (2)

Finally, the cross-modal attention can be defined as

Attention
(

Qattn, Fattn
x , V

) = softmax

(
Qattn Fattn

x
T√

d ′
k

)
V + Fx

(3)

where the value V is computed by V = Conv1×1(Fx), and d ′
k

is the channel dimension of Fattn
x .

2) CST Module: Attention mechanism can make model
focus on informative image features using soft weights. How-
ever, it is still a global feature learning method with a fixed
spatial context. Compared with global features, multi-level fea-
tures are more effective. Therefore, we propose a cross-modal
spatial transformer, i.e., our CST module, to extract features
with adaptive scales and spatial contexts. The spatial trans-
formation in CST includes cropping, translation, and scaling,
which can be learned in an end-to-end manner without object
annotations. As opposed to the soft attention in CGA module,
the CST module can be viewed as a hard attention method for
region feature learning.

The spatial transformer in CST is a differentiable trans-
formation module, and it is conditioned on both visual and
language features. Specifically, there are three sub-components
in the spatial transformer following the work in [46]: localiza-
tion network, parameterized grid sampling, and differentiable
bilinear sampling.

In this work, the transformation parameter T θ can be
defined as

T θ =
[

s1 0 tx

0 s2 ty

]
(4)

where s1, s2, and tx , ty are the parameters controlling the
scaling, translation, and cropping transformation, respectively.

To predict the transformation parameter T θ , we design a
cross-modal localization network. In CGA, Fattn

x and Qattn

are computed for generating cross-modal attention. In the
cross-modal localization network, we reuse Fattn

x and V attn
q for

predicting the transformation parameter T θ . Since different
feature channels focus on different parts of the image [30],
[47], we propose to use multiple spatial transformers from
different channel groups to extract richer visual features. This
can be defined as

Mattn
1 , Mattn

2 = split

(
Fattn

x∥∥Fattn
x

∥∥
2

+ V attn
q∥∥V attn

q

∥∥
2

)
. (5)

We split the cross-modal feature into Mattn
1 and Mattn

2 along
the channel dimension evenly. Then, two transformation
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parameters are predicted by split features as

T θ1 = FC
(
ReLU

(
Mattn

1

))
T θ2 = FC

(
ReLU

(
Mattn

2

))
(6)

where FC denotes FC layers. T θ1 and T θ2 denote the predicted
transformation parameters.

Note that two spatial transformers share a similar differen-
tiable bilinear sampling process, which can be defined by

Ec
i =

H∑
u

W∑
v

Fc
x(u, v)max(0, 1−|xi −v|)max(0, 1−|yi −u|)

(7)

where i ∈ {1, 2, . . . , W H } is the coordinate index, and c is
the channel index. Transformed spatial coordinates (xi , yi)
and the feature coordinates (u, v) of Fx are normalized in
the range of [−1, 1]. Ec

i denotes the sampled features using
the transformation parameter T θ1 or T θ2 . For each spatial
transformer, we compute partial derivatives for both features
and coordinates. By this means, the whole networks can be
trained in an end-to-end manner.

B. Cross-Modal Feature Learning: From Easy to Hard

Traditional stochastic training strategy usually takes the
input samples in a random order, while this is opposite to the
learning process of human. Curriculum learning (CL) [48],
self-paced learning (SPL) [49], and SPCL [26] are proposed
as more reasonable training algorithms for machine learning
models. The core idea of them is to train a model starting
from easy samples and gradually including hard ones. Previous
works [27], [50] show that designing proper ranking functions
to organize training samples in ascending order of learning
difficulty is helpful for improving the model performance.
Since there exist questions with different difficulty levels for
the same remote sensing image, training an RSVQA model
from easy to hard is a more reasonable strategy.

In this section, we propose a language-guided SPCL training
method for RSVQA. Generally, SPCL is composed of two
parts: SPL and CL. SPL can be reformulated as an opti-
mization problem, and the curriculum is dynamically adjusted
according to model feedback during the training phase. The
curriculum in CL is determined by prior knowledge, which is
a prejudgment about the difficulty level of a specific task.

In this work, the target of SPL is to adjust the sequence
of input samples during the training stage. Specifically, SPL
uses adaptive weights for each training sample to control the
training sequence by an importance sampling strategy. Let v =
[v1, v2, . . . , vN ] denote the weight vector for each sample in
N training questions. xi is the i th input image, and qi is the
i th input question. g(h(xi ), s(xi ), qi ; w) represents the whole
RSVQA model. Here, h(xi ) denotes the global feature learned
by CGA module, and s(x i) denotes the transformed feature
learned by CST module. w represents the learnable network
weights in the whole model. Then, SPL is exploited to train the
model with samples organized in ascending order of learning
difficulty. Based on the learned multi-level features, the SPL

loss can be defined as

min
w,v

E(w, v, λ)=
N∑

i=1

vi L
(
yi , g

(
h(xi), s(xi), q i ,w

))+ f (v; λ)

(8)

where samples with larger v have larger influence on model
training and vice versa. yi is the ground-truth label. Since we
take answer prediction as a classification task, its loss function
is a cross-entropy function represented by L(yi , g). λ can be
interpreted as the “age” of the model, which is used to control
the learning pace.

Actually, f (v; λ) is a self-paced regularizer for controlling
the learning process. The vector v is learnable and updated by
optimizing the SPL loss function. Basically, elements of v can
be hard (0 or 1) or soft (from 0 to 1). In what follows, we study
the soft regularizer for SPL to enable a more flexible training
of the RSVQA model. Specifically, the soft regularizer can be
defined as follows:

f = λ

(
1

2
v2 − v

)
, v ∈ (0, 1)N . (9)

Given that there are two disjoint blocks of variables, i.e.,
network weights w and weight vector v, SPL is a biconvex
optimization problem. Usually, the alternative convex search
algorithm is used to solve it. When network parameters w

including all learnable weights in CGA and CST modules
are fixed, the global optimum v∗ for the regularizer can be
computed by

v∗
i =

⎧⎨
⎩− L

λ
+ 1, if L

(
yi , g

(
h(xi ), s(xi), q i ,w

)) ≤ λ

0, otherwise.

(10)

After vector v is updated, we fix v and optimize network
weights w by a stochastic gradient descent (SGD) optimizer.
Since easy samples can be quickly fitted with limited iter-
ations, the loss values for easy samples are usually smaller
than those for hard ones. So if the loss value L is not larger
than λ, the corresponding input question will be taken as an
easy sample and trained with high priority. Otherwise, v∗

i is
set to 0, and the corresponding question will not be used for
training.

As mentioned, λ is the “age” of the model that increases
gradually along with the training iteration. In this work,
we record the maximum and minimum loss values of epoch
t − 1, and use them to update λ as follows:

λ = (
max

(
Lt−1

) − min
(

Lt−1
)) · K + min

(
Lt−1

)
(11)

where K is used to adjust the value of λ. Specially, we define
K as a dynamic changing parameter for controlling the learn-
ing pace. The initial value of K is set to 0.5, and it is updated
during the training stage by

K = 0.5 + t

15
× 0.1. (12)

When the value of λ increases, the model includes more
difficult questions with larger loss values.
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However, SPL does not incorporate prior knowledge in the
learning process. In the initial stage, the network weights are
still randomly initialized, and the loss values of easy and hard
examples may not be accurate to determine the true difficulty
order. Thus, incorporating prior knowledge is necessary in
our case. Inspired by CL, we design a curriculum, namely,
a ranking function to organize questions in an easy-to-hard
order at the beginning of training. By combining SPL with
CL, the proposed language-guided SPCL method for RSVQA
can take advantages of these two learning regimes.

Two factors are considered in this work to design the
ranking function in CL: question length and question type.
In most cases, longer questions are usually more complicated
than shorter ones. In addition, different types of questions also
have different difficulty levels. For example, object recognition
is usually easier than counting task.

Based on this prior knowledge, the SPCL loss can be
defined as

min
w,v

E(w, v, λ,�) =
N∑

i=1

vi L
(
yi , g

(
h(xi ), s(xi ), qi ,w

))
+ f (v; λ), s.t. v ∈ � (13)

where � = {v | aT v ≤ c} is a pre-defined curriculum region
to initialize the weight vector v. c is a constant, and a is the
ranking function that indicates the difficulty levels of training
samples. Usually, � can be derived from a task-specific
ranking function a and a constant c. In this work, a is defined
by calculating ai = W q

i Qq
i for the i th question. W q

i denotes
the pre-defined prior weight for different question types. Qq

i
is the length of question, which is normalized by dividing
the maximum question length. Note that CL is only used in
the initial stage, and SPL adaptively updates v in the rest
of the training stage.

IV. EXPERIMENTS

A. Datasets

To evaluate the proposed RSVQA framework, we con-
duct experiments on three public datasets. Two of these are
released by Lobry et al. [19]: the low-resolution (LR) and
high-resolution (HR) RSVQA datasets. The LR dataset is
based on Sentinel-2 images at 10-m resolution. It contains
772 images of size 256 × 256 and 77 232 question–answer
pairs. Among them, there are 23 002 (29.78%) pairs for the
count question type, 22 882 (29.63%) for presence, 30 576
(39.59%) for comparison, and 772 (1.00%) for rural/urban.
Overall, 77.8%, 11.1%, and 11.1% of the original tiles are
divided into the training set, validation set, and test set, respec-
tively. The HR dataset is collected from HR orthoimagery
data at 15-cm resolution. It consists of 10 659 images of size
512 × 512 and a total number of 1 066 316 question–answer
pairs. Specifically, there are 277 702 (26.04%) pairs for count,
278 335 (26.10%) for presence, 353 772 (33.18%) for com-
parison, and 156 507 (14.68%) for area. In general, 61.5%,
11.2%, 20.5%, and 6.8% of the original tiles are split into
the training set, validation set, test set 1, and test set 2,
respectively.

TABLE I

COMPARISONS ON THE LR DATASET. BOTH THE MEAN VALUE AND THE
STANDARD DEVIATION ARE REPORTED

Another dataset is the RSIVQA dataset proposed in [43].
It is created on top of five existing datasets includ-
ing UC-Merced (UCM) [51], Sydney [52], AID [53],
HRRSD [54], and DOTA [55]. RSIVQA uses two types of
annotation methods: manual annotation and automatic gener-
ating. In total, this dataset contains more than 110 000 VQA
triplets. According to the answer type, these triplets can be
divided into three types: yes/no, number, and others. Follow-
ing the experimental setting described in [43], we randomly
sample 80%, 10%, and 10% of all triplets as the training set,
validation set, and test set, respectively.

B. Implementation Details

We use Adam optimizer with an initial learning rate of 1e-5
for model training. The batch size is set to 280 for LR and
70 for the HR dataset. For methods without multi-level feature
learning, we make use of 150 epochs and 35 epochs to train
the models on the LR and HR datasets, respectively. Since
more epochs are needed for models with the multi-level feature
learning module to converge, 300 epochs on the LR dataset
and 70 epochs on the HR dataset are used for these models.

We take the method in [19] as the baseline model and
conduct experiments to demonstrate the effectiveness of the
proposed method. Note that the same language feature embed-
ding network is used in both the baseline and the proposed
framework. As for the visual feature learning module, we use
the proposed CST and CGA modules. In addition, the tradi-
tional cross0entropy loss is replaced by the proposed SPCL
loss function to enable the easy-to-hard learning strategy.
To comprehensively evaluate the proposed modules, we exploit
accuracy with respect to question type, average accuracy, and
overall accuracy as evaluation metrics. Each model is trained
three times in every experiment (except for the results in
Table VI), and the mean and standard deviation are reported
on both the datasets.

C. Comparisons on the LR Dataset

The proposed framework consists of two main components,
namely, multi-level visual feature learning and SPCL. The
numerical results on the LR dataset are shown in Table I.
In this table, SPCL denotes SPCL with the soft regularizer,
which is used as our final loss. SPCL + MLL represents the
full-fledged framework proposed in this article. MLL stands
for multi-level visual feature learning and includes both CGA
and CST modules.

The LR dataset contains four types of questions:
rural/urban, presence, comparison, and count. Taking into
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TABLE II

COMPARISONS ON THE TEST SET 1 OF THE HR DATASET. BOTH THE MEAN
VALUE AND THE STANDARD DEVIATION ARE REPORTED

Fig. 4. Visualization of the proportions of training samples for SPCL on
the LR dataset. The proportions of different question types during the first
50 training epochs are displayed by different colors of lines.

account the difficulty level of each question type, we set
the prior weights W q

i as {rural/urban: 1.0, presence: 1.0,
comparison: 3.0, count: 4.0}. From Table I, we can see that
the proposed method gains better results. An improvement of
3.27% in average accuracy can be achieved. In addition, the
proposed method improves the overall accuracy by 4.01%.
We also find that much greater performance is obtained for
all question types. Especially for comparison type, there is
an improvement of about 6% in accuracy compared with the
baseline method. These results indicate that multi-modal visual
feature learning and SPCL training strategies can enhance the
performance of RSVQA.

As shown in Fig. 4, the proportions of training samples for
SPCL on the LR dataset are visualized. Note that this model
does not include the MLL feature learning module. In this
figure, the proportions of training samples for four question
types are compared in detail. At the first 15 epochs, CL is used
to initialize the weight vector v. Thus, the proportions of count
and comparison question types are obviously smaller than
those of rural/urban and presence. After the first 15 epochs,
SPL is used to update the vector v to control the training order
of different question types. The proportion of count type is the
smallest at the beginning few epochs. Then, hard examples are
gradually included. The results also support our assumption on
the difficulty levels of different question types.

The precisions of different question types for SPCL during
the training stage on the LR dataset are visualized in Fig. 5.
From this figure, it can be clearly observed that easy questions
can achieve higher precisions at the first 15 epochs. Afterward,

TABLE III

COMPARISONS ON THE TEST SET 2 OF THE HR DATASET. BOTH THE MEAN
VALUE AND THE STANDARD DEVIATION ARE REPORTED

TABLE IV

COMPARISONS ON THE RSIVQA DATASET. BOTH THE MEAN VALUE AND
THE STANDARD DEVIATION ARE REPORTED

Fig. 5. Visualization of the precisions of different question types for SPCL
on the LR dataset. The precisions of different question types during the first
50 training epochs are displayed by different colors of lines.

the precisions of more difficult question types are improved
rapidly. Moreover, we can see that the precisions of easy
question types are not affected by adding more difficult
training samples.

The global attention maps and spatially transformed maps
are visualized in Fig. 6. The second column of the figure shows
that global attention mechanism learns to focus on important
pixels of remote sensing images. The third and fourth columns
indicate that spatial transformers extract visual features of
local regions. Note that we apply learned transformation
parameters to the original remote sensing images instead of
feature maps for a clear visualization.

D. Comparisons on the HR Dataset

Since there are two test sets provided by Lobry et al. [19],
we report the results on both of them. The experimental results
on the HR dataset are displayed in Tables II and III.

Table II shows numerical results on test set 1 of
the HR dataset. There are four types of questions
in the HR dataset: presence, comparison, count, and
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Fig. 6. Illustration of some qualitative examples on (upper two rows) LR and (lower two rows) HR datasets. The first column is the input image. The
corresponding questions and predicted answers are presented below each image. Global attention maps are displayed in the second column. For the last two
columns, the spatial transformation is shown (best viewed in color).

area. Their corresponding prior weights W q
i are set as

{presence: 1.0, comparison: 3.0, count: 4.0, area: 4.0}. The
results in Table II reveal that SPCL can consistently enhance
the performance of RSVQA for all question types. Particularly,
the comparison between baseline method and SPCL indicates

that the VQA performance can be improved by simply replac-
ing the cross-entropy loss with our SPCL loss. This demon-
strates the effectiveness of the proposed training strategy.

The performance comparison between SPCL and SPCL +
MLL shows that the multi-level visual feature is useful for
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TABLE V

ABLATION STUDY ON THE LR DATASET. BOTH THE MEAN VALUE AND THE STANDARD DEVIATION ARE REPORTED

TABLE VI

PERFORMANCE COMPARISONS OF DIFFERENT NUMBERS OF TRAINING SAMPLES ON THE LR DATASET

this task. Comparing the baseline method with SPCL + MLL,
we also find that improvements for easier question types, i.e.,
comparison and presence, are larger than harder ones. The
experimental results reported in Table III demonstrate that the
proposed method can outperform the baseline method on all
question types on test set 2 of the HR dataset.

E. Comparisons on the RSIVQA Dataset

For the RSIVQA dataset, we take MAIN proposed in [43]
as the baseline method. MAIN consists of two modules: a
representation module and a fusion module. Image features
and question representations are first learned by the repre-
sentation module. Then, mutual attention and bilinear fusion
are used to fuse image and question representations in an
adaptive manner. The comparison between MAIN and our
approach is presented in Table IV. On this dataset, according
to difficulty levels of question types, prior weights W q

i are
set as {yes/no: 1.0, others: 2.0, number: 3.0}. Compared with
MAIN, our proposed method can achieve much better perfor-
mance on the yes/no and other types. Although the accuracy
of our model on the number type is lower than that of MAIN,
the proposed method can obtain better performance in general
on the RSIVQA dataset. This demonstrates that the proposed
training strategy and multi-level feature learning modules are
effective for the RSVQA task.

F. Ablation Study and Discussion

To evaluate the proposed framework more comprehen-
sively, the following two ablation studies are conducted
to explore the effect of different sub-modules. Specifically,
to show the superiority of multi-level visual features, CGA
and CST modules are compared separately. Quantitative results
are presented in Table V. The performance of the model with
CGA on three question types is better than that of the baseline
method except rural/urban type, which indicates that CGA
mechanism can be used to enhance the distinguishability of

visual features. Since CST enables more flexible visual feature
extraction, the model with CST can achieve better results
(except rural/urban type) than both the baseline method and the
model with CGA. Finally, by combining both the modules, the
MLL model obtains better or competitive performance among
these competing methods. This demonstrates the superiority
of using multi-level visual features in the RSVQA task.

To further study the effect of different numbers of training
samples on model performance, we have conducted experi-
ments by training the proposed SPCL + MLL model with
different proportions of the training data. Specifically, 10%,
40%, 70%, and 100% training samples are used for model
training. The results in Table VI show that the performance of
the model becomes better as the number of training samples
increases gradually. In addition, we can also see that the pro-
posed method works well with different sizes of training data.

V. CONCLUSION

In this article, two challenges for the RSVQA task are
addressed. First, there are no object annotations available in
the RSVQA datasets, while these annotations can provide
rich semantic information for answering questions. Aiming at
this challenge, a multi-level visual feature learning method is
proposed to jointly learn the language-guided holistic feature
and region feature. Specifically, CGA and CST modules are
devised to extract flexible visual features with different spatial
contexts. Second, questions in the RSVQA datasets are with
clearly different difficulty levels for the same remote sensing
image. Directly training a model with questions in a random
order may confuse the model and limit the performance.
To alleviate this problem, we propose a language-guided SPCL
method with a soft weighting strategy to train networks with
samples in an easy-to-hard way. Extensive experiments are
conducted on three public RSVQA datasets, and the exper-
imental results show that the proposed method can achieve
state-of-the-art performance.
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