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3-D Inversion of Gravity Anomalies by Combining
Power-Spectrum Derived Adaptive Weighting and

Cross-Gradient Regulation: Application to
Molybdenum–Copper Deposit

Guoqing Ma , Tingyi Wang , Qingfa Meng , Zongrui Li, Taihan Wang , and Lili Li

Abstract— Gravity measurement is an important geophysical
prospecting method for mineral exploration. With most of the
shallow ore deposits in China being exploited, the future targets
for exploration will be aimed at the deep mineral resources
about 4-km underground. To improve the resolving ability in the
vertical direction of the 3-D density inversion to find deep-source
minerals, we propose to achieve the inversion of gravity anomalies
by combining power-spectrum derived adaptive weighting and
cross-gradient regularization. First, spectral analysis is utilized to
conduct the source-depth separation, and the adaptive weighting
function is designed depending on the slope of the radial logarith-
mic power spectrum of the gravity anomaly, which can enhance
the correspondence for the field sources with different depths to
improve the vertical resolution relatively. Thus, each separated
source with different depths could be given an adaptive weighting
coefficient in each separated inversion. Second, the cross-gradient
technique is introduced as a structural constraint in the objective
function to further constrain the separated inversion process.
By performing two-cuboid-source cases, it can be seen that this
combination calculated approach has great potential to improve
the quality of the inversion results. When examining the inversion
of the actual gravity data from certain ore district in the west
of Zhen’an, South Qinling, we speculate that a potential deep
ore body would exist in the deposit via utilizing the recovered
density model obtained by the proposed method.

Index Terms— Adaptive weighting function, combination inver-
sion, gravity anomaly, logarithmic power spectrum.

I. INTRODUCTION

THE 3-D density inversion of gravity anomalies is a
common method to quantitatively calculate the physi-

cal parameters of the underground geological body [1]–[4].
However, the inversion problem is commonly ill-posed, which
would cause the inherent nonuniqueness of the results [5].
One of the ways to obtain more accurate results is to add
prior information. Sufficient prior information, either from
well logs, other geophysical exploration, or geological data,
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would be useful to solve the problem. However, the external
information is hard to be obtained because it is difficult to
investigate and explore in certain areas, such as in the desert
and forest. Another available method to add prior information
is to introduce a reference model.

Last and Kubik [6] developed a compact inversion method
by adding a constraint to minimize the structural volume
of abnormal bodies in the iterative inversion process. This
approach is applicable to simulate gravity anomaly with
single-density sources and has good recognition ability for the
shallow geological body as well. Guillen and Menichetti [7]
searched for solutions minimizing the moment of inertia in
the inversion process. The results of the inversion are both
deeper and more compact. After that, Barbosa and Silva [8]
modified this constraint by incorporating prior information
about the maximum compactness of the anomalous sources
along several axes. It provides versatility dealing with more
complex gravity inversion problems. The depth weighting
function was introduced into the objective function of inver-
sion, which effectively reduced the skin effect to improve
the vertical resolution [9]. Portniaguine and Zhdanov [10]
introduced the gradient minimum as a constraint, and the
focusing inversion method was proposed to make the inversion
results more concentrated and the boundary of the anomaly
body more distinct. A cokriging inversion method was applied
to geophysical data inversion [11], in which the informa-
tion of the rock dip direction and dip angle can be easily
added [12]. Vatankhah et al. [13] used the minimum support
stabilizer to determine the optimal regularization parameters
in the context of the 3-D focusing gravity inversion method
improving the accuracy of the inversion results. Ghalehnoee
and Ansari [14] added the kernel function matrix as the
weighting function in the inversion process to balance the
influence of the nonuniformity of the kernel function on
the calculation process. Another approach based on mar-
ginalizing the probabilistic inversion method was presented,
in which the inverse domain is partitioned into various zones
and each domain could have its own covariance matrix [15].
Li et al. [16] developed a 3-D sparse inversion method for
gravity, which made more effective use of the known physical
property information to improve the resolution of the inversion
results.
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Obviously, different algorithms are designed according to
the available measured data, prior information, and the studied
area. It is well known that the gravity anomaly is a comprehen-
sive reflection of the density variation below the observation
surface (e.g., [17]–[19]), Bhattacharyya and Leu [20] utilized
the slope of the power spectral density as a means of source
depth to distinguish sources with different depths. Though
the assumptions underlying it is questioned, the method that
minimizing the misfit between the model and the observed
power spectrum yields an estimate for the depth to the
top of the sources is still recognized [21]. Thus, spectral
analysis is accepted and practical to derive the source-depth
separation [22].

In this article, the 3-D inversion method by combining
power-spectrum derived adaptive weighting and cross-gradient
regularization is proposed. First, the anomalies with different
burial depths from the comprehensive anomaly are separated,
and the separated anomalies are given matched weighting
functions based on the logarithmic power spectrum. Next,
the constraint of the cross gradient is utilized to derive the
combination inversion result. The proposed method is applied
to the synthetic data, and the minimum norm inversion method
is applied to the same data for comparison. The inversion of
the real gravity data from South Qinling also yields a density
reconstruction result for obtaining the location of potential ore
bodies.

II. METHODOLOGY

For the density inversion of gravity data, the subsurface is
divided into prismatic cells, and the density change of each
cell can be computed. The relationship between density ρ and
anomaly g can be expressed as

Gρ = g (1)

where ρ is the residual density of each discrete unit, g is
the observation gravity anomaly, and G is the kernel function
matrix.

The inversion problem is commonly converted to the issue
of solving the optimal solution of the objective function, and
the objective function of the minimum norm inversion method
can be commonly written as [23]

ϕ(ρ) = ‖Wd(Gρ − g)‖2
2 + α‖Wρρ‖2

2 (2)

where Wd is the data weighting matrix, α is the regularization
parameter, and the depth weighting function is

Wρ = (z + z0)
−β/2 (3)

where z0 depends on the cell size of the model discretization
and the observation height of the data and β is the weighting
coefficient. Li and Oldenburg [9], [24] suggested that β = 2 in
the gravity case and β = 3 in the magnetic case, respectively.
This means that once the parameter β is fixed, the weighting
function would be consistent.

The gravity anomaly is a comprehensive reflection of the
underground density change [25], and thus, the density inver-
sion method, using a uniform depth weighting function for the
superimposed gravity anomaly, is not an appropriate strategy

to obtain the precise distribution of the sources with different
depths; it cannot meet the requirement for the realistic source
distribution. Hence, we propose a 3-D inversion method by
combining power-spectrum derived adaptive weighting and
cross-gradient regularization.

To introduce the proposed method, the principle that the
slope of the logarithmic power spectrum can reflect the
sources with different depths should be known as a premise.
First, to fix the problem of the consistent weighting function,
we design an adaptive weighting function and the anomalies
with different depths from the superimposed anomaly are sepa-
rated, according to the slope variation of the logarithmic power
spectrum. The correlation expression between the logarithmic
power spectrum and the buried depth of the source is

ln P = ln l − 2hr (4)

where P = le−rh is the power spectrum function at any depth
h, l is the factor related to the physical parameters of the
geological body, and r = (u2 + v2)1/2 is the radial circular
frequency, in which u and v are the wavenumbers in the x-
and y-directions, respectively.

Due to the fact that the slope of the logarithmic power
spectrum approximates to the source depth, we express the
calculation of the adaptive weighting function related to the
slope of the logarithmic power spectrum, which is written as

Wρi = (z + z0)
−(k/ki +1/β) (5)

where k is the linear fitting line’s slope of power-spectrum
curve, ki is the linear fitting line’s slope of the i th segment of
the power-spectrum curve, and β = 2 as suggested in [9].

The Butterworth filter is used to separate anomalies with
different depths on the inflection point of the power-spectrum
curve [26], and the expression of the Butterworth filter is
written as [27]

Hn(r, w) = [1 + (r/w)2n]−1/2 (6)

where n is the filter order and w is the truncated wavenum-
ber, which can be derived by the inflection point of radial
logarithmic power-spectrum curve.

Thus, the anomaly can be separated into multiple compo-
nents by the filter, according to the logarithmic power spectrum⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g̃i =
⎡
⎣g̃ −

i−1∑
j=1

g̃ j

⎤
⎦ · Hn(r, w)

g̃N = g̃ −
N−1∑
j=1

g̃ j

(7)

where g̃i is the i th frequency spectrum.
The anomalies obtained after the separation are not com-

pletely unrelated, so we adopt the cross gradient as a mutual
structural constraint to realize the inversion of the separated
anomalies [28], [29], and the objective function corresponding
to the i th separated anomaly is

�i = ‖Wdi (Gρi − gi)‖2
2 + αi‖Wρiρi‖2

2

+
n∑

j=1
j �=i

λi, j �cross
(
ρi , ρ j

)
(8)



MA et al.: 3-D INVERSION OF GRAVITY ANOMALIES 5913109

Fig. 1. Flowchart of the proposed inversion algorithm.

where �cross(ρi , ρ j ) = ∇ρi × ∇ρ j is the cross-gradient
operator [30], Wdi is the data weighting matrix, αi is the
regularization parameter, λi, j is the coefficient of the cross-
gradient operator, and Wpi is the adaptive depth weighting
function, which is related to the slope of the logarithmic power
spectrum. In this article, the L-curve method is used to adjust
the regularization parameters and cross-gradient operator to
achieve the balance between data fitting and model constraints
in the objective function [31].

After that, the conjugate gradient algorithm is used to solve
the optimal solutions of the objective functions [32], and each
inversion result of n anomalies is directly added to obtain the
final inversion result

ρ = ρ1 + ρ2 + · · · + ρn . (9)

In all inversions, the formula

E =
√√√√ N∑

i=1

‖Gρi − gi‖2
2/M (10)

is used to calculate the misfit error, and when it is less than
0.01 mGal, the calculation can be stopped; we consider that
the results can be trusted.

The combination result can be obtained through the calcu-
lation flowchart, as shown in Fig. 1. In this algorithm, we first
calculate the logarithmic power spectrum of the superimposed
anomaly, and the anomalies with different depths can be
separated from the superimposed anomaly. The second step is
to invert each anomaly separately with an adaptive weighting
function constrained by the cross-gradient technique, and we
use (10) to decide whether the inversion calculation can be
stopped. Finally, the combination result can be derived by
directly adding each separate result.

III. MODEL STUDIES

A single-cuboid-source case is considered to demon-
strate the accuracy of the proposed method by model tests.

TABLE I

MODEL PARAMETERS

Fig. 2. Single-cuboid-source case. (a) Cuboid position and its gravity
anomaly. (b) Power spectrum. (c) Low-frequency anomaly after separation.
(d) High-frequency anomaly after separation. (e) Slice at y = 950 m of
the direct inversion result obtained by the minimum norm inversion method.
(f) 3-D perspective view of the inversion result.

The cuboid [Fig. 2(a)] is centered at (950, 950, 350) m with an
extent of (500, 500, 300) m whose density contrast is 1.0 g/cm3

with surrounding rocks, and the parameters of the cuboids used
in this article are shown in Table I. The grid step in the x- and
y-directions of the data [Fig. 2(a)] is 100 m, and the values
are the same in the following model tests. In all inversions, the
subsurface is divided into 20 × 20 × 15 prismatic cells and the
sampling interval is equal to the horizontal interval of the cells,
which could make the inversion results more credible [5].

The logarithmic power spectrum is shown in Fig. 2(b) for
the gravity anomaly of the cuboid. It can be seen that the curve
has an obvious inflection point so that the curve can be divided
into two sections marked as I and II. This means that the



5913109 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 3. Slices at y = 950 m of the separated and combination inversion results. (a) Slice of the low-frequency anomaly’s inversion result obtained by consistent
weighting. (b) Slice of the high-frequency anomaly’s inversion result obtained by consistent weighting. (c) Slice of combination inversion result obtained by
consistent weighting. (d) Slice of the low-frequency anomaly’s inversion result obtained by adaptive weighting. (e) Slice of the high-frequency anomaly’s
inversion result obtained by adaptive weighting. (f) Slice of combination inversion result obtained by adaptive weighting. (g) Slice of the low-frequency
anomaly’s inversion result obtained by combining adaptive weighting and cross-gradient constraint. (h) Slice of the high-frequency anomaly’s inversion result
obtained by combining adaptive weighting and cross-gradient constraint. (i) Slice of combination inversion result obtained by combining adaptive weighting
and cross-gradient constraint.

anomaly can be divided into two frequency segments, which
reflect different depth information. Accordingly, we select the
wavenumber corresponding to the inflection point of the curve
to divide the field source into two parts with different depth
information. As a result, the low-frequency anomaly [Fig. 2(c)]
and the high-frequency anomaly [Fig. 2(d)] can be separated
from the superimposed anomaly. We directly invert the original
anomaly in Fig. 2(a) by the minimum norm inversion method;
the slice at y = 950 m of the direct inversion result can
be obtained [Fig. 2(e)] and the 3-D perspective view with a
truncation density of 0.38 g/cm3 is shown in Fig. 2(f).

Next, we invert the separated anomalies obtained by the
same method with the consistent weighting function. The
separated inversion result of the low-frequency anomaly with
consistent weighting function is shown in Fig. 3(a), and the
separated inversion result of the high-frequency anomaly with
consistent weighting function is shown in Fig. 3(b). The slice
at y = 950 m of the combination inversion result [Fig. 3(c)]
can be obtained by adding the slices of the two separated
inversion results [Fig. 3(a) and (b)] directly. Thus, the final
inversion result of the model can be obtained. When we
compared this final inversion result with the direct inversion
result [Fig. 2(e)], it can be found that the amplitude and
center position are almost the same. This result illustrates that
the method of adding each inversion result of the separated
anomalies is correct.

In addition, we consider an adaptive weighting function
related to the power spectrum in the separated inversion calcu-
lation according to the different weights that sources occupy
in the total field. The slice at y = 950 m of the inversion
results of the low-frequency anomaly and the high-frequency
anomaly is, respectively, shown in Fig. 3(d) and (e), and the

Fig. 4. Two-cuboid-source case. (a) Cuboid position and its gravity anomaly.
(b) Logarithmic power spectrum. (c) Low-frequency anomaly after separation.
(d) High-frequency anomaly after separation.

combination inversion result is shown in Fig. 3(f). It can be
seen that the final inversion result with adaptive weighting
is more convergent than the inversion result with consistent
weighting, which is shown in Fig. 3(c). Furthermore, we intro-
duce the cross-gradient operator into the separated inversion
calculation process and the results are shown in Fig. 3(g)
and (h). Each separated anomaly can be constrained in the
horizontal direction. It can be found that the spatial resolution
of the slice at y = 950 m of the combination inversion
result in Fig. 3(i) is greatly improved. Thus, the accuracy and
superiority of the proposed method can be proved.
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Fig. 5. Slices at y = 950 m of the combination inversion results by
different methods and their respective 3-D perspective view of the inversion
results. (a) Slice of direct inversion result of the original anomaly derived
by the minimum norm inversion method. (b) 3-D perspective view of the
direct inversion result. (c) Slice of the combination inversion result of the
separated anomalies derived by the minimum norm inversion method with
consistent weighting. (d) 3-D perspective view of the combination inversion
result with consistent weighting. (e) Slice of the combination inversion result
of the separated anomalies derived by the minimum norm inversion method
with adaptive weighting. (f) 3-D perspective view of the combination inversion
result with adaptive weighting. (g) Slice of the combination inversion result of
the separated anomalies derived by combining adaptive weighting and cross-
gradient constraint. (h) 3-D perspective view of the combination inversion
derived by combining adaptive weighting and cross-gradient constraint.

Next, we set a model [Fig. 4(a)] in which two cuboids
have different depths to check the applicability of the method.
The center coordinates of the shallow cuboid are (1650, 950,
350) m with an extent of (300, 300, 300) m and the deep
cuboid, which contributes as the main field anomalies are
located in (750, 950, 550) m with an extent of (700, 700,
300) m. It can be seen that the anomaly produced by the
deep source is dominant over the superimposed anomaly and
occupies greater weight so that the response of the shallow
source is weak. Directly inverting the superimposed anomaly
would obscure the result by focusing on the dominant anomaly
since it would be difficult to recognize the shallow cuboid from
the inversion result.

The logarithmic power spectrum of the anomaly is calcu-
lated [Fig. 4(b)], and the low-frequency anomaly [Fig. 4(c)]
and the high-frequency anomaly [Fig. 4(d)] can be obtained
according to the slope variation of the logarithmic power
spectrum. It is obvious that the anomalies generated by the
two cuboids can be separated from the superimposed anomaly,

Fig. 6. Antinoise experiment. (a) Gravity anomaly of two-cuboid-source
case with 3% Gaussian noise. (b) Logarithmic power spectrum. (c) Low-
frequency anomaly after separation. (d) High-frequency anomaly after sepa-
ration. (e) Slice at y = 950 m of the combination inversion result obtained
by the proposed method. (f) 3-D perspective view of the combination result.

and the separated high-frequency anomaly also contains some
low-frequency information. However, the high-frequency com-
ponent still has been relatively highlighted after the separation.

The slice at y = 950 m of the direct inversion result of
the original anomaly derived by the minimum norm inversion
method is shown in Fig. 5(a), and its 3-D perspective view
with a truncation density of 0.32 g/cm3 is shown in Fig. 5(b).
Next, the low-frequency anomaly [Fig. 4(c)] and the high-
frequency anomaly [Fig. 4(d)] are separately inverted by the
minimum norm method with consistent weighting; the slice at
y = 950 m of the final inversion result [Fig. 5(c)] is obtained
and its 3-D perspective view with the same truncation density
of 0.32 g/cm3 is shown in Fig. 5(d). When considering to invert
the low-frequency anomaly [Fig. 4(c)] and the high-frequency
anomaly [Fig. 4(d)] with adaptive weighting, the slice at y =
950 m of the adding inversion result is shown in Fig. 5(e) and
its 3-D perspective view is shown in Fig. 5(f). Since the low-
frequency anomaly [Fig. 4(c)] and the high-frequency anomaly
[Fig. 4(d)] are not completely unrelated, the cross-gradient
operator can restrain the homologous part. Introducing the
cross-gradient operator in the inversion calculation, the sep-
arated anomalies are inverted with adaptive weighting and the
combination result [Fig. 5(g)] can be obtained by adding two
separated results directly and its 3-D perspective view with the
truncation density of 0.32 g/cm3 is shown in Fig. 5(f). It can be
seen that the weak anomaly is better recovered, and the deep
cuboid has better convergence from the slice at y = 950 m
of inversion result obtained by the proposed method when
compared with other two methods. When compared with the
3-D perspective views, the result obtained by the minimum
norm inversion method with consistent weighting in Fig. 5(d)
shows that it cannot recover the location of the shallow cuboid,
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and the result of the deep cuboid is extremely divergent so that
it is hard to accurately determine the depth of the cuboid in the
vertical direction. With the utilization of adaptive weighting,
the inversion result [Fig. 5(f)] is improved to some extent.
However, the vertical resolution of the inversion result is still
poor. Meanwhile, the combination inversion result obtained
by the proposed method [Fig. 5(h)] illustrates the location and
extent of the shallow cuboid, and the vertical resolution of the
deep cuboid is much higher.

To simulate the designed anomaly closer to the actual explo-
ration data, Gaussian noise with a signal-to-noise ratio of 3 is
added to the data of the two-cuboid-source case [Fig. 4(a)] and
the anomaly with noise is shown in Fig. 6(a). The logarithmic
power spectrum of the data with noise is shown in Fig. 6(b),
and the curve is hard to be used to do the slope fitting because
the curve fluctuates in high-frequency section after adding
Gaussian noise. Thus, the five-point-average method [33] is
used to process to get the smoothed curve in Fig. 6(b), but the
noise and the valid information would still overlap on the curve
after smoothing. Next, the superimposed anomaly is separated
into a low-frequency anomaly [Fig. 6(c)] and a high-frequency
anomaly [Fig. 6(d)] according to the smoothed curve of
the power spectrum. Because the noise is characterized by
high frequency, the influence of the added noise is mainly
concentrated in the high-frequency part after separation, and
the separated high-frequency anomaly has some distortions.
The anomaly with noise is inverted by the proposed method
and the adaptive weighting function is the same as the last
experiment. The slice at y = 950 m of the final inversion result
obtained by the proposed method is shown in Fig. 6(e), and the
3-D perspective view with a truncation density of 0.32 g/cm3

is shown in Fig. 6(f). When we compared the slice of the
inversion result [Fig. 6(e)] with the slice in Fig. 5(g), it can
be found that there is little difference between the two results,
and the resolution of the 3-D perspective view of the inversion
result in Fig. 6(f) has no significant change compared with
that in Fig. 5(h), so the added noise has little influence on the
inversion result. In other words, adding uncorrelated Gaussian
random noise does not impact the results much.

At this point, it is still difficult to find the deep ore body,
which is one of the reasons that the response of the shallow
ore body covers the deep part, making it impossible to distin-
guish. To simulate the distribution of this actual underground
geological body, we design a two-cuboid-source case in which
the central coordinates of the two cuboids are on a vertical
line [Fig. 7(a)]. The center coordinates of the shallow cuboid
are (950, 950, 350) m with an extent of (300, 300, 300) m
and the deep cuboid located in (950, 950, 950) m with an
extent of (700, 700, 400) m. We find that it is difficult to
distinguish how many field sources exist by observing the
anomaly directly. The logarithmic power spectrum of this case
is shown in Fig. 7(b), and it can be seen that the anomaly
is produced by two sources according to this. The minimum
norm method and the proposed method are used to invert. The
slice at y = 950 m of the final inversion result obtained by the
minimum norm method and the proposed method is shown in
Fig. 7(c) and (d), respectively, and their 3-D perspective views
with a truncation density of 0.35 g/cm3 are shown in Fig. 7(e)

Fig. 7. Two-cuboid-source case in which the central coordinates of the two
cuboids are on a vertical line. (a) Cuboid position and its gravity anomaly.
(b) Logarithmic power spectrum. (c) Slice at y = 950 m of the final inversion
result obtained by the minimum norm inversion method. (d) Slice at y =
950 m of the combination inversion result obtained by the proposed method.
(e) 3-D perspective view of the result by the minimum norm inversion method.
(f) 3-D perspective view of the final result by the proposed method.

and (f), respectively. Notably, it is hard to recover the deep
cuboid in this situation with the traditional method, but the
performance of the proposed method is highly improved. The
deep cuboid has been recovered and accurately located. It is
proven that this method is of great significance for deep ore
prospecting.

IV. FIELD APPLICATION

To further verify the applicability in the processing of the
actual gravity data, we apply the proposed method to the
isostatic gravity anomaly of certain ore-concentrated areas
from the west of Zhen’an, South Qinling, China. The mining
area is recently discovered in Shaanxi Province in recent
years, with superior metallogenic geological conditions. It is
located in the inner orogenic belt of the North China plate
contiguous with the Qinling orogenic belt in the NE–SW direc-
tion. There are two groups of NW-trending and NE-trending
tensile–torsional faults in the area. The outcropping strata are
mainly Archean and Proterozoic, which are mainly composed
of monzonitic granite, quartzite, and argillaceous slate [5].
Magma invades into gneiss along deep faults and accumulates
into deposits through crystallization. Due to the change of
tectonic background in the region where the deposit is located,
the partial melting of the thickened crust leads to magma
rising, resulting in strong magmatic activities, which makes
the early formed metal deposits undergo different degrees of
hydrothermal alteration. Some ore bodies precipitate again
to form small-scale ore bodies in favorable areas such as
nearby fissures. The gravity data of the ore-concentrated area
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Fig. 8. Geological map of survey area.

Fig. 9. Isostatic gravity anomaly maps. (a) Isostatic gravity anomaly of
survey area. (b) Logarithmic power spectrum. (c) Separated anomaly of I.
(d) Separated anomaly of II. (e) Separated anomaly of III.

in Zhen’an were measured by actual field measurements. The
scale of the data is 1:20 000 and the precision is ±0.05 mGal.
The grid step in the x- and y-directions of field data after
gridding is 168 m.

Fig. 8 shows the geological map of the study area obtained
according to the geological survey. There are basically three
main molybdenum–copper deposits being mined, which are
marked Ores 1–3 in the survey area. It can be seen that the ore
bodies are mainly developed near the faults. The surrounding
rocks are mainly granite and malmstone, and thus, the ore
bodies in this area can be regarded as high-density body.

In the isostatic gravity anomaly, which is shown in Fig. 9(a),
the ore body is characterized by a high value. According to
the slope variation of the radial logarithmic power spectrum
in Fig. 9(b), the anomaly is separated into three segments
[Fig. 9(c)–(e)] corresponding to different depth information.

The anomalies are inverted by the proposed method with a
depth of 6 km to seek the deep potential ore bodies. Since the
ore body is characterized by the high-density body, we choose

Fig. 10. Combination inversion result of the survey area. (a) 3-D perspective
view of the result corresponding to the geological and geophysical map.
(b) Slice A. (c) Slice B.

Fig. 11. Horizontal slices of inversion result at different depths.

400 kg/m3 as the truncation density to show the ore body
more clearly. The 3-D perspective view of the inversion result
with a 400-kg/m3 truncation density [Fig. 10(a)] corresponding
to the geological map [Fig. 8] and the geophysical map
[Fig. 9(a)] is obtained and the slices [Fig. 10(b) and (c)]
through three ore body locations are derived from the result.
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From Fig 10(a), it is shown that the shallow ore body is
recovered well and a high-value body under this ore body in
the vertical direction can be distinguished. It can be seen that
the positions of the three high-density bodies in the inversion
results are in good correspondence with the positions of the
exist ore bodies determined in the actual geological survey.
In Fig. 10(a), we redraw the scope of the ore body being mined
and estimate the possible location of the deep ore body. There
is a concealed high-density body below the discovered ore
bodies in Profile A. We infer that it may be a potential deep
geological body. In Profile B, Ore 1 connects with the high-
density body below through the migration channel. We can
infer the metallogenic mechanism of ore 1, that is, the ore body
above is formed by magma upwelling and migrating through
the channel.

To further illustrate the geologically consistent reconstruc-
tion ability of the deep source by the proposed method, the
horizontal slices of the inversion results at different depths are
shown in Fig. 11. In the horizontal slice with depth at 500 m,
we can see that the three ore bodies start to show a weak
response, and thus, the depth value is supposed to be the top
buried depth of ore body. The slice with depth 1200 m shows
a stronger response of the bodies and it may pass through
the inside of the three bodies. The response gets weak again
in the slice with depth at 1900 m; we can infer the buried
depth of the three ore bodies according to the slices. In the
horizontal slice with depth at 2600 m, a strong response from
a deeper block is shown, which is covered by the responses
of the shallow ore bodies. According to the horizontal slices,
the density changes to further speculate the horizontal range
and buried depth of the ore body can be clearly recognized.

V. CONCLUSION

A 3-D inversion method of gravity anomalies by combining
power-spectrum derived adaptive weighting and cross-gradient
regularization is developed. According to the model tests, the
vertical resolution of the inversion result is relatively improved
by adaptive weighting functions to separate anomalies with
different burial depths, depending on the logarithmic power
spectrum, and the horizontal resolution can also be improved
by utilizing the cross gradient to constrain the density structure
characteristics of each separated anomaly. Thus, the spatial
resolution of the inversion result can be improved relatively by
the proposed method. The algorithm of the proposed method
is shown effective for the situation where the buried depths
of the geological bodies are different. In addition, the method
has been validated by the model tests to have stability against
Gaussian noise.

This method is also very valuable in practical applications.
The proposed method is applied on an ore-concentrated area in
Zhen’an and we speculated a high-density body, which could
be the potential ore body determined by the inversion result
with good quality. It provides a possibility for the conjecture
that there are still deep ore bodies in this area. Furthermore,
in the absence of other data or prior information, this proposed
method could make full use of gravity data to improve the
resolution of the inversion results and provide new possibilities

for future research exploration. In the next research, the latest
drilling data would be added to further constrain the inversion
process to verify our existing speculation and obtain more
reliable recovered density model.
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