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Abstract— Investigations of the effects of clouds on Earth’s
radiation budget demand accurate representations of cloud top
parameters, which can be efficiently obtained by large-scale
satellite remote sensing approaches. However, the insufficient
utilization of multiband information is one of the major sources
of uncertainty in cloud top products derived from geostationary
satellites. In this study, we developed a new algorithm to estimate
Cloud, Atmospheric Radiation and renewal Energy application
(CARE) version 1.0 cloud top properties [cloud top height (CTH),
cloud top pressure (CTP), and cloud top temperature (CTT)]. The
algorithm is constructed from ten thermal spectral measurements
in Himawari-8 observations by using the random forest (RF)
method to comprehensively consider the contribution of each
band to the cloud top parameters. We chose the highly accurate
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)
products in 2018 as the true values. The sensitivity analysis
demonstrated that the products can be fully reproduced by
using multiple Himawari-8 channels with the addition of the
digital elevation model (DEM) data. The validation results of
the 2019 CALIOP data confirm that the new algorithm shows
an effective performance, with correlation coefficients (R) of 0.89,
0.89, and 0.90 for CTH, CTP, and CTT, respectively. Moreover,
a significant improvement in the ice cloud estimation is achieved,
in which the CTT R value increased from 0.46 to 0.70, as well as
an improvement in the sea area, where the CTT R value increased
from 0.71 to 0.84 compared with the Himawari-8 products of
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the Japan Aerospace Exploration Agency (JAXA) P-tree system.
The further analyses performed here capture the diurnal cycle
of cloud top parameters well in different temporal scales over
the Asia–Pacific region.

Index Terms— Advanced Himawari Imager (AHI), Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation
satellite (CALIPSO), cloud top parameters, ice cloud, remote
sensing, random forests (RFs).

I. INTRODUCTION

LARGE uncertainties remain in the thermal radiation
budgets represented by climate models and atmospheric

products, thus requiring an enhanced understanding of cloud
top parameters [1]. Therefore, there is a pressing need to
better quantify cloud top properties to quantitatively describe
the thermal cloud radiative forcing and climate change mon-
itor [2]. The influence of cloud top layer on the top of
atmosphere fluxes enhances the reflected solar flux, whereas
clouds reduce the outgoing longwave flux relative to clear
skies. This importance is reflected in many fields, such as
aeronautical meteorological support and numerical weather
prediction (NWP) [3].

Satellite remote sensing is one of the most effective ways
to obtain cloud top information given its ability to provide
continuous global data. Cloud products are retrieved from
spaceborne passive and active measurements with unique
advantages and limitations corresponding to specific sensors
and algorithms [4]. Passive satellites, such as the High-
Resolution Infrared Sounder (HIRS) onboard the global
National Oceanic and Atmospheric Administration (NOAA),
the Moderate Resolution Imaging Spectroradiometer (MODIS)
[5] onboard the Aqua and the Terra satellites, Advanced Base-
line Imager (ABI) [6] onboard the Geostationary Operational
Environment Satellite (GOES)-R, and the Advanced Himawari
Imager (AHI) [7] onboard the Himawari-8 geostationary satel-
lite, have been routinely used to retrieve cloud top parameters
in a large-coverage area with repeated observations. Compared
with passive satellite retrieval, active sensors, such as the
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)
[8], the primary instrument on the Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observation satellite (CALIPSO),
and the Cloud-Profiling Radar (CPR) [9] onboard the
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CloudSat satellite, can provide more accurate cloud top para-
meter estimations; however, their spatial coverage and repeat
cycles are limited.

In regard to the retrieval algorithms used to operate passive
satellite sensors, HIRS used a single infrared (IR) channel to
obtain cloud top height (CTH) measurements based on the
assumption that the observed satellite signal comes entirely
from clouds [10]; this mechanism performs well for optically
thick clouds and large clouds covering the satellite view, but
nevertheless, the CTHs of thin clouds are underestimated with
this method due to the neglect of the influence of terrestrial
radiation in the satellite observed radiance [11]. In contrast
to the single-channel method used by HIRS, MODIS uses
the CO2-slicing method to infer cloud top pressure (CTP)
measurements (Collection 6) based on the partial absorption
of CO2 channels in IR bands approximately of 13.3–15 μm
for mid-to-high-level clouds [12]. In addition, the MODIS
CTP measurements are converted to CTH and cloud top
temperature (CTT) measurements through the use of gridded
meteorological products generated by the National Centers
for Environmental Prediction (NCEP) Global Forecast System
(GFS) [5]. However, the CO2 solution results in large errors
in the lower troposphere, where the instrument noise and
uncertainty affect the GFS data, causing the measurements to
miss approximately half of thin cirrus clouds [5].

As for gestational satellites, GOES-R/ABI provides CTT
measurements by using IR observations with an IR radiative
transfer model (RTM) based on an optimal estimation method.
CTP and CTH measurements are then obtained from this CTT
product via the atmospheric temperature profile provided by
NWP data, where a mechanism is implemented to account
for the large surface biases in the NWP data [6]. Level-
2 CTT and CTP products have been released on the Japan
Aerospace Exploration Agency (JAXA) homepage as a “P-
Tree system” (ftp.ptree.jaxa.jp) from 2016 to the present [2].
The cloud microphysical properties algorithm used in the
P-Tree system was developed by Nakajima et al. [13] and
has been employed to retrieve cloud top properties using
single-channel thermal IR data and the profile information of
reanalysis data. Nevertheless, this process may cause some
uncertainty that arises from the auxiliary data.

In contrast to passive satellites, for which it is difficult
to retrieve vertical cloud information, active satellites (such
as CALIOP and CPR) can derive global cloud profile infor-
mation by using spaceborne lidar and millimeter-wave radar
measurements, thus providing reliable cloud top parameters at
a high spatial resolution with high precision [8], [9]. However,
these instruments are nadir-viewing with low revisit times and
cover very limited areas, thus leading to extreme scarceness
in many areas of the world, such as over the oceans, inland
lakes, mountainous areas, remote areas, and sparsely populated
areas [8].

Since most currently used algorithms are based solely on
1–2 IR channels or the oxygen A-band and highly depend on
the atmospheric reanalysis data and some auxiliary data to con-
struct the cloud top parameters, they may induce uncertainty
due to the lower use of the effective multiband information of
satellite observations. In addition, most schemes are developed

using the lookup table (LUT) method via inter/extrapolation or
the complex optimal estimation approach based on the LUT-
based RTM, which may decrease the calculation efficiency
and availability when the interpolated parameters of the LUT
are large. Advanced machine learning (ML) technology is
promising for cloud retrieval tasks with high dimensional-
ity by modeling the complex relationship of multiple para-
meters in nonlinear systems in the field of Earth sciences
[14], [15]. Min et al. [16] primarily used four classical ML
algorithms to obtain a CTH prediction model by directly
using satellite observation data and NWP model data. How-
ever, the real-time NWP data of the GFS may introduce
errors and require more operation time when input into the
algorithm [16]. To avoid the problems mentioned above,
we make full use of the advantages of ML methods in
multichannel satellite data information mining and develop
a new algorithm to retrieve cloud top parameters by using
only satellite IR channels without depending on auxiliary
data.

The purpose of this study is to develop a fast and con-
venient cloud top parameter retrieval algorithm using the
random forest (RF) method to serve the development of the
Cloud, Atmospheric Radiation and renewal Energy application
(CARE) version 1.0 products. CARE products were developed
within the framework of the CARE international symposium
(http://www.slrss.cn/care/). The new product is expected to
have an improved cloud top product accuracy derived from
geostationary satellites compared to the accuracy of prod-
ucts based on traditional physics-based retrieval algorithms,
thus furthering the wide application of Earth meteorological
satellite data in nowcasting applications. We also conducted
the sensitivity analysis of the thermal IR channel to cloud
top parameters to make full use of the effective information
of IR multichannel for retrieval. Moreover, our method can
integrate the advantages of passive geostationary sensors to
provide high spatiotemporal observations and active sensors to
achieve accurate retrievals by selecting CALIOP products as
the benchmark and compiling AHI observation data to train
the regression model. In addition, the algorithm avoids the
sophisticated RTM calculation procedure and the reliance on
solar illumination, in which both daytime and nighttime data
are handled in the same way.

This article is organized as follows. The satellite and
auxiliary data used to train the model are introduced briefly
in Section II. Section III presents the details of the new
algorithms. In Section IV, the retrieval results of cloud top
parameters based on the ML algorithm are given and verified
by CALIOP and MODIS followed by characteristics analyses
at different temporal and spatial scales. The summary is shown
in Section V.

II. DATA

A. Himawari-8/AHI Data

Himawari-8 is a next-generation geostationary meteorolog-
ical satellite that was successfully launched into geosynchro-
nous orbit by the Japan Meteorological Agency (JMA) on
October 7, 2014; observation data began to be published on
July 7, 2015 [17]. The AHI onboard the satellite has 16 bands
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for different spatial resolutions ranging from 0.5 (visible) to
2.0 km (IR) with an observation frequency of 10 min [18].
At present, the satellite has been applied in the fields of
surface and sea surface temperature retrieval, cloud and haze
detection, aerosol data assimilation, and forest fire detection
(Table I lists the Himavari-8/AHI specification) [19], [20]. The
high spatiotemporal resolution of the Himawari-8/AHI product
provides us an opportunity to study the cloud top parameters
in depth.

B. CALIPSO/CALIOP Data

CALIOP is the first polarization lidar with two wave-
lengths (at 532 and 1064 nm) carried on the CALIPSO
satellite and flown in formation with the National Aeronau-
tics and Space Administration (NASA) A-train constellation
of satellites launched in May 2006. CALIOP provides the
global vertical structure of aerosols and clouds in the tro-
posphere and lower stratosphere [21], [8]. The global multiyear
dataset obtained from CALIOP provides a new perspective
on the Earth’s atmosphere that can help us better under-
stand the role of aerosols and clouds in the climate system
(https://subset.larc.nasa.gov/calipso/login.php).

C. MODIS Data

MODIS is a 36-band radiometer that covers the spectral
range from 0.42 to 14.24 μm and is currently onboard
the NASA Terra\Aqua satellites. Terra was launched into a
descending orbit in December 1999, with an equator-crossing
local solar time (LT) of 1030 h. Aqua was launched into an
ascending orbit in May 2002, with an equator-crossing LT of
1330 h. MODIS has a spatial resolution varying from 250 m
to 1 km depending on the spectral band and is widely used
to illustrate the global distributions with measurements every
5-min covering an area of 2330 km × 2030 km. It provides
cloud, aerosol, sea surface, wildfire, photosynthetically active
radiation, and other physical product information that is widely
used for weather analysis and forecasting, short-term climate
prediction, and environmental and disaster monitoring [5]
(https://ladsweb.modaps.eosdis.nasa.gov/search/).

III. METHODOLOGY

A. Physical Algorithm

The classical CO2-slicing method is widely used in
passive satellites as the official algorithm for determin-
ing cloud top parameters. The algorithm calculates radia-
tive transfer with a single-layer cloud [5]. For a given
cloud element in a given field of view (FOV), the radi-
ance observed R(v) in a spectral band v can be written as
follows [5]:

R(v) = (1 − NE)Rclr(v) + NE[Robc(v, Pc)] (1)

where Rclr(v) is the clear-sky radiance, Robc(v, Pc) is the
opaque (black) cloud radiance from pressure level Pc, N is the
fraction of the FOV covered with clouds, and E is the cloud

emissivity. Robc(v, Pc) can be calculated from the following
function [5]:

Robc(v, Pc) = Rclr(v, p) −
∫ Ps

Pc

τ (v, p)
d B[v, T (p)]

dp
dp. (2)

The upper and lower limits of the integral sign are the surface
pressure and cloud pressure, respectively, and B[v, T (p)]
is the Planck radiance at frequency v. The temperature is
represented as T (p), and τ (v, p) represents the fractional
transmittance of radiation at frequency v emitted from the
pressure level (p) arriving at the top of the atmosphere
(p = 0); the decrease in radiation from clear conditions is
expressed in the second term on the right of the equation. CTP
is estimated from the ratio of radiance between two spectral
bands of wavenumbers v1 and v2 [22], [23]

R(v1) − Rclr(v1)

R(v2) − Rclr(v2)
= NE1

∫ Pc

Ps
τ (v1, p) d B[v1,T (p)]

dp dp

NE2
∫ Pc

Ps
τ (v2, p) d B[v2,T (p)]

dp dp
. (3)

Within the FOV, assuming that E1 and E2 are almost equal,
it allows us to specify the cloud pressure when the atmospheric
temperature and transmittance profiles of the two spectral
bands are known [16], [24].

B. CARE Cloud Top Property Algorithm

In this article, the RF method was introduced into the CARE
cloud top parameter estimation algorithm. RF is a highly
effective ML algorithm that was proposed by Buehlmann and
Hothorn [24]. It has been widely used in classification and
regression problems by integrating randomly containing mul-
tiple decision trees without the need for extensive hyperpara-
meter adjustment [24]. The RF method has strong applicability
because of its unique advantages and characteristics, such as
its ability to estimate feature importance and achieve good
performance even when there are many unknown features and
noise in the dataset (http://scikit-learn.org/stable/).

The continuous first-class Himawari-8/AHI data for one
year (January to December 2018) observed in IR bands (7–16)
from 7.3 to 13.2 μm (see Table I) and digital elevation
model (DEM) data were used as input features. Fig. 1 shows
the flowchart of the cloud top properties estimation algorithm.
The level-2 gridded CALIOP cloud top products dataset was
collocated by taking the target output for the training, para-
meter adjustment, and prediction within this new algorithm
to finally perform the cloud top parameter (CTT, CTH, and
CTP) calculations. It should be noted that in this article,
the matching algorithm calculates the minimum distance
between the CALIOP footprint and the Himawari-8/AHI pixel
and determines a specific matching point in approximately
± 5 min. We removed high-latitude Himawari-8/AHI samples
(with large satellite angles) and focused only on the samples
from 80 ◦E to 180 ◦E and from −50 ◦S to 50 ◦N, considering
the potential influence of the FOV on cloud top parameter
retrieval. To improve the prediction accuracy of low-value
situations, we increased the number of samples. Based on the
compiled Himawari-8/AHI level-1 satellite data from February
to December 2018, 805 980 training samples were matched
with CALIOP data. In addition, the collocated sample data
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TABLE I

HIMAWARI-8/AHI SPECIFICATIONS (SST: SEA SURFACE TEMPERATURE)

Fig. 1. Flowchart of the cloud top properties estimation algorithm.

on the 10th and 16th of each month in 2019 were randomly
selected as the independent verification datasets. In the training
process, to avoid the phenomenon of overfitting and improve
the convergence speed of the training, the proportion of the
training, testing, and validation data was 9/13, 1/13, and
3/13 of the total sample points, respectively. After multiple
debugging of the model parameters, the optimal structure was
determined based on the comprehensive consideration of the
stability and prediction accuracy of the model.

We constructed a sensitivity analysis of different groups
of input parameters to show their effects on the cloud top
parameters. The results are compared and shown in Table II.
Several important indices, including the average deviation
(MBE), mean square root error (RMSE), and determination
coefficient (R), were used to evaluate the accuracy of the RF
model in this study. We can see that the RF model involving all
ten input IR bands and the DEM value delivered the optimum
performance with a 32% increase in the RMSE compared
to those when only two bands were applied. Table II also
indicates that the channel data itself mainly contains decisive
information for estimation, confirming that the IR channels
detected by AHI can help the model better estimate the

cloud properties and should all be considered in the retrieval
algorithm.

To investigate the performance of the new algorithm on
cloud top retrieval, we use the K -fold cross-validation tech-
nique [25] to preliminarily verify the accuracy of the selected
RF model in this section. The principle of this technique is to
divide the test data into K equal subsets; then, one subset is
used to validate the RF model and the remaining K − 1 data
are adopted to train the model. In this case, a total of ten
nonrepetitive training and validation steps are carried out for
the RF model. The average error of the K -times validation
can be regarded as the final accuracy of the RF model. One
of the advantages of this technique is that all sample points
are used to evaluate the performance of the selected model.
Through many experiments, the best model with high stability
and small errors is selected. The K -fold cross validation of
cloud top parameters shown in Table III indicates that the
selected model has a stable prediction accuracy and that the
absolute value of MBE was very small in the new algorithm
for estimating cloud top parameters.

IV. RESULTS AND DISCUSSION

A. Validation

To develop a scheme to retrieve CARE cloud top products
from multispectral measurements in the Himawari-8 satellite,
we need to understand cloud processes with sufficient accuracy
and test the algorithm statistically. We adopted the CALIOP
cloud top products as a benchmark for the evaluation of the
CTT and CTH measurements derived from the new algorithm.
Fig. 2 shows the scatter plots of CALIOP cloud top parameters
(CTT and CTH) against CARE correspondence and AHI
level-2 products, with their associated correlation coefficients
(R) and joint histogram of the CALIOP-CTT/CTH difference.
Overall, the instantaneous cloud top parameters agree well
with the CALIOP product for all cases. The CARE CTT and
CTH values showed higher consistency with CALIOP than the
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TABLE II

DIFFERENT INPUT GROUPS AND THEIR VALIDATION AS FUNCTIONS OF DIFFERENT INDEPENDENT VARIABLES. (VARIABLE1: CTT,
VARIABLE 2: CTH, AND VARIABLE 3: CTP)

TABLE III

K-FOLD CROSS VALIDATION OF CLOUD TOP PARAMETERS. (VARIABLE 1: CTT, VARIABLE 2: CTH, AND VARIABLE 3: CTP)

Fig. 2. Comparison between the estimated values and satellite measurements
against CALIOP in 2019. Scatter plots of (a) CARE CTT and (b) AHI
measurements of CTT with CALIOP. (c) Joint histogram of CALIOP-CARE
CTT differences and CALIOP-AHI CTT differences. (d)–(f) Similar to (a)–(c)
but for CTH.

corresponding AHI values, with R-values of 0.90 and 0.89 for
CTT and CTH, respectively.

The new method for estimating cloud top parameters can
significantly improve the accuracy of the resulting products
and is comparable to other spaceborne lidar measurements.
Further characterization of the CTT and CTH biases is shown
in the joint histogram results. The CTT and CTH difference
for the CARE product with CALIOP is primarily below 10 K

and 4 km, respectively. In total, 205 670 sample points were
used to test the performance of the results, and the validation
was limited to the following aspects: First, the CALIOP
measurements are conducted in orbit and thus cannot provide
validation over a large area. Second, the horizontal resolution
of the Clay data varies at three different altitudes from 333 to
1667 m. We use only the top product to sample the data to
a horizontal resolution of 333 m, which may have introduced
bias in the resampled result.

1) Validation for Each Area: The validation of the CTT
and CTH retrieval algorithms was conducted using the current
official AHI products, with collocated CALIOP data used as
the benchmark for the evaluations over the ocean and land,
in which great improvements were found. Fig. 3 shows the
scatter plots of AHI and CARE CTT quantitatively compared
against the CALIOP product as well as their sample numbers
and the R values derived for the ocean and land areas in 2019.
As we can see from Fig. 3, each parameter value has two
peaks, assumed to be the reason for different cloud phases.
We can also see that the R-value over land is 0.79 with an
MBE of 2.17 K and a reasonable RMSE of 14.87 K for the
CARE CTT results in the land area. Compared to the AHI
CTT, these results reveal an improvement in precision obtained
through the introduction of the new method. The R value of
0.84 with MBE of 0.2 K and the RMSE of 23.04 K for CARE
CTT in the sea area demonstrate substantial improvements
compared to AHI cloud top products. As shown in Fig. 3,
we also investigated the histogram of CTT differences for the
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Fig. 3. CTT evaluation for each area in 2019. Scatter plots of (a) CARE
and (b) AHI measurements with CALIOP for land area. (c) Joint his-
togram of CALIOP-CARE CTT difference and CALIOP-AHI CTT difference.
(d)–(f) Similar to (a)–(c) but for sea area.

Fig. 4. CTH evaluation for each area in 2019. Scatter plots of (a) CARE CTH
and (b) AHI measurements with CALIOP for land area. (c) Joint histogram
of CALIOP-CARE CTH difference and CALIOP-AHI CTH difference.
(d)–(f) Similar to (a)–(c) but for sea area.

CARE and AHI with CALIOP. The results show a tendency
for AHI products to overestimate the CTT in land area. The
scatter plots of AHI and CARE CTH quantitatively compared
against the CALIOP product as well as their sample numbers
and R values for sea area and land area in 2019 are shown in
Fig. 4. An obvious CTH improvement, with R-values ranging
from 0.72 to 0.86, was observed by comparison with the AHI
products. The CARE CTH values obtained over the land area
had an R value of 0.75 with 0.65-km MBE and 2.44-km
RMSE compared to CALIOP.

The CARE CTH coefficients shown in Fig. 4 yielded the
highest values, indicating that the cloud top parameters derived
in this research are reliable over the ocean. However, the
lowest R value is only 0.64 for the CTH of the AHI products,
and the corresponding MBE and RMSE values are 1.71 and
3.33 km, respectively, for the land site. The validation was
followed by the cloud top parameter evaluation for each cloud
phase.

2) Validation for Each Cloud Phase: Fig. 5 shows the
comparison results of the instantaneous CARE CTT and AHI
CTT from a total of 51 185 pixels against the CALIOP product
for different cloud phases in 2019. The results demonstrate that
the overall R-values of CARE CTT are high for both sources;

Fig. 5. CTT evaluation for each cloud phase in 2019. Scatter plots of
(a) CARE CTT and (b) AHI measurements with CALIOP for water cloud.
(c) Joint histogram of CALIOP-CARE CTT difference and CALIOP-AHI
CTT difference. (d)–(f) Similar to (a)–(c) but for ice cloud.

CTT yielded an R of 0.74 with an MBE of 2.34 K for water
clouds and an R of 0.70 with a higher MBE of 0.39 K for ice
clouds. Fig. 5 also shows a tendency for the AHI product and
CARE CTT to underestimate the CTT of water clouds and to
overestimate the CTT of ice clouds compared to CALIOP.
Interestingly, the R value obtained for the ice water CTT
increased obviously from 0.46 for AHI to 0.70 for CARE CTT
compared to the CALIOP products. Fig. 6 further confirms the
significant improvement in the ice pattern. Fig. 6 shows the
similar scatter and histogram plots but for the CTH validation,
with the R value of 0.71 carrying an MBE of 0.41 km and
RMSE of 3.0 km for the CARE CTH results in the water
cloud.

The AHI values tend to overestimate the CTH values for
water clouds, and this overestimation can be attributed to
temperature inversions near the cloud tops, as shown in a
previous study [26]. In addition, the R-value of 0.79 with a
small MBE of 0.21 km and an RMSE of 2.57 km derived for
the CARE CTH estimations in the ice cloud case also shows
a remarkable improvement in CTH accuracy compared to the
AHI products. The results obtained from the new algorithm
for cloud top parameters and CALIOP measurements agree
well with each other; the increased accuracy when ice cloud
situations occur can be attributed to the fact that CALIOP
provides reliable heights of thin cirrus clouds containing small
ice particles [27].

Table IV shows the statistical evaluation of CTP for different
areas and cloud phases. This is a way to gain more insight into
the capability of the new algorithm; the R value is 0.89 with
an MBE of 11.4 hpa and 149.01-hpa RMSE for the CARE
CTP results in the full Asia–Pacific area. This evaluation
confirms that the CARE CTP estimations perform well when
reproducing the CTP, thus supplementing the absence of the
CTP product on the Himawari-8/AHI official cloud products.
For the different areas and different cloud phases, the corre-
sponding R values are also reliable for the CARE CTP results.

3) Intercomparison Validation: To further investigate the
performance of the new algorithm, we conducted an inter-
comparison validation of the CARE cloud top properties
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Fig. 6. CTH evaluation for each cloud phase in 2019. Scatter plots of
(a) CARE CTH and (b) AHI measurements with CALIOP for water cloud.
(c) Joint histogram of CALIOP-CARE CTH difference and CALIOP-AHI
CTH difference. (d)–(f) Similar to (a)–(c) but for ice cloud.

TABLE IV

STATISTICAL SUMMARY OF CTP EVALUATION FOR EACH

AREA AND DIFFERENT CLOUD PHASES

by comparing them to the collocated pixels from different
platforms. An instantaneous MODIS granule acquired on
October 3, 2018, with a resolution of 1 km is selected for
validation. Fig. 7 presents the observed cloud top properties
image for MODIS, CARE, and AHI [(a)–(c) for CTT, (d)–(f)
for CTH, and (g) and (h) for CTP] on October 3, 2018.
From Fig. 7, we can see that the zonal distributions of CARE
products are comparable with other platforms. Interestingly,
the results demonstrate that the spatial distribution of CARE
cloud top products is generally similar to those of MODIS
more than the AHI product. The lines of CALIOP products are
overlapped on each image where the visibility of line is used
to indicate the consistency of parameters with CALIOP data.

Fig. 8(a) and (b) shows a joint histogram of CTT and
CTH difference between MODIS, CARE, and AHI with
CALIOP. Due to the absence of CTP product from AHI,
Fig. 8(c) only compared the MODIS and CARE CTP with
CALIOP, where it shows that the CARE products have good
consistency with validation samples of MODIS cloud top
parameters. Fig. 8 also shows that the AHI observation CTT
and CTT are slightly lower than that from MODIS corre-
spondents. However, this study offers the validation results
with MODIS only for limited cases, it is still necessary to
fully verify the cloud characteristics on a near-global scale in
the future. To verify the effectiveness of the new algorithm
in the estimation of cloud top parameters, the independent
and spatial-temporally MODIS product matched data are used
here for validating the performances of the CARE products.
Fig. 9 shows the MODIS cloud top properties overlaid with
the CARE correspondences along with the CALIPSO over-
pass (20 ◦S − 6 ◦S) on October 3, 2018. CALIOP, MODIS,

Fig. 7. Comparison of Himawari-8 and operational Terra/MODIS (MOD06)
retrieved properties with new results at 0150 UTC, October 3, 2018.
(a) MODIS CTT. (b) CARE CTT. (c) AHI CTT. (d) MODIS CTH. (e) CARE
CTH. (f) AHI CTH. (g) CARE CTP. (h) AHI CTP. The scatter line in each
image represents the collocated CALIOP cloud top products.

Fig. 8. Joint histogram of (a) CTT difference and (b) CTH difference between
MODIS, CARE, and AHI with CALIOP. (c) Joint histogram of CTP difference
between MODIS and CARE CTP (01:50 UTC, October 3, 2018).

and CARE are represented by black, brown, and red dots,
respectively. The overall performance shows good agreement
for CARE cloud top products compared to CALIOP. However,
the deviation shown in MODIS CTH compared to CALIOP
was relatively higher than CARE CTH in the whole research
region, especially for the region between 10 ◦S and 6 ◦S.
These results may relate to the sensor characteristics and the
algorithms based on different IR bands.

B. Spatiotemporal Analysis of Cloud Top Parameters

1) Diurnal Variations in Cloud Top Parameters: As an
application, the algorithm used to investigate the diurnal cycle
of clouds in this article is based on data recorded at a 10-min
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Fig. 9. Collocated comparison with the satellite-based product along the
CALIPSO overpass (20 ◦S − 6 ◦S) for the case on October 3, 2018. (a) CTT.
(b) CTH. (c) CTP. CALIOP, MODIS, and CARE are represented by black,
brown, and red dots, respectively.

temporal resolution data. The region spans from 80 ◦E to
145 ◦E longitude and from 15 ◦N to 55 ◦N latitude, covering
part of Asian continent and the surrounding oceanic areas.
The convective activities over the land in the afternoon and
over the ocean in the morning are ordinarily strengthened
by many mechanisms, such as sea–land breezes, convective
forced gravity wave propagation in remote regions, and direct
radiative convection [28], [29]. Fig. 10 shows the CTP, CTT,
and CTH time series retrieved by the new algorithm every 4 h
from 00:00 UTC. High clouds predominantly appear over the
ocean throughout the day. The proportion of high-temperature
coverage over the land is highest at night. Small-scale convec-
tive cloud growth occurs from 12:00 to 16:00 UTC, the cell
volume increases, and the system is subsequently enlarged.
Notably, low clouds do not appear when high clouds cover
low clouds. One limitation of passive remote sensing is that
it cannot show the characteristics of lower clouds.

2) Seasonal Analysis in Cloud Top Parameters: The diurnal
characteristics of the CTP values described above can be
assessed quantitatively by calculating the average latitudinal
patterns in different seasons, as shown in Fig. 11. CTP was
calculated every 10 min (superior to the temporal resolu-
tion of other passive satellites) in UTC and averaged over
30 days. Fig. 11 shows the temporal variations in the CTP
in zonal distribution patterns from 60 ◦N to 60 ◦S latitude
in different seasons, where January, April, July, and Octo-
ber represent winter, spring, summer, and autumn, respec-
tively. From Fig. 11, we can see that the spatial distribution
of CTP differs significantly in different latitudes for each
month and the equatorial low-pressure zone occurred in all
four seasons. The airflow rises and cools in the equatorial
area attributed to the high temperature, strong evaporation,
and high water vapor content in the air. To investigate the
seasonal variation of CTP in diurnal scale over the different
situation, CTP is calculated separately over the land and ocean.
Fig. 12 shows the temporal variations in CTP patterns over the

Fig. 10. Time series of cloud top properties for CARE products in the
Chinese region. Results are shown every 4 h from 00:00 UTC on October 3,
2018. (a) CTP. (b) CTT. (c) CTH.

Fig. 11. Temporal variation of CTP in zonal distribution patterns from 60 ◦N
to 60 ◦S latitude for different seasons. (a) January, (b) April, (c) July, and
(d) October represent winter, spring, summer, and autumn in 2019,
respectively.

Fig. 12. Temporal variation of CTP in (a) ocean and (b) land area patterns
for different seasons in 2019.

ocean and land areas in different seasons. The average CTP
value is smallest at approximately 12:00–14:00 UTC, with
the maximum peaks occurring at approximately 02:00–03:00
UTC for both cases (see Fig. 12). Subsequently, the CTP
experiences a sharp decrease, while the CTP increases rapidly
from 00:00 to 02:00 UTC. The CTP decreases slowly from
03:00 to 15:00 UTC over the land area. The diurnal cycle of
the CTP is less pronounced over land areas than over ocean
areas. This result shows the typical diurnal cycle of the cloud
system in the region, where the analysis period was continued
for 30 days.
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Fig. 13. Annual average distribution of the cloud top properties over the
Asia–Pacific region in 2018. (a) CTP. (b) CTT. (c) CTH.

Fig. 14. Annual average statistics of the cloud top properties over
Asia–Pacific region in 2018. Red point means the percentage of corresponding
valid ranges. (a) CTP. (b) CTT. (c) CTH.

3) Annual Analysis in Cloud Top Parameters: The char-
acteristics of the high-spatial-scale and high-temporal-scale
cloud top properties in the Asia–Pacific region in 2018 are
analyzed in this section. Due to differences in natural and
climatic environments, the spatial distribution of cloud top
parameters differs significantly in each region. The results
shown in Fig. 13 display the annual average distribution of
the cloud top parameters over the Asia–Pacific region and
the cloud top parameter percentage ranges and annual average
statistics are shown in Fig. 14.

The spatial distributions of cloud top properties are visually
similar to each other, though large discrepancies exist over
many regions for each parameter. The results indicate that
the annual average CTP, CTT, and CTH values are generally
between 200 and 800 hpa, 220 and 280 K, and 2 and 14 km,
respectively, in each region. A similar trend is seen from the
zonal averages of CTT and CTP for different latitudes in
the research area. Both algorithms have similar performances
over the Asia–Pacific region. While the CTH has an opposite
appearance to the pressure showing the highest values on
the horizontal level and generally lower values than those of
other regions at latitudes from 60 ◦S to 20 ◦S with a peak at
approximately 30 ◦S, in its spatial distribution, the largest CTT
in the Northern Hemisphere occurs at approximately 280 K,
the largest Southern Hemisphere occurs at 30 ◦N, and the
largest CTP in the Northern Hemisphere occurs at 800 hpa.
These properties both decreased to the minimum values over
the equatorial regions. Large biases were found between the
results of CTT and CTP in the Southern Hemisphere through
both methods. The highest CTT areas are distributed over the
southeastern part of the study area, and the minimum CTT
appears on the equatorial region.

V. CONCLUSION

The remote sensing technique offers an effective way to
estimate cloud top properties, which plays an essential role in
the radiation budget and the energy exchange process between

the Earth and the atmosphere. The new generation of the
Himawari-8 satellite has a greatly improved temporal and
spatial resolution and the CALIOP cloud layer products are
widely acknowledged to have a reliable accuracy. This product
thus offers a great opportunity to construct an ML-based
algorithm to rapidly estimate all cloud top parameters simul-
taneously with high accuracy at a high spatial–temporal scale.
Thus, here, we developed a simple, yet efficient algorithm,
that can make full use of multi-IR bands without the reliance
of atmospheric reanalysis profiling data (concerned to have
large uncertainty). In addition, the new algorithm provides
24-h products on a 10-min scale, covering missing nighttime
data and obtaining CTP products from AHI.

The CALIOP data were also introduced in this research
to validate the accuracy of the new algorithm. It is worth
reemphasizing that the values estimated from the AHI data
in 2019 showed good consistency with the corresponding
CALIPSO product samples. A validation study of each cloud
phase and different areas compared with those of AHI products
confirms the significant accuracy samples over the ocean
area and in the ice cloud patterns, reflecting the fact that
the CALIOP product provides reliable altitudes of thin cir-
rus clouds composed mainly of small-sized ice particles.
Moreover, the distribution of estimated cloud top properties
against the MODIS cloud top products further confirms the
performance of the estimation process.

Based on the accuracy evaluation process, the analyses of
CTT, CTH, and CTP were performed on their corresponding
spatial and temporal patterns. The application of the annual
average distribution of the cloud top parameters over the
Asia–Pacific region shows an expected similar pattern between
CTP and CTT and a reverse distribution for CTH. We also
analyzed the seasonal data for 30 days in 2019 to investigate
the diurnal cycle of the cloud system over the research region.
Both over land and ocean, the average CTP value is smallest
at approximately 12:00–14:00 UTC and exhibits the highest
value at approximately 02:00–03:00 UTC. These results seem
to demonstrate the typical diurnal cycle of the cloud system
in this area.

This work validates that the new algorithm is effective
and practical with high accuracy for estimating cloud top
parameters at high speeds, making it suitable for use in
near real-time cloud top parameter estimation applications.
However, it is worth noting that there may be uncertainty in
the invalidation or analysis of the spatiotemporal features of
the analyzed parameters since we used a dataset covering only
one year. More validation on daily or even hourly time scales
is still needed.
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