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Abstract— Global-scale canopy height mapping is an important
tool for ecosystem monitoring and sustainable forest manage-
ment. Various studies have demonstrated the ability to estimate
canopy height from a single spaceborne multispectral image
using end-to-end learning techniques. In addition to texture
information of a single-shot image, our study exploits multi-
temporal information of image sequences to improve estimation
accuracy. We adopt a convolutional variant of a long short-
term memory (LSTM) model for canopy height estimation
from multitemporal instances of Sentinel-2 products. Further-
more, we utilize the deep ensembles technique for meaningful
uncertainty estimation on the predictions and postprocessing
isotonic regression model for calibrating them. Our lightweight
model (∼320k trainable parameters) achieves the mean absolute
error (MAE) of 1.29 m in a European test area of 79 km2.
It outperforms the state-of-the-art methods based on single-shot
spaceborne images as well as costly airborne images while
providing additional confidence maps that are shown to be
well calibrated. Moreover, the trained model is shown to be
transferable in a different country of Europe using a fine-tuning
area of as low as ∼2 km2 with MAE = 1.94 m.

Index Terms— Calibration, canopy height estimation, multi-
temporal regression, recurrent neural network (RNN), Sentinel-2,
uncertainty estimation.

I. INTRODUCTION

CHARACTERIZATION of 3-D forest structure (i.e., “the
organization of the above-ground components of vegeta-

tion in space and time”) is a fundamental step toward under-
standing the effects of climate change on ecosystem dynamics
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as well as sustainable forest management [1]. As a major
component of forest structure, canopy height is a valuable
indicator in numerous applications and research efforts, such
as capturing above- and below-ground biomass patterns of
ecosystems [2] or assessing and monitoring the health status
of forest and its inhabitants [3], [4].

The standard method for canopy height model (CHM)
estimation, apart from manual site inspection, is based on
airborne LiDAR sensors that yield measured 3-D point clouds
with ground sampling distance (GSD) <1 m and accuracy
that, for our purposes, can be considered as ground truth. Due
to the high cost of airborne measurements, they can only be
applied at local scale without repetition. On the other hand, the
two-year Global Ecosystem Dynamics Investigation (GEDI)
mission has provided repetitive worldwide LiDAR measure-
ments of the surface of the Earth from space [5]. However, the
25-m GSD of the spaceborne LiDAR sensor remains a limiting
factor that needs to be addressed. Other techniques include
aerial stereo imaging, such as the country-wide vegetation
height mapping that was created by Ginzler and Hobi [6] or
synthetic aperture radar (SAR) data [7].

Various approaches incorporate machine learning techniques
in order to infer CHM from other sources of imagery. A super-
vised deep learning model for CHM estimation from single-
shot Sentinel-2 imagery was introduced by Lang et al. [8].
A convolutional neural network (CNN) model, which is based
on the Xception architecture [9], follows a preprocessing step
for atmospheric correction and estimates canopy height maps
at 10-m pixel resolution. The model has been trained and
tested separately in two different datasets in Switzerland and
Gabon. The root-mean-squared error (RMSE) of 3.4–5.6 m
and the mean absolute error (MAE) between 1.7 and 4.3 m
were achieved in pixel-wise evaluation. The authors argue that
this low error in the tropics as well as in central Europe is
suitable for country-scale canopy height mapping in terms of
generalization and computation time.

Our prior work [10] evaluated the performance of a con-
volutional encoder–decoder network in the same forest area
between Germany and Czech Republic. Apart from pixel-wise
evaluation, aggregations of pixels based on their vegetation
type were classified into six vegetation height classes. In the
study of Boutsoukis et al. [11], SVM-based classification of
extracted features of texture was used to classify land objects
in vegetation classes of the general habitat category taxonomy

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-8361-0589
https://orcid.org/0000-0001-6833-294X
https://orcid.org/0000-0001-5121-8200


4410913 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

based on high-resolution airborne images on GSD smaller
than 1 m.

An important research study that introduced the
encoder–decoder deep architecture to regress height values
from single-shot aerial images focused on mapping urban
landscapes [12]. Similarly, the ISPRS benchmark datasets of
Vaihingen and Potsdam have enabled other studies to explore
end-to-end architectures that utilize single-shot remotely
sensed imagery of urban environments [13].

Following the success of deep learning, remote sensing has
widely adopted end-to-end learning solutions [14]. However,
most approaches focus on the spatial and spectral dimension of
the data, while only a few studies investigate the information
content of temporal dimension contained in the abundance of
available sequential imagery in the current Earth observation
status. Change detection studies have developed an increasing
number of algorithms with a well-established exploitation of
multitemporal Earth observations [15]. In general, sequen-
tial data have been exploited with remarkable success in
domains such as time series forecasting and natural language
processing, by using recurrent neural network (RNN)-based
approaches.

A clear demonstration of the superiority of multitemporal
model over standard nontemporal models (CNNs and SVMs)
for the land cover classification problem is presented in the
work of Rußwurm and Körner [16]. Furthermore, in another
work of the same authors [17], the effectiveness of multitem-
poral land cover classification with respect to cloud filtering
is pointed out, which eliminates the need of any further
preprocessing step. Our study is based on a similar approach
to these studies, i.e., a convolutional variant of long short-
term memory (LSTM) network, ConvLSTM, that was first
introduced by Shi et al. [18] and [19]. A further adaptation of
the model to a convolutional variant of gated recurrent (GRU)
networks was presented in [17], although yielding comparable
results with ConvLSTM architecture.

Another study toward incorporating sequential data inves-
tigates the use of multitemporal PlanetScope CubeSat to
estimate canopy height in a pixel-wise manner using a random
forest algorithm [20]. Furthermore, a combination of optical,
Sentinel-2, with radar, Sentinel-1, and sequential data has
been explored in the task of buildings’ height estimation [21].
Several spectral–temporal and spatiotemporal features were
calculated to train an SVM model that has been tested on
a national scale.

An interesting interpretation of the valuable information
contained in sequential spaceborne imagery has been given
more than 25 years ago based on the first Landsat missions
in the work of Odenweller and Johnson [22]. In this early
work, individual crop types could be separated by manually
inspecting the temporal profiles of a feature calculated from
multiple bands indicating green vegetation. The reflectance
levels in each crop type during seasons yield a distinctive
shape of the temporal–spectral profiles. In addition, other
studies demonstrate the predictive power of CHMs for land
cover mapping [23].

In general, estimating height of land objects from multispec-
tral image signal as captured from a satellite instrument is con-
sidered an ambiguous and ill-posed problem [12]. However,
an indirect correlation is assumed of spectral signature with
height that might be sufficient for straightforward applications.
In specific, we assume that local spectral signatures are deter-
mined by a large vector of parameters that include shadowing,
tree type, vegetation density, atmospheric column information,
and so on, and some of these parameters are proxies to canopy
height. Our intention is to exploit this indirect relation to the
spectral signatures in order to predict canopy height. Moreover,
it is important to make clear that our model is not trying
to predict canopy height only from a single pixel’s spectral
signatures, rather to exploit the spatial distribution of these
signatures as captured by CNNs, which inherently capture the
corresponding texture of the satellite images.

In this article, we adopt an efficient spatiotemporal
LSTM-based learning framework for the per-pixel CHM esti-
mation, using sequences of Sentinel-2 products. With this
model architecture, we are seeking to capture the temporal
evolution of the distribution that the image texture follows
and map it to the space of vegetation heights. Training
and testing the model is based on different tiles of a total
forest area of approximately 94 000 hectares, and compar-
ison results with state-of-the-art studies [8], [10], [11] are
provided.

Furthermore, an important aspect of our work is motivated
by the need for quantifying the uncertainty of the model’s pre-
dictions. In practical settings, knowing the confidence of the
estimated CHM is useful in identifying the need for additional
training data or ignoring low confident estimations. In this
direction, various methods have been proposed, including deep
ensembles [24], approximate Bayesian neural networks [25],
and Monte Carlo dropout [26]. Since this is an open research
area, we investigate the use of deep ensembles for meaningful
confidence estimation, which is shown to outperform other
methods in the literature [24].

Confidence in modern neural networks is shown to be poorly
calibrated, i.e., probability estimates to be representative of the
true correctness likelihood [27]. To calibrate our confidence
maps, we train a second model that is agnostic to the main
CHM model. Similar to the surprisingly successful method
of “temperature scaling” [27], which is based on the entropy
maximization principle for calibrating classification models,
we implemented a simple calibration model based on the
isotonic regression [28].

Finally, experimentation on transferability in time and loca-
tion is performed. Reasonable height estimates are inferred
for the years, 2018–2021, following the reference year, 2017,
in the same geographic region. The model is also tested on
a region in Switzerland, which is a different country that the
training, allowing for a direct comparison with the state-of-
the-art study of [8], as well as investigation of the size of
fine-tuning dataset required. We concluded that a ground-truth
area of ∼2 km2 of the Swiss region is sufficient to transfer
our model with similar performance as in [8].
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Fig. 1. Ground-truth canopy height model of the Bohemian Forest acquired
from LiDAR measurement that took place in June 2017.

In short, the contributions of our study include the following
models.

1) A model architecture for CHM estimation is suggested,
based on sequences of satellite images without any
cloud filtering. We evaluate its performance and compare
with the state-of-the-art results based on single-shot
approaches.

2) Alongside the CHM estimation model, we provide a
method for meaningful and calibrated uncertainty quan-
tification.

3) Experiments on transferability in location demonstrate
that the model can be transferred in different regions
with very limited fine-tuning dataset.

4) The impact of input sequence length in estimation accu-
racy is assessed.

5) Analysis of estimation error is performed based on
terrain’s characteristics, such as slope and aspect of the
study area as well as cloud coverage.

II. MATERIALS

A. Bohemian Forest (BF), Germany and Czech Republic

For training and testing our model a study area of
942 km2 of the Bohemian Forest (BF) ecosystem was used.
It is located at the borders between southeastern Germany and
Czech Republic and includes two national parks, Bavarian For-
est National Park and Šumava National Park. The forest area
comprises heavily forested mountains with altitudes ranging
between 570 and 1453 m. At higher altitudes, the landscape
is covered with snow for 7–8 months, while in the valleys,
snow persists for 5–6 months. Dominant tree species in the
Bavarian area include Norway spruce (Picea abies), silver fir
(Abies alba), and European beech (Fagus sylvatica) [29].

Ground-truth CHM of the study area was acquired from
LiDAR measurements with the Riegl 680i sensor in June

Fig. 2. Cloud coverage on all product dates of 2017. With blue color, S2A
products are marked, and with red color, S2B products are marked. In total,
160 timeframes are available from the Sentinel-2 mission. The satellite S2B
began providing data in the last semester of the year.

2017 and is shown in Fig. 1. Details on the acquisition settings
can be found in [11]. The GSD of the acquired 3-D point cloud
is 1 m and the calculated CHM was bilinearly downsampled
to 10-m resolution. For the preparation of the dataset, GDAL
library and LAStools software with academic license were
used.

A sequence of Sentinel-2 Level-1C products, representing
top-of-atmosphere reflectances, has been acquired for the study
area during the year 2017, from the European Space Agency’s
(ESA) Copernicus Hub. As shown in Fig. 2, the complete
sequence of products in 2017 consists of 160 timeframes
in total from both satellites of the mission, S2A (blue) and
S2B (red). Cloud coverage percentage for each product is
also given in the same figure. In the years following 2017,
more products are provided yearly for most areas since both
satellites. In order to test for the transferability of the model
through different years, the sequence of Sentinel-2 Level-1C
has been acquired for a smaller part of the testing region,
∼40 km2, for the years 2018–2021. A random date sampling
mechanism weighted in the second semester of each year
was applied in the input sequences to simulate the products’
frequency of year 2017. As discussed in the following section,
no cloud coverage filter is applied in any of the Sentinel-2
sequences.

Finally, a land cover map of the area has been used for
evaluation purposes and specifically in comparison with [10]
and [11]. Based on the manual delineation of landscape
patches (objects) [30], as created by local experts in 2012,
we calculate aggregated pixel values of height in order to
compare object-wise accuracy with the previous works.

B. Switzerland, CH

To investigate the model’s transferability in different geo-
graphic locations, ground-truth vegetation height data are
used for the region in Switzerland, CH, that is shown in
Fig. 3. The vegetation height maps were calculated from
stereo aerial imagery with a resolution of 1 × 1 m, based
on photogrammetric image matching [6]. The transferability
study area dataset was provided by the Swiss Federal Institute
for Forest, Snow and Land-scape (WSL) for the year 2016.
Similar to the BF ground-truth dataset, the vegetation height
map is bilinearly downsampled to 10-m GSD. Following
the reasoning of Lang et al. [8] that uses the same dataset,
we filter height values >40 m as the only preprocessing step
and the resulting map is considered accurate enough for the
purposes of our work. The testing areas were selected with
the minimum pixels of lakes to eliminate their influence on
evaluation results.
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Fig. 3. Ground truth in Switzerland for year 2016 is used to evaluate the
model’s transferability in different geographic locations with limited or no
training data. Regions in red are used for testing, while parts of the green
region are used for fine-tuning model’s parameters.

From the whole Switzerland area, a subregion of
2200 km2 was selected, which corresponds to one of the two
regions mentioned in [8], namely, CH2. In Fig. 3, regions in
red color span ∼2200 km2 and are used for testing purposes,
while parts of the green region, which cover a total area
of ∼320 km2, are used for fine-tuning model’s parameters.
In fact, it is argued that only a small portion of the whole
testing area is needed for fine-tuning.

The sequences of Sentinel-2 Level-1C products for the
described areas have been downloaded for the whole year
2016. In total, 67 Sentinel-2 products were available during
that year.

III. METHODOLOGY

A. Model Architecture

In our regression problem, we infer a parametric model f :
x ∈ R

B×T×w×h �→ {ŷ ∈ R
w×h, ŝ ∈ R

w×h}. The input x is
a multitemporal, multispectral tile of size w × h pixels with
B bands for each pixel in T distinct dates. The model maps
the input to an estimation map, ŷ of the real height map y,
as well as an estimation of the prediction error, ŝ, also called
confidence map.

We adopt a convolutional variant of LSTM network,
as introduced by Xingjian et al. [18] for the precipi-
tation forecasting problem and further investigated by

Patraucean et al. [19] in a weakly supervised framework for
semantic segmentation of videos. Building on the important
advantages of LSTM networks over simpler RNN approaches
(i.e., dealing with the vanishing gradient problem as well as
capturing long-term temporal dependencies), the ConvLSTM
cell enables capturing of spatiotemporal correlations for our
per-pixel regression problem.

The complete model, named thereafter spatioTempCHM,
utilizes a number of ConvLSTM cells and is shown in Fig. 4.
The input tile is a sequence of Sentinel-2 L1C images x =
{xt}T

t=1 and consists of T = 40 timeframes that have been
selected randomly from the available products of the year
2017, as shown in Fig. 2. Each timeframe, xt , with size 48 ×
48 pixels includes 13 bands and is fed into a 2-D convolutional
layer with kernel size 3 × 3 and output depth of 64, resulting
in an input feature map, Xt at time t . A ConvLSTM cell,
as described next, is applied for each feature map together
with the cell state, Ct and hidden state, Ht of the previous
timeframe. The first timeframe is initialized with tensors
C0 = 0,H0 = 0 as the previous cell and hidden states.
The cell state of the last timeframe is convolved with kernel
size 3 × 3 and output depth of 32. Finally, two separate
fully connected layers for each pixel are applied for the
computation of the output values that represent the estimated
height values and estimated prediction errors. All tensors prior
to convolutional layers are zero-padded with a single pixel in
the edges to maintain the input size.

The ConvLSTM cell replaces the standard full connections
of input-to-state and state-to-state transitions of LSTM with
the convolution operator. The key equations of the ConvLSTM
cell architecture as adapted by Patraucean et al. [19] are given
next

it = σ(wxi ∗ Xt + whi ∗ Ht−1 + bi) (input gate)

ft = σ
(
wx f ∗ Xt + wh f ∗ Ht−1 + b f

)
(forget gate)

ot = σ(wxo ∗ Xt + who ∗ Ht−1 + bo) (output gate)

Ht = ot ◦ tanh (Ct) (hidden state)

Ct = ft ◦ Ct−1 + it ◦ tanh (wxc ∗ Xt + whc ∗ Ht−1 + bc)

(cell state)

where Xt is the input feature map at time t; Ct and Ht

are the outputs of the ConvLSTM cell, named cell state and
hidden state, respectively; and wxi , wx f , wxo, wxc , whi , wh f ,
who, and whc and bi , b f , bo, and bc represent the trainable
3 × 3 convolution kernels and biases.1 The intermediate vari-
ables, it , ft , and ot , represent the input, forget, and output
gates, respectively. The sigmoid σ and tanh are used as
activation functions, introducing nonlinearities. Convolution
operation and element-wise multiplication are represented by
∗ and ◦, respectively.

B. Uncertainty Quantification

The standard cost function for training the model with
a single output, i.e., only ŷ, is mean squared error (MSE)

1The input convolutional kernel that maps the input xt to Xt could be merged
with the kernels wxi , wx f , wxo, and wxc because they are consecutive convo-
lutions without nonlinearities in between. However, separating convolutional
layers reduces total trainable parameters with no cost at model’s performance.
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between the estimated mean and target height values. In this
case, the cost function is optimized with respect to the model
parameters, θ , in batches of 16 tiles, with Adam optimizer and
learning rate 10−3.

However, in order to further acquire a confidence map, that
expresses the data uncertainty of each prediction, we assume
a Gaussian target error distribution and train the model based
on the Gaussian negative log-likelihood (GNLL) cost func-
tion [31]. Based on this assumption, we represent the model’s
outputs with the estimated mean ŷ and the estimated variance
σ̂ 2 of canopy height. In fact, for numerical reasons [25], the
network is trained to output the log variance of a pixel i ,
ŝi := log σ̂i

2. In this case, the cost function is optimized using
rms-Prop optimizer in batches of 16 tiles with learning rate
and weight decay 10−4. For D the number of output pixels,
the GNLL cost function takes the form

LGNLL(θ) = 1

D

D∑

i

1

2

(
e−ŝi ||yi − ŷi ||2 + ŝi

)
. (1)

Apart from the heteroscedastic aleatoric uncertainty, which
captures noise inherent in the collected data, we wish to
capture the epistemic uncertainty as well, which describes our
ignorance about the model. For this purpose, deep ensembles
technique [24] is utilized, which has been shown to outperform
other methods, such as approximate Bayesian NNs [24] or
Monte Carlo dropout [26]. We obtain N ensemble models for
the prediction of mean and variance {ŷn, σ̂ n

2}N
n=1, trained on

the same training and validation set but with different initial
parameters. The outputs of the ensemble models for each pixel
(ŷn, σ̂n) are then combined as a mixture of Gaussians, thus

ŷ = 1

N

N∑

n

ŷn (2)

σ̂ 2 = 1

N

N∑

n

(
σ̂ 2

n + ŷ2
n

) − ŷ2. (3)

We can rearrange the formula as

σ̂ 2 = 1

N

N∑

n=1

σ̂ 2
n + 1

N

N∑

n=1

(
ŷ2

n − ŷ2
)

(4)

which is equivalent as adding the mean value of the variances
σ 2

n with the variance of the means μn of the Gaussian distrib-
ution members. In the literature [25], the first term expresses
the aleatoric uncertainty, while the second term expresses the
epistemic uncertainty.

C. Confidence Calibration

Even with the deep ensembles technique, we observed that
the predictions were not well calibrated; in fact, they were
underconfident. As a final step for calibrating the output
confidence map, a second model that is agnostic to the main
spatioTempCHM model was trained on the confidence pre-
dictions of the validation set based on the isotonic regression
model [28]. This small and simple model is used for post-
processing the estimated confidence (variance) of the test set.
Despite its simplicity, this method, similar to the temperature

Fig. 4. Unfolded recurrent neural network architecture with ConvLSTM
cells for canopy height estimation with uncertainty quantification. A sequence
of 40 Sentinel-2 L1C tiles is used as input, {xt }T

t=1, while the output consists
of two maps with the same size as input representing estimated height mean
value, ŷ and log variance, ŝ.

scaling in classification tasks [27], generalizes the uncertainty
predictions on the test set surprisingly well [32].

The most common metric for quantifying calibrations is the
expected calibration error (ECE). If we group the confidence
predictions into M bins of equal intervals and Bm is the set
of indices of pixels whose confidence prediction falls into the
mth interval, then

ECE =
M∑

m=1

|Bm|
L

|err(Bm) − std(Bm)| (5)

where err(Bm) = (1/|Bm|) ∑
i∈Bm

(|yi − ŷi |), L number of
pixels, and std(Bm) = (1/|Bm|) ∑

i∈Bm
σ̂i .

D. Experimental Details

The BF study area is divided into nonoverlapping square
tiles with 48 pixels on each side. Tiles at the borders of the
study area that included at least one pixel with no-data value
have been discarded. The 80% (7.03 Mpixels corresponding
to 703 km2) of the total number of tiles is used for training,
while 10% (0.786 Mpixels corresponding to 78.6 km2) is
used as validation set during training for hyperparameter
selection and stop training epoch. The rest 10% of the tiles
(0.790 Mpixels corresponding to 79 km2) are used for testing
purposes and performance evaluation. This main separation in
the BF dataset is based on the random selection of distinct
subregions for train/validation/test and is called random split.
Another separation of the dataset that is mentioned later in
this section is based on the geographic location by manually
selecting the southeast 72 km2 of the whole area for testing
and the rest for train/validation. It is named location-based-
split.

A total number of N = 6 spatioTempCHM ensemble
models have been trained and evaluated in terms of accuracy
and confidence calibration. Input data to the model consist of
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40 products randomly selected during the year 2017, as shown
in Fig. 2, without any cloud coverage filtering. The isotonic
regression model is trained on the 10% validation set and is
used as a postprocessing step for calibrating the confidence
map.

Each spatioTempCHM model of the ensemble has ∼320 k
trainable parameters, which is considered a very small neural
network compared to other common architectures for the
same kernel size, such as SegNet with ∼30 M parameters,
U-Net ∼31 M parameters, or ConvEnc-Dec from our
previous work [10] with ∼19 M parameters. A NVIDIA
RTX 2080Ti card was used for training with a total training
time of approximately 15 h. Inference, although based on
ensembling, is relatively quick and can be easily deployed
in large-scale web applications. In specific, fetching the input
data of ∼300 km2 and 40 timeframes to memory is the most
time-consuming task, with ∼1.5-min duration, while the actual
inference in GPU lasts ∼20 s for a single ensemble member.

Estimation accuracy is evaluated pixel-wise by calculating
RMSE and MAE of the mean height value for all test pixels
that cover a total area of 79 km2. The state-of-the-art results
of Lang et al. [8] and our previous work [10] are compared
with the resulted RMSE and MAE.

To compare accuracy with the study of
Boutsoukis et al. [11] and our previous work [10], we used an
object-wise testing method that is described in detail in [11]
and [10]. Both studies involve the same study area as ours.
Land objects are considered as aggregation of pixels based on
the land cover map of the area. For each delineated object,
an average height value was calculated from all pixels in it.
In order to adapt comparison with the classification scheme
mentioned in [11], the estimated height value of each land
object is quantized in four classes of height [11], representing
a subset of general habitat categories. The percentage of
correctly classified land objects (object-based accuracy) and
the percentage of correctly classified area considering the
area of each land object (area-based accuracy) are used as
metrics for the comparison.

To provide a wider understanding on the strengths and
weaknesses of spatioTempCHM model, we investigate the
correlation of the terrain’s characteristics with the estimation
error. In specific, we analyzed correlations of the actual
estimation error and the estimated confidence with slope and
aspect for each pixel based on the LiDAR measurements.
In a similar manner, the influence of clouds on the model’s
performance is investigated by conducting an analysis of
estimation error with respect to the average cloud coverage
of pixels in the sequence of 40 timeframes randomly selected
during the reference year 2017. The estimated confidence is
also included in the analysis, allowing for conclusions on the
model’s cloud robustness.

Another important aspect that was investigated for our
multitemporal model is the impact of sequence length in
the prediction accuracy. For this purpose, different ensemble
models have been trained on smaller number of input images
around the central date of June 1, 2017 and comparison results
are shown in Fig. 9. The central date was selected based
on the acquisition date of the LiDAR dataset (June 2017)

as well as the available cloud-free products around this date,
based on Fig. 2, in order to include enough cloud-free input
data for the models with small input sequence length, e.g., 5.
In this comparison, since we care about comparing solely the
accuracy of each ensemble model, only the first output of
the model architecture was used in training, representing the
height value and omitting the confidence estimation; the cost
function of MSE was used in this case.

An additional experiment was conducted to compare
spatioTempCHMmodel with a simpler temporal aggregation
strategy that does not exploit temporal features. The baseline
model uses the encoder–decoder network, ConvEnc-Dec,
that is described in our previous work [10], as a feature
extractor. The 40 feature vectors for each pixel are aver-
aged before feeding the aggregated vector in a fully con-
nected layer to regress height values. This model, named
ConvEnc-Dec-mean40, incorporates 40 timeframes around
the central date but does not exploit their ordering. The
model’s parameters are initialized using the pretrained feature
extractor on single-shot cloud-free images in our previous
work. End-to-end retraining on the sequence of images con-
tributes to the cloud robustness of the baseline method.

Estimated height and confidence maps for the years
2018–2021 of a subregion of 40-km2 BF are calculated to
indirectly evaluate transferability of the spatioTempCHM
model in time.

Finally, we include further experimentation to address the
question of model’s transferability in geographic location.
First, comparison results between location-based split and
random split, as described in Section II, are informative on
the transferability in regions of close proximity to the training
set. Second, to properly evaluate transferability to region of a
different country, we tested the trained model to a subregion
of 2200 km2 in Switzerland, as shown in Fig. 3. A simple
fine-tuning process, without any frozen layer, is performed
on regions of variable size to identify the smallest area that
is sufficient to fine-tune the model with similar accuracy to
the state of the art [8]. This comparison is possible since the
same subregion of Switzerland is used in [8] and the same
preprocessing steps are followed. The fine-tuning datasets
consist of a number of 48 × 48 pixel tiles that are randomly
selected from the fine-tuning area, shown with green in Fig. 3.

IV. EXPERIMENTAL RESULTS

A. Accuracy and Calibration Results

The depicted randomly selected test tiles in Fig. 5 are
of size 48 × 48 pixels with 10-m resolution. Assuming
Gaussian target error distribution, the predicted mean, ŷ, and
standard deviation (std), σ̂ , are inferred from the six-ensemble
spatioTempCHM model, as described in Section III. The
ground truth, y, that is compared against the predicted mean
value is measured using the airborne LiDAR sensory. The
last column of Fig. 5 depicts the pixel-wise absolute error,
|y − ŷ|. In Fig. 6, the predicted mean values of all test pixels
are scattered against the target ground-truth values.

Quantitative evaluation is performed for the model’s
accuracy and calibration, i.e., how well the confidence map
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Fig. 5. Predicted mean and standard deviation of canopy height alongside with LiDAR measured ground truth and absolute error. A six-member ensemble
of spatioTempCHM model is used for estimating the depicted tiles of 48 × 48 pixels with 10-m resolution.

Fig. 6. Ground-truth versus estimated height values for more than 78 km2 of
test area.

estimates the absolute error map. Resulted RMSE and MAE
in pixel-wise evaluation are presented in Table I and next to the
state-of-the-art results. While our method utilizes a sequence

TABLE I

PIXEL-WISE COMPARISON RESULTS OF spatioTempCHM
MODEL WITH STATE OF THE ART

of Sentinel-2 products as input, the compared methods are
considered as single-shot methods. However, the study of
Lang et al. [8] selects 4–12 products filtered for cloud cov-
erage of less than 70%. Similarly, our previous work [10]
averages the pixel-wise estimation of three different products
filtered for cloud coverage of less than 4%.

An object-wise testing method, as described in Section III,
was used to compare the results with [11] and [10]. The same
dataset area with the previous works of ∼21 km2 is used.
In [11], different accuracy results are given for three types of
testing objects based on their size (large, medium, and small),
whereas in our previous [10] and current work, there is only
one type of objects, regardless of their size. The object-based
accuracy, i.e., percentage of correctly classified objects, and
the area-based accuracy, i.e., percentage of correctly classified
area, are given in Table II.
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TABLE II

OBJECT-WISE COMPARISON RESULTS OF SIX-ENSEMBLE
spatioTempCHM WITH [10] AND [11] IN

FOUR-CLASS QUANTIZATION

A common way for visual inspection of model calibration
is the reliability diagram, as shown in Fig. 7, before (uncali-
brated) and after (calibrated) the model-agnostic postprocess-
ing model trained on the validation set and tested on the test
set. In these diagrams, the accuracy, i.e., absolute error, is plot-
ted against the estimated confidence, i.e., standard deviation.
For clarity reasons, all test pixels are grouped into bins of
the same size, with the diameter of each dot representing the
power of the bin. If the model is perfectly calibrated, then
the diagram should be the identity function (red dashed line).
Regions of confidence below the perfect diagonal represent
miscalibrated underconfident predictions, while regions above
represent overconfident predictions. In both calibrated and
uncalibrated models, ECE has been calculated for comparison
(ECE = 0 corresponds to perfect calibration).

B. Analysis of Estimation Error

With respect to the characteristics of the terrain, the error
analysis of the estimation is performed for the six-ensemble
spatioTempCHM model. The slope of each location and its
aspect are plotted in histogram bins against MAE in Fig. 8.
The same error analysis is given in Fig. 8(c) with respect to
the average cloud coverage of the input sequence.

C. Impact of Input Sequence Length

As a final step in our analysis, we assessed the impact of
input sequence length on prediction accuracy, as described
in Section III. Comparison results of the different ensemble
models trained on a different number of input images around
the central date of June 1, 2017 are shown in Fig. 9. The
best performing ensemble model with five members (five-
ensemble) with 40 timeframes’ input, as shown in Fig. 9,
resulted in MAE = 1.33 m, whereas MAE = 1.29 m is
given in Table I. The reason for this minor discrepancy is
the use of 40 timeframes around the central date in the former
configuration, while in the latter configuration, 40 timeframes
are selected randomly during the period of a year. The results
of baseline model ConvEnc-Dec-mean40 that does not
utilize temporal information are given in Table I and are also
plotted in Fig. 9 (orange).

D. Transferability in Time

The Sentinel-2 time series of a region in BF with area
∼40 km2 for the years, 2018–2021, following the reference

Fig. 7. Reliability diagram using six-ensemble spatioTempCHM model,
before (uncalibrated) and after (calibrated) isotonic regression calibration
technique. Diameter of dots represents the power (i.e., number of pixels) of
each bin.

year, 2017, as described in Section II, are used for estimating
the canopy height map. The median values of canopy height
for each year, together with their estimated error bars, are
given in Fig. 10. The ground-truth value of the year 2017 is
also shown with the red dot. These estimations are based on
all datatakes throughout each year, but the estimated height
is considered to represent the height in June because of the
training set characteristics.

E. Transferability in Geographic Location

Performance evaluation of spatioTempCHM model in
different regions is given in Table III. The spatioTempCHM
model is trained in BF and fine-tuned using subregions in
Switzerland of different sizes. To investigate on the impact
of the selected “CH smallest” subregion, the fine-tuning was
performed multiple times to allow for quantification of the
variation in performance introduced due to this factor.

Although the spatioTempCHM architecture was trained
on tiles of 48 × 48 pixels, there is no restriction on the
tile dimensions since the network’s mask can be applied
in an infinitely large grid. Artifacts introduced by merging
estimated tiles can be eliminated by increasing the tile size.
For demonstration, the canopy height map of a large area in
Switzerland is given in Fig. 11, next to high-resolution RGB
satellite and aerial image, captured within 3–5 years [33].

In Fig. 12, we present the descriptive statistics of the
uncertainty types in the estimated confidence maps of differ-
ent geographic locations. Quantified uncertainty, as described
in (4), is the sum of model (epistemic) and data (aleatoric)
uncertainty. Histograms of the ratio between epistemic and
aleatoric uncertainty are given in Fig. 12 for the four scenarios
in rows 1–3 and 9 of Table III and represent different degrees
of distribution shift due to geographic location. The percentage
of pixels with ratio >1 is given in each scenario.

V. DISCUSSION

Visual inspection of the predicted mean in the testing
tiles of Fig. 5 demonstrates the accurate CHM estimation
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Fig. 8. Correlation of estimation error with slope, aspect, and average cloud coverage of pixels in the test area. The estimated uncertainty for each bin is
given. (a) Error versus slope. (b) Error versus aspect. (c) Error versus annual cloud coverage.

TABLE III

PERFORMANCE EVALUATION OF spatioTempCHM MODEL IN DIFFERENT GEOGRAPHIC LOCATIONS

in different forest areas with high and low vegetation. The
meaningful and calibrated standard deviation estimation maps
that accompany the estimated height maps provide a useful
indication of our confidence in the predictions. For instance,
in the middle right side of the last tile in Fig. 5, we observe
a region of higher absolute error that is successfully captured
by our confidence map.

Quantitatively, our model yielded an MAE of 1.29 m and
an RMSE of 1.87 m in a test area of 79 km2 in the same geo-
graphic location and date with the training dataset. Compared
with the state-of-the-art results that are based on single-shot
Sentinel-2 images, our model outperforms the highest MAE
and RMSE of Lang et al. [8]. The work of [8] uses 4–12
timeframes filtered for low cloud coverage, but the temporal
information of the sequential imagery is not exploited. Further-
more, object-wise evaluation according to the methodology of
Boutsoukis et al. [11] yielded higher object- and area-based
accuracies. However, the SVM approach mentioned in [11]
might offer different advantages, for example, in terms of
computation time.

In Fig. 9, comparison results of accuracy between models
with different input sequence lengths indicate the positive
correlation of the number of input images with accuracy.

Longer input sequence lengths around a central date yield
higher accuracy.

The aforementioned results comply with our intuition that
the use of multitemporal observations improves accuracy in
estimating the Earth’s parameters, i.e., canopy height in our
study. Similar conclusions that highlight the use of multi-
temporal instead of single-shot imagery are derived from the
work of Rußwurm and Körner [17] in the problem of land
cover classification. An important research question is whether
the improved predictive power is due to the actual ordering
of the sequential information or rather the larger quantity
and variability of the bag-of-images is sufficient. Inquiring
into this, we perform comparison with the baseline model
ConvEnc-Dec-mean40, as shown in Fig. 9 and Table I. The
performance drop from MAE from 1.29 to 2.04 m from our
point of view is significant, supporting the claim that temporal
information improves prediction accuracy. We find the idea of
investigating the use of attention-based mechanism, with or
without considering the ordering, interesting as a future work.

Regarding the confidence maps that accompany the esti-
mated height maps, we accept that a meaningful uncertainty
quantification, in terms of aleatoric and epistemic uncer-
tainty, is provided by incorporating deep ensembles technique.
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Fig. 9. Mean absolute error (MAE) of spatioTempCHM model for
different input sequence lengths (T). Results with fewer ensemble mem-
bers are shown with gray colors and results with reference point (∗)
ConvEnc-Dec-mean40 that does not utilize temporal information are
shown in orange.

Fig. 10. (Top) Mean values (blue) and boxplots of canopy height for
years following reference year, 2017, in a BF subregion of ∼40 km2,
as calculated by the trained spatioTempCHM ensemble models. Ground-
truth value of the year 2017 is shown with the gray dot. (Bottom) Quantified
uncertainty, indicating the confidence in the height predictions, as estimated by
spatioTempCHM for the corresponding years. Mean values over all pixels
are given.

Calibration using the model-agnostic isotonic regression tech-
nique has been shown to reduce significantly the ECE,
as shown in the reliability diagram of Fig. 7. Inter-
esting insights on the distinction between the estimated
data (aleatoric) and model (epistemic) uncertainty are pre-
sented in Fig. 12. The experimental findings indicate that
transition to new domains with different input distributions

Fig. 11. Estimated canopy height map of a large area in Switzerland next
to high-resolution RGB image [33]. Colorbar units in meters.

infects significantly the ratio between the two types of esti-
mated uncertainty.

Based on the error analysis, we observe in
Fig. 8(a) and (b) that the estimation error appears significantly
correlated with the slope of the terrain, while the aspect of
each location explains minor variance of the estimation error
and needs further investigation.

Furthermore, we found a positive correlation of estimation
error with the average cloud coverage of the input sequence,
as shown in Fig. 8(c). This demonstrates the cloud robustness
of the method and combined with the correlation of the
confidence with cloud coverage suggests that we have a tool
for identifying and eventually discarding uncertain predictions
due to high average cloud coverage in the sequence of satellite
images. For interpreting the way cloudy observations are han-
dled by the network, we refer to the experiments of Rußwurm
and Körner [34] for cloud robustness of ConvLSTM networks,
indicating that the model learns a cloud-filtering mechanism
without any training for this specific task.

In Section I, we discussed the reasons for assuming that
the Sentinel-2 time series can fit the canopy height maps of
a region and this can be useful for downstream applications.
However, the question of whether this can be achieved reliably
is equivalent to which factors affect the generalizability of the
model. In an effort to address this question, we evaluated the
transferability of the trained model in time and geographic
location.

In Fig. 10, the estimated canopy height maps for the years
following the reference year, 2017, are compared. We observe
that the estimated height maps are within a reasonable range.
Another criterion for evaluating performance in the absence of
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Fig. 12. Quantified uncertainty, as described in 4, consists of model (epistemic) and data (aleatoric) uncertainty. Histograms of the ratio between epistemic
and aleatoric uncertainty, estimated in different geographic locations (out-of-distribution). The four histograms correspond to rows 1–3 and 9 of Table III and
represent different degrees of distribution shift due to geographic location. The percentage of pixels with ratio >1 is given in each histogram.

ground truth is based on the realistic expectation of gradual
canopy height increase year after year. The results seem to
follow this expected trend in general. However, there seems
to be a higher estimated uncertainty in the year 2018 and an
abnormal decrease in height during the season 2018–2019.
A mere speculative explanation can be given by the fact that,
to the extent of our knowledge, 2018 has been a significantly
drier year for that region.

Model transferability in different regions is examined using
a subregion of 2200 km2 in Switzerland of 2016, which
corresponds to the region of [8], characterized as CH2. Apart
from model transfer investigation, a direct comparison with
state-of-the-art results is possible since the same preprocessing
steps are applied. In Table III, we present the performance
evaluation of the model in different geographic locations than
the training dataset without or with very limited fine-tuning
dataset. Surprisingly, we conclude that a ground-truth area
of ∼2 km2 of the Swiss region is sufficient to transfer our
model with similar performance accuracy as the state-of-the-
art study of Lang et al. [8] that uses a corresponding training
area of ∼2700 km2. Our model achieved MAE = 1.94 m
after fine-tuning with ∼2 km2, which is comparable with
MAE = 2 m in [8].

To investigate the impact of the specific “CH smallest”
subregion that is selected, fine-tuning was performed mul-
tiple times with randomly selected subregions to allow for
quantification of the variation in performance introduced due
to this factor. It appears that it has limited influence in
prediction accuracy, but the calibrated ECE demonstrates a
slightly higher standard deviation.

Exploring the transferability of such models in different
geographic locations and time, as well as other possible
factors, e.g., tree type and growth state, is a crucial step toward
robust application deployment. Apart from simply fine-tuning
the model, as we applied, more sophisticated techniques, such
as domain adaptation methods or few-shot learning [35], are
worth investigating. We believe that our model is a good
basis for such techniques, due to its relatively small parameter
dimensionality.

VI. CONCLUSION

This study proposes a neural network architecture that
provides accurate canopy height maps from multitemporal
spaceborne imagery alongside with a method for estimating
meaningful and calibrated confidence maps. The resulted MAE

of 1.29 m, based on 40 timeframes’ Sentinel-2 images in a
test area of 79 km2, outperforms the state-of-the-art results of
single-shot input approaches.

The results suggest that higher estimation accuracy can be
achieved by incorporating the widely available sequences of
satellite images compared to single-shot approaches. Further-
more, based on our relatively lightweight network architecture,
∼320k trainable parameters, we conclude that the significantly
improved estimation accuracy does not come at the cost of
computation time.

Quantifying the confidence of the estimated CHM can be
a useful tool in practical settings by identifying the need
for additional training data or by ignoring low confident
estimations. We adopt the use of deep ensembles technique for
meaningful uncertainty quantification, while a postprocessing
isotonic regression model yielded calibrated confidence maps.

An estimation error analysis showed that the estimation
error is larger in steeper slopes, but minor correlation was
observed with the aspect of the pixel. Similarly, the posi-
tive correlation of cloud coverage with confidence estimates
demonstrates the method’s robustness in cloud coverage. Fur-
thermore, by investigating the effect of input sequence length,
we conclude that the longer the sequence length around a
central date, the higher the accuracy is achieved.

Finally, experiments on transferability in time and geo-
graphic location reveal the potential uses of the lightweight
model in practical settings. Reasonable height estimates that
demonstrate generally increasing trend are inferred for the
years, 2018–2021, following the reference year, 2017. Trans-
ferring the model in a different country of Europe proved
to perform surprisingly well, especially after fine-tuning with
as little as a ∼2 km2 of ground-truth area, which yielded
similar performance with state-of-the-art model, trained on
∼2700-km2 ground-truth area.
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