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Abstract—Deep learning-based multi-task learning (MTL)
methods have recently attracted attention for content-based
image retrieval (CBIR) applications in remote sensing (RS). For a
given set of tasks (e.g., scene classification, semantic segmentation,
and image reconstruction), existing MTL methods employ a joint
optimization algorithm on the direct aggregation of task-specific
loss functions. Such an approach may provide limited CBIR
performance when: 1) tasks compete or even distract each other;
2) one of the tasks dominates the whole learning procedure; or
3) characterization of each task is underperformed compared to
single-task learning. This is mainly due to the lack of: 1) plasticity
condition (which is associated with sensitivity to new information)
or 2) stability condition (which is associated with protection from
radical disruptions by new information) of the whole learning
procedure. To avoid this issue, as a first time, we propose a novel
plasticity-stability preserving MTL (PLASTA-MTL) approach to
ensure the plasticity and the stability conditions of the whole
learning procedure independently of the number and type of
tasks. This is achieved by defining two novel loss functions. The
first loss function is the plasticity preserving loss (PPL) function
that aims to enforce the global image representation space to
be sensitive to new information learned with each task. This
is achieved by minimizing the difference of gradient magnitudes
for the global representation and task-specific embedding spaces.
The second loss function is the stability preserving loss (SPL)
function that aims to protect the global representation space
radically disrupted by a new task. This is achieved by minimizing
the angular distances between the task gradients over global
representation space. To effectively employ the proposed loss
functions, we also introduce a novel sequential optimization
algorithm. Experimental results show the effectiveness of the pro-
posed approach compared to the state-of-the-art MTL methods
in the context of CBIR.

Index Terms—Image retrieval, multi-task learning (MTL),
remote sensing (RS), representation learning.

I. INTRODUCTION

HE development of efficient and effective methods for

content-based image retrieval (CBIR) from large-scale
remote sensing (RS) image archives is one of the growing
research interests in RS. CBIR aims at searching for RS
images similar to a query image based on their semantic con-
tent. Traditional CBIR methods extract and exploit handcrafted
image representations, which are manually designed based on
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the spatial and spectral characteristics of RS images [1]-[4].
In recent years, deep learning (DL)-based image representation
learning has been found very effective for CBIR problems due
to its capability to construct multiple levels of representations
in a hierarchical manner [5]. Unlike the traditional meth-
ods, in DL-based CBIR methods, image representations are
automatically learned during the optimization of an objective
function based on the characteristics of a learning paradigm
(i.e., task). For DL-based RS image representation learning,
existing CBIR methods utilize following tasks: 1) scene clas-
sification [6]-[16]; 2) similarity learning [17]-[29]; 3) image
reconstruction [30], [31]; 4) semantic segmentation [32],
[33]; and 5) image captioning [34]. Each task has differ-
ent objectives that lead to different optimization procedures
throughout the training of the considered deep neural net-
work (DNN). Accordingly, learned image representations have
different characteristics for different tasks and, thus, carry
different information to be utilized in CBIR applications. As an
example, when the task is scene classification, RS image
representations can be learned with convolutional neural net-
works (CNNs) by optimizing entropy-based loss functions.
In this way, image representations are encoded to separate
predefined classes that maximize interclass distances in the
image representation space [35]. For the similarity learning
task, on the other hand, image representations are learned to
discriminate dissimilar RS images that minimize intraclass
distance in the image representation space [36]. This can
be achieved by employing Siamese CNNs on tuples of RS
images to optimize triplet or contrastive loss functions. If the
task is chosen as the image reconstruction, autoencoder neural
networks can be used first to construct the representations and
then to recover RS images with reconstruction loss. In this
way, resulting image representations are robust to noise in RS
images [37]. In RS, it is common to use the abovementioned
tasks in the framework of single-task learning (STL) for CBIR
applications.

However, using a single task may not be sufficient to
describe the complex content of RS images in CBIR problem:s.
To address this issue, multiple tasks can be jointly utilized
for image representation learning. When image representation
learning is achieved based on multiple tasks, the resulting
latent space can better represent the complex semantic con-
tent of RS images. Accordingly, few DL-based multi-task
learning (MTL) methods have been recently introduced in RS
for CBIR applications. As an example, in [38], RS image
similarity learning based on triplet loss is combined with the
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scene classification task. In this method, task-specific heads
are combined with the CNN backbone shared by two tasks,
while the joint optimization of task-specific loss functions is
employed by minimizing the summation of them. In this way,
MTL is regarded as a joint optimization problem based on the
aggregation of task-specific loss functions. This is followed by
most of the MTL methods in RS.

Due to the complexity of the MTL problem, it is common
that: 1) tasks may compete or even distract each other during
training; 2) one of the tasks may dominate the whole learning
procedure; or 3) characterization of each task can be under-
performed compared to STL [39]. These problems undermine
the effectiveness of the whole representation learning proce-
dure [40]. These issues occur due to the stability-plasticity
constraint of MTL [41]. MTL methods require being sensitive
to new information learned from each task that allows the con-
tribution of each task to further improve modeling the image
characterization. This condition is known as plasticity [41].
If there is a lack of plasticity condition in response to new
information, an image representation space will be slightly
affected while learning a new task and, thus, will merely
reflect different characteristics of representations learned via
different tasks. If the considered DNN suffers from the lack
of plasticity condition, information specific to each task will
be only encoded in the corresponding task-specific head.
The possible drawbacks of this issue are twofold. First, only
the general features of RS images can be encoded in the
CNN backbone, and thus, image features extracted from the
considered DNN will have a lower discrimination capability
compared to STL. Second, one of the tasks can dominate
the global image representation space. In this case, all tasks
except the one, which dominates the image representation
space learned via the backbone, will not significantly affect
the image features. For MTL, during the learning process
of a new task, new information encoded in the considered
DNN should not radically disrupt what is already characterized
based on the other tasks. This condition is known as stability.
When there is a lack of stability condition in response to
new information captured via a new task, there is a risk
that previous information encoded by the considered DNN
can be forgotten. Thus, a global image representation space
will be mainly characterized based on the characteristics of
representations learned via a single task. This risk is more
evident when some of the tasks compete with each other.
In this case, since every task aims to radically change the
global image representation space compared to other tasks,
tasks may distract each other that leads to less accurate RS
image characterization for MTL compared to STL.

The MTL formulation of the existing DL-based CBIR
methods (which is based on joint optimization) is limited to
control the learning of each task. Thus, it does not allow
the controlling plasticity and stability of the whole learning
procedure. It is also worth noting that, in the abovementioned
MTL formulation, the whole learning procedure is sensitive
to the proper selection of loss function weight for each task
that generally requires a grid search (which is computationally
demanding) [42]. Thus, MTL methods that can effectively
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combine multiple tasks without the need for selection of loss
weights while considering the stability-plasticity problem are
needed in the context of CBIR to accurately apply RS image
representation learning.

To avoid the abovementioned problems, as a first time,
we propose a novel PLAsticity-STAbility preserving MTL
(PLASTA-MTL) approach. The PLASTA-MTL approach aims
to preserve: 1) the plasticity for each task and 2) the stability
in between learning consecutive tasks for the whole learning
procedure independently of the number of tasks and the
type of tasks. To this end, we introduce novel plasticity
preserving and stability preserving loss (SPL) functions. The
plasticity preserving loss (PPL) function enforces the global
image representation space (which is shared by all the tasks)
to be sensitive to new information learned with each task
during training. This is achieved by minimizing the gradient
magnitude differences between global image representation
and task-specific embedding spaces. The SPL function pro-
tects the image representation space radically disrupted by
each task during training. This is achieved by minimizing
the angular distances between task gradients over global
image representation space. To effectively apply these two
loss functions, unlike most of the existing MTL methods,
we also propose a sequential optimization algorithm. The
proposed algorithm aims to adaptively adjust the interac-
tions between task-specific learning procedures, allowing to
ensure plasticity and stability conditions for all the tasks.
To this end, instead of joint optimization of all loss functions,
task-specific objectives together with the PPL function are
sequentially optimized. By this algorithm, the SPL function is
optimized at the end of the task sequence for all the considered
tasks.

The novelty of the proposed PLASTA-MTL approach con-
sists of: 1) the adaptive adjustment of interactions between
task-specific learning procedures by the proposed sequential
optimization algorithm; 2) the protection of image representa-
tion space from radical disruptions that occurred due to each
task by the proposed SPL function; and 3) the sensitivity assur-
ance of the image representation space to new information
from each task by the proposed PPL function. Due to the pro-
posed sequential optimization algorithm, our PLASTA-MTL
approach does not need to select loss function weights for each
task. Due to its stability and plasticity preserving capabilities,
our PLASTA-MTL approach overcomes the abovementioned
MTL problems of joint optimization algorithm, which are
mainly conflicts between tasks, the dominance of one of the
tasks, and underperformance of tasks compared to STL. It is
worth noting that the proposed PLASTA-MTL approach is
independent of the number of considered tasks and their types.
The code of the proposed approach is publicly available at
https://git.tu-berlin.de/rsim/PLASTA-MTL.

The rest of this article is organized as follows. Section II
provides the related works. Section III presents the proposed
PLASTA-MTL approach. Section IV describes the consid-
ered datasets and the experimental setup. Section IV provides
the experimental results, while Section VI concludes this
article.
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II. RELATED WORK
In this section, we initially present the recent advances in

single-task-driven CBIR methods in RS and then survey the
existing DL-based MTL methods for RS CBIR.

A. Single-Task-Driven CBIR Methods

In the context of DL-based single-task-driven CBIR,
an objective function is usually selected on the basis of the
characteristics of the considered learning paradigm (i.e., task),
and thus, image features are automatically learned during
the optimization of this objective function. We categorize the
existing methods into five groups based on the tasks that they
utilize and survey in the following.

1) Scene Classification-Driven CBIR Methods: The task
of scene classification aims at automatically assigning
single-labels or multilabels to image scenes. In [15], land-
use class probabilities obtained by a CNN are exploited for
weighting the distance between a query image and the archive
images obtained by conventional distance metrics. In [8], a dis-
tance between the image and its land-use class is used to apply
reranking on the order of retrieved images. In [11], aggregated
deep local features are utilized for query-sensitive CBIR on RS
images. To this end, vectors of locally aggregated descriptors
obtained via multiplicative and additive attention mechanisms
are used to construct memory vectors for expanded query
description. In [7], to retrieve similar images to a query
image, the fuzzy distance calculation is introduced based on
fuzzy rules and image descriptors extracted from a CNN.
In [9], query-adaptive feature fusion technique is introduced
to employ different hierarchical image representations from a
CNN in the context of CBIR.

2) Similarity Learning-Driven CBIR Methods: DL-based
similarity learning aims to automatically identify image simi-
larity based on an image representation space, where semanti-
cally similar images are located close to each other. In [23],
a twin CNN is introduced for the prediction of pairwise image
similarity during the hash code generation of RS images.
In [17], a triplet deep metric learning network (TDMLN) is
introduced for RS image similarity learning. TDMLN uti-
lizes three CNNs with shared model parameters that allow
learning RS image similarity through triplet loss function on
image triplets, each of which includes anchor, positive, and
negative images. TDMLN aims at learning a metric space
where the distance between an anchor and its positive image
is minimized, and that between the anchor and its negative
image is maximized. In [19], a Siamese graph convolutional
network is proposed to employ region adjacency graph-based
image descriptors for the characterization of pairwise image
similarity with a contrastive loss function. In [29], RS image
similarity learning based on image triplets is utilized for
hash code generation of RS images in the context of CBIR.
In [18], the distribution consistency loss function is pro-
posed in the context of deep metric learning to make use
of multiple positive and negative images for each anchor
image, unlike the triplet loss function. In [24], a quantized
DL to hash approach is introduced for efficient CBIR. In this
approach, DNN weights and activation functions are binarized,
while pairwise image similarity characterization is used for
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hash code generation of RS images. In [26], the generative
adversarial network regularization-based deep metric learning
method is introduced to model pairwise image similarity,
while a generative adversarial network is used to mitigate the
overfitting problem. In [27], a global optimization algorithm
is introduced to jointly employ different metric learning-based
loss functions on image representations and the retrieval results
for the consistency between the loss reduction direction and
the optimization direction. In [28], the weighted Wasserstein
ordinal loss function is proposed for Siamese CNNs to formu-
late the image similarity learning problem as an unsupervised
deep ordinal classification problem. In [21], the dual-anchor
triplet loss function is introduced to make use of more than
one anchor for each image triplet (which is achieved by
considering the positive image as the second anchor).

3) Image Reconstruction-Driven CBIR Methods: DL-based
image reconstruction task aims at automatically reconstructing
input images based on unsupervised image representation
learning. In [30], a deep bag-of-word method is introduced
for CBIR problems. In this method, a convolutional autoen-
coder (CAE) is utilized to: 1) encode the RS image local areas
into a representation space and 2) decode local descriptors
to image space. A reconstruction loss function is employed
between an image local area and the CAE output, while
k-means clustering is used with the bag-of-word approach to
define the global image representation. In [31], residual-dyad
units (which is the combination of full preactivation block
and a convolutional shortcut block) are proposed for CAEs
to avoid diminishing feature reuse problem of conventional
residual connections.

4) Semantic Segmentation-Driven CBIR Methods: The
semantic segmentation task aims to automatically identify
pixel-based class labels, which are associated with RS images.
In [32], a multilabel CBIR approach based on a fully convo-
lutional network (FCN) is proposed to apply CBIR on local
areas of multilabel RS images. The FCN is first trained to
predict land-cover maps of RS images, which are then used
to characterize convolutional descriptors of image local areas.
The set of final local descriptors is utilized for region-based
RS image matching. In [33], a graph-theoretic deep represen-
tation learning method is introduced to characterize multilabel
co-occurrence relationships associated with each RS image in
an archive. To this end, a CNN is employed for the automatic
prediction of graph-driven region-based image representation
with a region representation learning loss function.

5) Image Captioning-Driven CBIR Methods: The image
captioning task aims to automatically identify the textual
descriptions (i.e., captions) of image scenes. A few DL-based
methods employ RS image captioning for CBIR problems.
As an example, in [34], image representations are encoded
to generate captions of RS images to describe the relation-
ships between the objects in the ground and their attributes,
while CBIR is performed by comparing the predicted image
captions.

B. Multi-Task-Driven CBIR Methods

MTL aims at enhancing the effectiveness of image repre-
sentation learning and the prediction accuracy of each task
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compared to using a separate learning procedure for each
task [43]. To this end, the DL-based MTL problem is formu-
lated as learning the model parameters of a DNN with respect
to multiple loss functions, each of which is associated with
a task. In RS, DL-based MTL has been applied to various
applications (e.g., motion deblurring [44], building damage
mapping [45], change detection [46], and road extraction [47]).
In the context of CBIR, few DL-based MTL methods have
been recently proposed in RS and these methods only combine
two tasks: 1) scene classification and 2) similarity learning.
In [48], a wide-context attention network is introduced to
learn the correlation of local descriptors with wide context
information by employing channel dependence- and spatial
context-attention modules. In [38], a center-metric learning
method, which employs the positive—negative center loss func-
tion for modeling metric space, is proposed to characterize
within-class variations. In [49], a discriminative distillation
network is introduced to increase the interclass variations
and to reduce the intraclass differences. In [50], a deep
hashing CNN is employed for simultaneously generating hash
codes and predicting land-use classes of RS images. All the
abovementioned deep MTL methods in RS utilize a CNN
backbone (which is shared by all tasks) followed by task-
specific heads, while image representation learning is done
by jointly optimizing the aggregation of task-specific loss
functions. Although the main problems of this MTL formula-
tion are separately addressed by automatically selecting loss
weights with gradient adjustment strategies in the computer
vision domain (e.g., [43] and [51]-[53]), they are still based
on the joint optimization algorithm.

III. PROPOSED PLASTICITY-STABILITY PRESERVING
MULTI-TASK LEARNING APPROACH

Let X = {xy,...,x)} be an archive that includes M
images, where x; is the ith RS image in the archive A'. CBIR
methods aim at retrieving images from the archive X similar
to a given query image x, based on the distances in image
representation (i.e., feature) space. Let ¢ : 0, X — R’ be any
type of DNN that maps the image x; to y -dimensional image
descriptor ¢ (x;; 8), where 0 is the set of DNN parameters. Let
T ={T,..., Ty} be a set of N tasks, where the ith task T; is
associated with a loss function L7,. When image representation
learning is achieved based on multiple tasks, the objective
function consists of multiple loss functions {£7,}Y . In this
article, MTL is performed by hard parameter sharing tech-
nique [39] that allows characterizing a global descriptor for
each image based on the multiple tasks. In this way, considered
DNN typically includes an encoder (i.e., a CNN backbone),
which is shared by all the tasks, and task-specific heads, which
are branched out from the CNN backbone. Each task-specific
head characterizes the task-specific embedding space based on
the characteristics of each task. The CNN backbone models
global image representation space. Let G € 0 be the set
of DNN parameters that are used for defining global image
representation space. G is chosen as the parameters of the
last layer of the CNN backbone shared by all the tasks. Let
Er, € 0 be the set of parameters that is used to construct
the task-specific embedding for the ith task 7;. Accordingly,
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after learning DNN parameters ¢, G is used to extract image
descriptors that are utilized to perform CBIR.

In the standard MTL formulation (which is based on joint
optimization algorithm), all the model parameters €, including
G and {Er}Y,, are simultaneously updated based on the
gradients of aggregated loss functions (Vy >, L7;). This MTL
formulation is limited to control the learning process of
each task and, thus, the plasticity and stability conditions of
the whole learning procedure. This leads to the problems,
which are discussed in Section I. To avoid these problems
by preserving the plasticity and stability capabilities for all
the considered tasks, the proposed PLASTA-MTL approach
is characterized by two novel loss functions and a novel
optimization algorithm. By the proposed PPL function, the
PLASTA-MTL approach minimizes the gradient magnitude
differences between global image representation space and
task-specific embedding spaces for the sensitivity of the global
image representation space to new information learned via
each task. By the proposed SPL function, the PLASTA-MTL
approach minimizes angular distances between task gradients
over global image representation space to protect it from
radical disruptions by each task. To accurately apply these
loss functions, the proposed optimization algorithm sequen-
tially optimizes task-specific objectives together with the PPL
function. In our algorithm, the SPL function is optimized
at the end of the task sequence for all the tasks. In the
following, we initially explain in detail the proposed PPL
and SPL functions and then introduce the proposed sequential
optimization algorithm.

A. Plasticity Preservation by the Proposed PPL Function

The proposed PLASTA-MTL approach aims to control the
level of plasticity for each task in the context of MTL and,
thus, to ensure the sensitivity to new information learned via
each task. The level of plasticity for each task is controlled by
what extent information encoded in task-specific embedding
space is also encoded in the global image representation space.
To this end, we define the plasticity condition for the ith
task 7; as how much change is occurred in G compared to
that of E7,, while learning 7; is based on the corresponding
loss function L7,. To measure the change occurred in G and
Ep, for T;, we utilize the gradients of L7, with respect to
the global image representation and task-specific embedding
parameters [V L7 (6) and Ve, L7 (0)]. Then, the gradient
magnitude difference between global image representation
space G and task-specific embedding space Er, for task 7;
represents the change occurred in G and E7, as follows:
Ve Lz |-l Ve, L7, ||. When this difference increases through-
out the learning procedure, information specific to task 7; is
only encoded by task-specific embedding space. Then, the con-
sidered DNN suffers from the lack of plasticity condition for
global image representation space. Accordingly, to minimize
the degree of changes in global image representation space G
and the task-specific embedding space E7;, we define the PPL
function L, for the task 7 as follows:

VoL@l Ve, £rO)]
dim(Vo L7, @)  dim(Vg, £7,0))

T.
'CPIPL =

ey
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where dim function gives the dimensions of the gradient
vectors that are used to normalize the gradient magnitude
difference. Since each task is associated with a separate set
of task-specific embedding parameters, PPL is defined for
each task. In detail, we define the PPL objective based on
the gradients of a task-specific loss function. It is worth
noting that defining loss functions based on the task-specific
gradients is often considered in the framework of MTL
(e.g., [42], [52], [54], and [55]) to control the effect of each
task on the weight update of a DNN [39].

Due to our PPL function, the proposed PLASTA-MTL
approach keeps the gradient magnitudes of G and E7, on
the same scale while modeling the task 7;. This leads the
task-specific information to be characterized in both global
image representation space and task-specific embedding space.
Thus, the global image representation space (which is shared
by all the tasks) is enforced to be sensitive to new infor-
mation learned with each task during training. Accordingly,
the proposed PLASTA-MTL approach prevents the considered
DNN from the lack of plasticity condition for each consid-
ered task. It is worth noting that, when a joint optimization
algorithm is employed on the aggregation of all task-specific
loss functions, the application of our PPL function for all
tasks can increase the complexity of the whole learning
procedure. In this case, the gradient magnitude of G is forced
to simultaneously have the same scale with that of E for
each i € {l,..., N} that can exacerbate confusion for the
whole learning procedure.

B. Stability Preservation by the Proposed SPL Function

The proposed PLASTA-MTL approach aims to adjust the
level of stability in between consecutive tasks in the context of
MTL and, thus, to prevent the whole learning procedure from
radical disruptions while learning multiple tasks. The level of
stability in between learning different tasks is characterized
by the degree of change (which is occurred in global image
representation space) due to a new task with respect to that of
previous tasks. Accordingly, the level of stability condition for
all the tasks {71, ..., Ty} can be defined as how much change
is occurred in G in-between learning consecutive tasks based
on their corresponding loss functions {Lr,, ..., L7, }. To this
end, we define the relative change in G between learning two
consecutive tasks 7; and 7;,; as the angular distance between
the gradients of the associated loss functions Vg Lr,(6) and
VeLr,, (0). If this angular distance between two gradient
vectors (that is associated with two consecutive tasks) becomes
extremely high throughout the learning procedure, the gradient
of the latter task enforces global image representation to
change into a very different direction compared to the former
task. In this way, the latter task radically changes the global
image representation space. This may lead to a lack of stability
for the considered learning. Accordingly, to minimize the
angular distances, each of which is between the gradients
of each consecutive task, we define the SPL function as
follows:

A, V6 Lr,(0) - VeLlr,, (©)

Lspp = —— arccos 2
o N—li; (||VG£E(9)||||VG£T,-+1(9)||) @
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where arccos((a - b)/(||a||||b]|)) measures the angle between
the vectors a and b. To ensure the stability condition for all the
tasks {7}, ..., Ty}, the proposed SPL function considers the
angular distances between all consecutive pairs in the task
sequence.

Due to our SPL function, the proposed PLASTA-MTL
approach keeps the angular distances between different task
gradients minimum while learning all the tasks {71, ..., Ty}.
Thus, the directions of task gradients over global image
representation space are forced to be stable throughout the
whole learning procedure. This prevents radical changes in
global image representation space due to learning any task.
Accordingly, the proposed PLASTA-MTL approach prevents
the considered DNN from the lack of stability condition for all
the tasks. We would like to point out that, if the conventional
optimization algorithm of MTL is applied, the optimization of
all loss functions is applied simultaneously. In this way, there
is a single change in G based on the gradient of aggregated
loss functions of all tasks. Then, it is hard to model relative
changes in G with respect to different tasks.

C. Proposed Sequential Optimization Algorithm

For the whole learning procedure, the proposed sequential
optimization algorithm aims to adaptively adjust the inter-
actions between task-specific learning procedures and, thus,
allows the proposed PLASTA-MTL approach to ensure plas-
ticity and stability conditions for all the tasks. As in most of
the DL-based MTL methods, learning the parameters of the
considered DNN for the tasks {T,-}f\': , can be achieved based
on the following empirical risk minimization formulation:

N
min ;zizﬂ @ 3)

where 1; is the weight parameter of the task 7;. In this
formulation, for a given minibatch of training images, there is
one optimization procedure, where all the model parameters
are jointly updated to minimize the aggregation of all loss
functions. This formulation limits to control plasticity and
stability conditions for each task, as explained in Sections I
and II. Unlike the existing MTL methods, in the proposed
sequential optimization algorithm, there is one optimization
procedure for each task-specific loss function together with the
corresponding PPL function. At the end of the task sequence,
this algorithm applies one more additional optimization pro-
cedure for SPL by considering all the tasks. To this end,
we first formulate (3) as a multilevel optimization problem as
follows:

. Ty
(r;r’lel% L, (G,0")

s.t. G e argmin Ly, (G, HTN*‘)
G.ON-1

s.t. G € argmin L7, (G,0™) “)
G,0M

where 7 e @ is the set of task-specific parameters asso-
ciated with the task 7; (i.e., task-specific head parameters).
The reader is referred to [56] for the details of multilevel
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optimization formulation. For (4), the set of all tasks 7 is
regarded as a sequence (T; | i € {1,..., N}). Accordingly,
instead of jointly optimizing all the tasks, every task 7; in
the sequence is optimized sequentially. In this way, global
image representation space (which is defined by G) is always
affected by the optimization of last task in the sequence.
This allows to adaptively adjust the interactions between
task-specific learning procedures and, thus, to integrate the
plasticity and stability preserving capabilities of the proposed
PLASTA-MTL approach into the whole learning procedure.
To this end, for each task, we minimize the corresponding
PPL function £l with the task-specific loss function L7, by
integrating multiobjective optimization of two loss functions
to (4) as follows:
min - (L7,(G,0™), Ly (VoLr,, Vi, L1,))

st. G eargmin (Lg, ,, Lon")
G.ON-1

)

s.t. G € argmin (Lr,, Eg},L).
G,0"

It is worth noting that, during the optimization of Egj,L,
Vg, L1, is regarded as constant. Due to this, global image
representation space (which is defined by G) is affected by
the optimization of the last task in the sequence with the
corresponding PPL function. Since the SPL function Lgpy, is
applied for all the tasks, it is optimized at the end of the
sequence as follows:

min Lsp ({VeLr YY)

s.t. G € argmin (L7, ﬁgﬁL)
G,0™

s.t. G € argmin (Lg,_,, L:gg]:')

G,0™N-1

st. G € argmin (Lpy, L)
G,0M

(6)

where Vg L7, is stored in each minimization step to be utilized
for the optimization of Lgpy .

It is worth noting that, depending on the selection of tasks,
the assurance of the stability condition for the considered DNN
may decrease the level of plasticity condition and vice versa.
In this way, the lack of one of the stability and plasticity
conditions is associated with the excess of the other condition.
As an example, if some of the considered tasks are in heavy
competition during training and one of the tasks can distract
the other tasks, there is a lack of stability condition. This is
also due to the excess plasticity condition. In this way, increas-
ing the level of stability condition results in a decrease in the
plasticity condition that leads to the lack of stability condition.
Under such conditions, the stability-plasticity constraint of a
DNN is defined as a dilemma between these two capabilities
of the DNN. If there is this dilemma, it can be misleading to
address both stability and plasticity capabilities at the same
time. This may lead to the ineffective characterization of one
of the conditions. The drawback of this can be more evident
if preserving one of the capabilities is more important than
the other one. Accordingly, in the proposed PLASTA-MTL
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Algorithm 1 Proposed Sequential Optimization Algorithm to
Train the Proposed PLASTA-MTL Approach
Require: Mini-batch B € X, set of tasks 7={Ty,...
set of model parameters 6, a, S
1: for i < 1 to N do
2:  Compute L7, (@)
3:  Compute VoLr(0), V6 L1, (0) and Vg, L1,(6)

_ T V6L O Ve, L1, @)l
4 Compute Lyp) = | Ginrv, £ @) — dimVe, £ @)

5 TN}»

5. Compute Vg Lhp,

6:  Update 6 using Vo Lr, (0)

7. if |[VgLspr| < o then

8 Update G using Vgﬁ]T)"PL
9 end if

: end for

: Compute Lgpy = ﬁ Z,NZ_II arccos(||
: Compute VoLlsprL

- if ||Vgﬁ5pL|| > IB then
Update G using Vg Lspr

: end if

VoL, (0)-VeLr,,, (0) )
Vo Ly, OIVeLr,, @)

approach, we aim to automatically detect which capability
should be preserved if there is a need for selecting only one of
them. To this end, we define the importance level of stability
condition for the considered DNN and the tasks based on the
L?-norm of the gradient of SPL. Accordingly, for a given set
of tasks, we define the set of all the loss functions to be
considered based on the two different levels of importance
for Lspr as follows:

Ly ...Lr,, LspL, if [VgLspL|l > a
T T, .

L, Lopy, - - L1ys Lopy if |[VgLspLll <
T T, .

L, Lopr - - L1y, Lppr» Lspr, otherwise

£ (N

where a and £ control the importance limits, while a > f.
If L2-norm of the gradient V¢ Lspy is significantly high (higher
than ), we assume that there is no need to apply Lppy.
This applies to Lspy if L>-norm of the gradient V¢ Lspr
is significantly low (lower than f). If the L’-norm is in
between a and f, we define this interval as the condition
where stability-plasticity constraint is not a dilemma anymore,
and thus, both of the capabilities can be preserved in the
proposed PLASTA-MTL approach. It is worth noting that,
since Vs LgspL depends on the normalized gradients of con-
secutive task-specific loss functions [see (2)], it is mostly
affected by which tasks are jointly considered. However,
it is less affected by the considered dataset since the input
samples indirectly changes the gradient of the SPL function.
The proposed sequential algorithm automatically decides to
apply PPL, SPL, or both loss functions together depending
on the parameters a and f. Accordingly, (5) is used to apply
only PPL function, (6) is used without ﬁgi)L to apply SPL
function, and (6) is used to apply both loss functions together.
In practice, this decision can be made at the end of the first
epoch of the training based on the parameters of o and . The
proposed sequential optimization algorithm is summarized in
Algorithm 1. To better understand the applied operations in it,
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Fig. 1.

lustration of the proposed PLASTA-MTL approach training when two tasks 77 and 7, are considered. Standard and plasticity preservation backward

passes for (a) 77 and (c) T, are shown, while the changes over the gradient vectors (b) VgLz, and (d) VgLyp, during the plasticity preservation of these
tasks are visualized. (e) Backward pass for stability preservation of all the tasks are given with (f) illustration of changes over their gradient vectors.

Fig. 1 shows an illustration of the proposed PLASTA-MTL
approach training with the proposed optimization algorithm.
It is noted that, for simplicity, forward and backward passes
applied in our optimization algorithm are visualized for two
tasks. For the first task, while Vy Ly, is propagated back [which
is visualized with red arrows in Fig. 1(a)], Lpb; is calculated.
Then, backward pass for £, is applied [which is illustrated
with purple arrows in Fig. 1(a)]. During the plasticity preser-
vation for the first task, the change over the gradient vector
Ve Ly, is visualized in Fig. 1(b). The same steps are also
presented for the second task in Fig. 1(c) and (d). After the
plasticity preservation is employed for both tasks, Lgpp is
calculated [see Fig. 1(e)]. At the end, the backward pass for
the SPL function is applied (which is visualized with blue

arrows). During the stability preservation for both tasks, the
changes over the gradient vectors of both tasks are presented
in Fig. 1(f).

Since the proposed algorithm allows applying a task-specific
optimization procedure for each task unlike the joint opti-
mization algorithm, the PLASTA-MTL approach is capable
of effectively preserving plasticity and stability capabilities for
each task in the context of MTL. We would like to point out
that this algorithm does not require the selection of any loss
function weights (which generally requires a computationally
demanding grid search in the joint optimization algorithm).
It is also worth noting that the proposed algorithm works
independently of the number of considered tasks and the type
of tasks.
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IV. DATASET DESCRIPTION AND EXPERIMENTAL SETUP
A. Dataset Description

The experiments were performed on the DLRSD [57] and
the BigEarthNet-S2 [58] benchmark archives. The DLRSD
archive includes the same images as the UC Merced
archive [59] that consists of 2100 aerial images, each of which
has the size of 256 x 256 pixels with a spatial resolution
of 30 cm. In the DLRSD archive, the images are associated
with the multilabels and the pixel-based labels, where the set
of class labels is defined in [4]. We utilized the Serbia subset
of the BigEarthNet-S2 benchmark archive, where images are
acquired during the summer season. This subset includes
14832 Sentinel-2 images, each of which is a section of:
1) 120 x 120 pixels for 10-m bands; 2) 60 x 60 pixels
for 20-m bands; and 3) 20 x 20 pixels for 60-m bands. For
the experiments, we applied bicubic interpolation to 20-m
bands and excluded 60-m bands. Each image is annotated
with multiple classes provided by the CORINE Land Cover
Map (CLC) database of the year 2018. For the experiments,
we utilized the 19 class nomenclature presented in [58]. For
the tasks that require the availability of land-cover maps,
we extracted the CLC land cover map of each image.

To perform experiments, we divided the DLRSD and the
BigEarthNet-S2 archives into training, validation, and test sets
with the ratios of 70%, 10%, and 20% and 52%, 24%, and
24%, respectively. To apply CBIR, the training set of the
DLRSD archive and the validation set of the BigEarthNet-S2
archive were used for selecting query images, while images
were retrieved from the test set for both archives.

B. Experimental Setup

In the experiments, we utilized the DenseNet-121 CNN
architecture [60] as the MTL backbone shared by all the
tasks. To perform the experiments, we utilized the different
combinations of four tasks: 1) supervised scene classification;
2) supervised similarity learning; 3) supervised multilabel
co-occurrence prediction; and 4) unsupervised similarity learn-
ing. For each task, we added a task-specific head to the CNN
backbone. Each task head includes a fully connected (FC)
layer that: 1) takes the global image representation from
the CNN backbone and 2) produces a 64-D task-specific
embedding. Supervised scene classification task (which is
denoted as 77) aims to automatically assign multilabels to
image scenes. To this end, the task head of 7} also includes a
classification layer that produces multilabel class probabilities.
For this task, the task-specific loss function Ly, is selected as
a cross-entropy loss function. For the details of this task, the
reader is referred to [61]. The supervised similarity learning
task (which is denoted as 7) aims to automatically identify
image similarities. To this end, we selected a triplet loss
function as the task-specific loss function Lr,. The triplet
loss function directly operates on the task-specific embeddings
and requires the availability of image triplets (each of which
includes anchor, positive, and negative images). For this task,
image triplets are selected by using the hard triplet sampling
technique based on the multilabel similarities. The reader is
referred to [62] and [63] for the details of the triplet loss
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function and the triplet sampling techniques. The supervised
multilabel co-occurrence prediction task (which is denoted as
T3) aims to predict co-occurrence relationships of multiple
classes present in an image. To this end, by following the
method presented in [33], the task head of 73 also includes
an FC layer that takes task-specific embeddings and produces
the prediction for graph-driven region-based image represen-
tations. For this task, the region representation learning loss
function [33] is selected as the task-specific loss function Ly, .
It minimizes the prediction error of the task-specific head with
comparison to the image graphs, which are obtained based
on the image land-cover maps. The unsupervised similarity
learning task (which is denoted as T,) aims at learning image
representations by maximizing the similarity between different
views of the same image without relying on any ground-
truth information. To this end, by following the strategy of
self-supervised contrastive learning presented in [64], we used
a set of data augmentation techniques to generate different
views of each training image. Then, the task-specific loss
function Ly, is selected as a contrastive loss function, which
operates on the task-specific embeddings of two different
augmented views of each image. It allows maximizing the
similarity between the augmented views of images with respect
to the rest of the images. The reader is referred to [64] for the
details of contrastive loss and the set of data augmentation
techniques, which is applied to generate different views of
images.

We trained the proposed PLASTA-MTL approach for 100
epochs. For training, we utilized the Adam variant of sto-
chastic gradient descent with the initial learning rate of 1073.
All the experiments were performed on four NVIDIA Tesla
V100 GPUs. After training is finished by employing the
abovementioned tasks in the context of MTL, we extracted
the features of query and archive images from the last layer
of the CNN backbone. To apply CBIR, we applied similar-
ity matching of the extracted image features based on the
y2-distance measure. CBIR results are provided in terms of
two evaluation metrics: 1) normalized discounted cumulative
gains (NDCGs) and 2) mean average precision (mAP). For the
details of these metrics, the reader is referred to [65].

We carried out various experiments to: 1) perform a sensi-
tivity analysis of the proposed PLASTA-MTL approach and
2) compare our approach with state-of-the-art MTL methods in
the context of CBIR. For the sensitivity analysis, we assessed:
1) the effectiveness of the selection of plasticity and stability
preserving capabilities; 2) the effect of task sequence order on
the proposed sequential optimization algorithm; 3) computa-
tional complexity of the PLASTA-MTL approach; and 4) the
comparison of utilizing multiple tasks in our approach with
separately employing each task (that is based on STL).

We compared the proposed approach with: 1) conven-
tional MTL (equal weighting); 2) MTL using uncertainty
to weigh losses (uncertainty weighting) [43]; 3) projecting
conflicting gradients (PCGrads) [51]; 4) gradient normal-
ization for adaptive loss balancing in deep multi-task net-
works (GradNorm) [52]; and 5) dynamic weight average
(DWA) [53]. For all the methods, we used the same CNN
backbone and task-specific heads with our approach. For the
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first method, we applied joint optimization on the summation
of task-specific loss functions with equal weights. For the other
four methods, we used the same method-specific parameters
given in [43] and [51]-[53].

V. EXPERIMENTAL RESULTS

We performed different kinds of experiments in order to:
1) carry out sensitivity analysis and 2) compare the effective-
ness of the proposed PLASTA-MTL approach with the state-
of-the-art MTL methods in the framework of CBIR.

A. Sensitivity Analysis of the Proposed Approach

In this section, we performed the sensitivity analysis of the
proposed PLASTA-MTL approach in terms of: 1) the effec-
tiveness of the automatic selection of plasticity and stability
preserving capabilities; 2) the task sequence order utilized in
our approach; 3) the computational complexity; and 4) the
comparison with STL.

In the first set of trials, we analyzed the effectiveness
of automatically detecting the preservation of plasticity and
stability capabilities in the proposed PLASTA-MTL approach.
Table I shows the mAP scores for the DLRSD archive when
different combinations of the tasks {7y, T», T3, T4} are uti-
lized with the different combinations of plasticity and sta-
bility preserving capabilities in the PLASTA-MTL approach.
By assessing the table, one can observe that the selection
of which capabilities are preserved in our PLASTA-MTL
approach is one of the most important factors affecting the
overall CBIR performance. This issue becomes more evident
under two scenarios. First, if some of the considered tasks
are in competition during training, the preservation of both
capabilities at the same time leads to the ineffective char-
acterization of either stability or plasticity conditions. This
results in lower mAP scores compared to preserving only
one of the capabilities. As an example, when the consid-
ered tasks include 77 and 7,, employing only either PPL
or SPL leads to 1.7% and 1% higher mAP scores, respec-
tively, compared to utilizing both loss functions together in
the proposed PLASTA-MTL approach. This is due to the
fact that learning the task 77 (which is supervised scene
classification) enforces to maximize interclass distances in the
global image representation space, while learning the task 7,
(which is supervised similarity learning) enforces to minimize
intraclass distance. These learning characteristics can easily
result in the competition between the two tasks. However,
when the considered tasks include 7, and 73 (which are not
in competition during training), preserving each capability
further improves the CBIR performance. Second, when the
number of considered tasks decreases, the effect of selecting
one of the plasticity and stability preserving capabilities on
mAP scores increases. As an example, when the considered
tasks include only 7} and 7i, the difference of mAP scores
between preserving plasticity and stability capabilities is more
than 4%. However, when all the tasks are considered, including
Ti, T,, T5, and Ty, this difference is less than 1%. These
two scenarios show that the accurate selection of which
capabilities are preserved in our PLASTA-MTL approach
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TABLE I

MAP SCORES ASSOCIATED WITH THE DIFFERENT COMBINATIONS OF
TASKS WITH DIFFERENT CAPABILITIES OF THE PLASTA-MTL
APPROACH ARE UTILIZED (THE DLRSD ARCHIVE)

Tasks
Ty, T2 T3 Ty

PLASTA-MTL
Lppr Lspr

IVcLsprll  mAP (%)
95.0
95.7
94.0
96.0
97.6
96.7
95.2
91.0
96.0
94.8
95.2
95.5
86.1
84.5
85.4
95.4
94.8
93.8
96.5
96.3
97.2
96.7
94.7
94.8
97.0
94.5
96.8
95.5
934
95.2
97.5
97.0
97.6

o/ X X 0.33

0.43

0.13

0.18

0.09

0.09

0.12

0.04

0.05

0.06

0.13
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is crucial for accurate CBIR performance. The proposed
sequential optimization strategy automatically detects which
capabilities are preserved by controlling the importance level
of stability condition, which is defined based on the L2?-norm
of the gradient of the SPL function. Table I also includes the
average gradient norm values that are obtained in the first
epoch of the training. By the analyzing the table, one can
observe that, when the norm value is significantly high (e.g.,
T = {T1, T} and T = {T1, T3}), preserving only stability
capability in the PLASTA-MTL approach provides the highest
mAP scores. When the norm value is significantly low (e.g.,
T = (T, T, Ty} and T = {T), Ts, Ty}), preserving only
plasticity capability in the PLASTA-MTL approach provides
the highest mAP scores. This shows the effectiveness of
the automatic detection strategy of the proposed sequential
optimization algorithm, which is utilized to identify which
capabilities are preserved in our PLASTA-MTL approach.
The average gradient norm values given in Table I show that
two importance levels of stability condition can be defined as
o =0.3 and S = 0.1. Accordingly, we used these parameters
in the proposed sequential optimization algorithm for the rest
of the experiments.
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TABLE II

MAP SCORES WHEN THE TASKS T, T>, AND T3 ARE UTILIZED IN
DIFFERENT ORDERS FOR THE PLASTA-MTL APPROACH
(THE DLRSD ARCHIVE)

Task Order mAP (%)
T1—> T2—> T3 97.2
T14> T34) TQ 97.0
T24> T14) T3 97.1
To— T3— T4 96.8
Ts— Th— T2 97.7
Ts— To— T1 97.5

69§
h—=T—T;
11\ =T3-T
=T —Ts
T—T3—Th
T3—=Th—T
T3—=T—T,

» @04 %00

60 T T y T 3
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Number of retrieved images
Fig. 2. NDCGs versus the number of retrieved images obtained for the

DLRSD archive when the tasks T, T,, and T3 are utilized in different orders
for the PLASTA-MTL approach.

In the second set of trials, we analyzed the effect of the
task sequence order utilized in the proposed PLASTA-MTL
approach. Table II shows the mAP scores for the DLRSD
archive when the tasks {7}, T>, T3} are utilized with all the
possible orders in the task sequence of our approach. By ana-
lyzing the table, one can see that, when the order of the
considered tasks is changed, the proposed PLASTA-MTL
approach provides different mAP scores. This is due to the fact
that, since all the tasks are learned sequentially in the proposed
optimization algorithm, different task sequence orders lead
to changes in the whole learning procedure. However, from
the table, one can also observe that the differences between
the mAP scores of different task orders are not significantly
high. The difference between the highest mAP score (which is
obtained with the task order of 75— T;— T5) and the lowest
mAP score (which is obtained with the task order of 7,—
T5— Tp) is less than 1%. Fig. 2 shows the NDCG scores
of the same tasks, and their orders for the DLRSD archive
under different numbers of retrieved images. From the figure,
one can see that increasing the number of retrieved images
does not change our conclusion. These results show that
utilizing different task orders does not significantly affect the
CBIR performance of the proposed PLASTA-MTL approach.
For the rest of the experiments, we employed the numerical
order of tasks (i.e., Ty— T,— T3— Tj) for the proposed
PLASTA-MTL approach.

In the third set of trials, we assessed the computational
complexity of the proposed PLASTA-MTL approach. To this
end, in Table III, we compared our approach with the equal
weighting method in terms of the training time required
per epoch when the different combinations of the tasks
{T\, T», T5, T4} are utilized on the DLRSD archive. It is worth
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TABLE III

TRAINING TIMES PER EPOCH ON THE DLRSD ARCHIVE WHEN THE
DIFFERENT COMBINATIONS OF TASKS ARE UTILIZED FOR THE
PROPOSED PLASTA-MTL APPROACH
AND EQUAL WEIGHTING

Tasks Training Time
T, Tz T3 1Ty Method per Epoch (sec)
/S 7 X x __Equal Weighting 9.3
PLASTA-MTL 18.0
v X v/ x __Equal Weighting 18.3
PLASTA-MTL 245
v/ X X ~ _ Equal Weighting 57.6
PLASTA-MTL 62.9
X /S v x _ Equal Weighting 17.7
PLASTA-MTL 24.6
X « x v _Equal Weighting 60.2
PLASTA-MTL 64.9
X X v v~  Equal Weighting 66.4
PLASTA-MTL 70.9
S /7 x __Equal Weighting 15.7
PLASTA-MTL 32.6
/S 7 X ~  Equal Weighting 57.9
PLASTA-MTL 73.6
v/ X v/ v _ Equal Weighting 69.1
PLASTA-MTL 71.7
X s/ v v  Equal Weighting 67.8
PLASTA-MTL 77.4
/s v « v~  Equal Weighting 64.5
PLASTA-MTL 88.4

noting that the equal weighting method jointly optimizes all
the loss functions without the need for any other steps that
may increase the computational complexity. Accordingly, this
method can be regarded as one of the MTL methods, which
are associated with the lowest computational complexity.
By assessing the table, one can observe that our approach
requires higher training time per epoch compared to the equal
weighting method for each task combination. This is due to the
fact that the sequential optimization applied in the proposed
PLASTA-MTL approach requires a higher number of forward
and backward passes of the considered DNN compared to
the joint optimization algorithm. This increases the required
training time per epoch for our approach. This becomes more
evident if the same batches of training images are used for
all the tasks (e.g., 7 {T\, T>}). In this condition, the
equal weighting method requires one forward pass and one
backward pass for each batch, while our approach requires
at least two forward and backward passes depending on the
number of tasks. When some of the considered tasks require
different batches of training images that lead to more than
one forward pass, the computational complexity of the equal
weighting method increases. However, it does not affect the
computational complexity of our proposed approach. As an
example, when the tasks {7}, 7>} are utilized, the training time
per epoch of our approach is almost twice as large as that of
the equal weighting method. However, when the tasks {7, 74}
are utilized, the task 7, requires to feed the augmented views
of images into the considered DNN that costs an additional
forward pass step. In this case, the required training time per
epoch of the proposed PLASTA-MTL approach is almost the
same as that of the equal weighting method. It is worth noting
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Fig. 3. mAP versus the minimum number of training epochs for the
DLRSD archive when the tasks: (a) 7> and T3; (b) Ty, T, and T3; and
(¢) T1, T», T3, and Ty are utilized for the PLASTA-MTL approach and the
equal weighting method.

that the overall computational complexity is also affected by
the total number of epochs in addition to the training time
per epoch. Accordingly, Fig. 3 shows the minimum numbers
of training epochs at which the proposed PLASTA-MTL
approach and the equal weighting method reach a range of
mAP scores when the different number of tasks are considered.
By analyzing the figure, one can see that our approach is
able to achieve the same mAP scores with less number of
training epochs compared to the equal weighting method.
As an example, when the tasks {7}, 7>, T3} are considered,
our approach achieves a 93% mAP score with 25 fewer
training epochs compared to the equal weighting method. This
leads to less total training time for our approach although the
corresponding training time per epoch is higher than the equal
weighting method. This issue becomes more evident when
the number of considered tasks increases. As an example,
when all the tasks are utilized, the total training time of
our approach to reach 93% mAP score is significantly less
than that of the equal weighing method. These results show
that the learning efficiency of the proposed PLASTA-MTL
approach is significantly higher than the equal weighting
method. This leads to the reduction of total training time
(which is required to reach a high CBIR performance) for
the proposed PLASTA-MTL approach.

In the fourth set of trials, we analyzed the effectiveness
of the proposed PLASTA-MTL approach compared to sepa-
rately employing each task of the considered task set (that is
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TABLE IV

MAP SCORES WHEN THE DIFFERENT COMBINATIONS OF TASKS ARE
UTILIZED IN THE PLASTA-MTL APPROACH COMPARED TO SINGLE
TASK LEARNING (THE DLRSD ARCHIVE)

Tasks

Method mAP (%)

94.9
81.8
95.4
83.2
95.7
97.6
96.0
95.5
86.1
95.4
97.2
96.7
97.0
95.5
97.6

STL
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based on STL). For the DLRSD archive, Table IV shows the
mAP scores of the PLASTA-MTL approach for the different
combinations of the tasks {7}, T», T3, T4} and the STL for
each task. By analyzing the table, one can observe that, for
each combination, our approach provides higher mAP scores
compared to separately learning each task. As an example,
when the tasks {7, T», T4} are considered, the proposed
PLASTA-MTL approach provides almost 2%, 15%, and 14%
higher mAP scores compared to applying separate learning
procedures for Ti, T», and T4, respectively. This shows that our
approach effectively combines multiple tasks together, which
leads to more accurate image representation learning compared
to utilizing a single task.

B. Comparison Among the Sate-of-the-Art MTL Methods

In the fifth set of trials, we analyzed the effective-
ness of the proposed PLASTA-MTL approach compared to
the state-of-the-art MTL methods in the context of CBIR
under various combinations of the considered four tasks.
These methods are equal weighting, uncertainty weight-
ing [43], PCGrad [51], GradNorm [52], and DWA [53].
Tables V and VI show the corresponding mAP scores on
the DLRSD and the BigEarthNet-S2 archives, respectively.
By assessing the tables, one can observe that the proposed
PLASTA-MTL approach leads to the highest mAP scores
on each task combination for both archives compared to the
state-of-the-art MTL methods. As an example, the proposed
PLASTA-MTL approach outperforms the PCGrad by more
than 4% for the DLRSD archive and more than 8% for the
BigEarthNet-S2 archive when the tasks {7, T3, T} are uti-
lized. When all the tasks {7}, T», T3, T,} are used, our approach
provides almost 3% higher mAP scores for both archives
compared to the GradNorm. We observed similar behaviors
while comparing the methods of equal weighting, uncertainty
weighting, and DWA with our approach. This shows that
the proposed PLASTA-MTL approach provides more accurate
RS image representations that lead to more effective CBIR
compared to other methods. This is due to the plasticity and
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Fig. 4. NDCGs versus the number of retrieved images obtained for the DLRSD archive when the tasks: (a) 77 and Ty; (b) 7> and T3;

(¢) T, Tp, and Ty; (d) T», T3, and Ty; and (e) Ty, T, T3, and Ty are used in the context of MTL.

TABLE V

MAP SCORES ASSOCIATED WITH THE DIFFERENT COMBINATIONS OF
TASKS (THE DLRSD ARCHIVE)

TABLE VI

MAP SCORES ASSOCIATED WITH THE DIFFERENT COMBINATIONS OF
TASKS (THE BIGEARTHNET-S2 ARCHIVE)

Tasks Tasks

T Tz T3 Tax Method mAP (%) T Tz T3 Tx Method mAP (%)
Equal Weighting 90.1 Equal Weighting 95.9
Uncertainty Weighting [43] 94.4 Uncertainty Weighting [43] 83.8

v/ X X v PCGrad [51] 92.7 X v/ v/ x _PCGrad [51] 96.3
GradNorm [52] 94.3 GradNorm [52] 90.4
DWA [53] 93.0 DWA [53] 94.7
PLASTA-MTL 96.0 PLASTA-MTL 97.2
Equal Weighting 93.2 Equal Weighting 87.7
Uncertainty Weighting [43] 94.0 Uncertainty Weighting [43] 92.0

X v/ / x _ PCGrad [51] 92.6 X v/ X v PCGrad [51] 92.1
GradNorm [52] 92.9 GradNorm [52] 84.0
DWA [53] 92.5 DWA [53] 88.2
PLASTA-MTL 95.5 PLASTA-MTL 93.4
Equal Weighting 91.6 Equal Weighting 95.7
Uncertainty Weighting [43] 95.4 Uncertainty Weighting [43] 96.3

v/ v/ X v PCGrad [51] 92.9 v/ X v/ v PCGrad [51] 87.0
GradNorm [52] 93.8 GradNorm [52] 92.6
DWA [53] 914 DWA [53] 94.7
PLASTA-MTL 96.7 PLASTA-MTL 97.4
Equal Weighting 92.0 Equal Weighting 80.4
Uncertainty Weighting [43] 95.0 Uncertainty Weighting [43] 90.7

' v/ / v PCGrad [51] 91.2 X v/ / v PCGrad [51] 85.5
GradNorm [52] 914 GradNorm [52] 89.4
DWA [53] 90.9 DWA [53] 90.7
PLASTA-MTL 95.5 PLASTA-MTL 93.8
Equal Weighting 92.6 Equal Weighting 94.8
Uncertainty Weighting [43] 95.8 Uncertainty Weighting [43] 97.3

v/ v/ v/ v PCGrad [51] 94.9 v/ v/ v/ v PCGrad [51] 93.9
GradNorm [52] 95.0 GradNorm [52] 95.0
DWA [53] 93.7 DWA [53] 95.2
PLASTA-MTL 97.6 PLASTA-MTL 97.7

stability preserving capabilities of our approach that over-
comes the well-known problems of MTL. Figs. 4 and 5 show
the NDCG scores of the considered state-of-the-art methods
and our approach under different combinations of the tasks
{T, T», T3, T} and different numbers of retrieved images for

the DLRSD and the BigEarthNet-S2 archives, respectively.
From the figures, one can see that, when the number of
retrieved images are increased (from 1 to 50 for DLRSD and 1
to 100 for BigEarthNet-S2), the proposed PLASTA-MTL
approach provides the highest NDCG scores for almost all
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Fig. 5.

Fig. 6.

task combinations at each number of retrieved images on both
archives. For the DLRSD archive, Fig. 6 shows an example
of a query image and the retrieved images by these methods

1 10 20 30 40 50 60 70 80 90 100
Number of retrieved images

(a)

1 10 20 30 40 50 60 70 80 90 100
Number of retrieved images

(d)
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NDCGs versus the number of retrieved images obtained for the BigEarthNet-S2 archive when the tasks: (a) 7> and 73; (b) 7> and Ty; (c) Ti, T3,
and Ty; (d) Ts, T3, and Ty; and (e) Ty, Tp, T3, and Ty are used in the context of MTL.

5th

(a) Query image. Images retrieved by using (b) equal weighting, (c) uncertainty weighting, (d) PCGrad, (e) GradNorm, (f) DWA, and (g) proposed
PLASTA-MTL approach when the tasks: 77, T, 73, and 7 are utilized for the DLRSD archive.

and our approach when all the tasks are utilized and query
image contains the classes of buildings, cars, grass, pavement,
and frees. The retrieval orders of images are given above



5620116

the figure. By assessing the figure, one can observe that the
proposed PLASTA-MTL approach leads to retrieval of similar
images at all retrieval orders [see Fig. 6(g)]. However, by using
state-of-the-art MTL methods, retrieved images contain classes
that are not present in the query image. As an example, the
equal weighting and the DWA methods lead to retrieval of
the image, which includes only field class, at the fifth and
fourth retrieval orders, respectively [see Fig. 6(b) and (d)].
We observed similar behaviors of these methods for the
BigEarthNet-S2 archive. We would like to point out that these
methods employ different gradient adjustment strategies for
overcoming the well-known problems of MTL. Accordingly,
their success has been proven for many MTL problems in the
computer vision domain. However, since they do not consider
the stability-plasticity constraint of MTL, and they are still
based on the joint optimization algorithm, they are limited
to solve all possible problems of MTL under various task
combinations for RS images. This leads to less accurate image
representations learned via these methods compared to the
proposed PLASTA-MTL approach. Accordingly, the image
representations learned via our approach lead to more effective
CBIR results.

VI. CONCLUSION

In this article, we have proposed a novel PLASTA-MTL
approach for CBIR applications. This approach is charac-
terized by novel: 1) PPL function; 2) SPL function; and
3) sequential optimization algorithm. The PPL function allows
our approach to minimize the differences of gradient magni-
tudes for the global representation space and each task-specific
embedding space of the considered DNN. The use of the
SPL function in the proposed PLASTA-MTL approach leads
to the minimization of the angular distances between task
gradients over global image representation space. The pro-
posed optimization algorithm sequentially optimizes: 1) each
task-specific objective with the corresponding PPL function
and 2) the SPL function for all the considered tasks. Experi-
mental results conducted on two benchmark archives show the
effectiveness of the proposed PLASTA-MTL approach over
the state-of-the-art MTL methods in the context of CBIR. The
main reasons for the success of our approach are summarized
as follows.

1) Due to the proposed PPL function, the PLASTA-MTL
approach enforces the global image representation space
to be sensitive to new information learned with each task
that leads to the preservation of plasticity condition for
the considered DNN.

Due to the proposed SPL function, the PLASTA-MTL
approach protects the global image representation space
radically disrupted by a new task that leads to the preser-
vation of stability conditions for the considered DNN.
Due to the proposed sequential optimization algorithm,
the PLASTA-MTL approach accurately characterizes: 1)
the plasticity condition for each task and 2) the stability
condition in between consecutive tasks.

Due to the effective combination of multiple tasks
independently of the number and type of tasks while

2)

3)

4)
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considering the stability-plasticity constraint of MTL
without the need for selection of loss weights, the
PLASTA-MTL approach prevents: 1) conflicts between
tasks; 2) the dominance of one of the tasks; and 3) under-
performance of tasks compared to STL. This leads to
more accurate image representation learning compared
to utilizing a single task and the conventional deep MTL
procedures.

It is worth noting that, in this article, the PLASTA-MTL
approach is considered especially for CBIR applications.
Moreover, the global image representation space learned via
our approach can be also used for other applications since it
applies image representation learning based on the information
learned via multiple tasks to represent the complex semantic
content of RS images. This can be achieved by applying
fine-tuning to the pretrained backbone of the PLASTA-MTL
approach for downstream applications in RS. We would like
to also point out that the set of all tasks is assumed to
be known during the training of our approach. However,
the inclusion of new tasks to the set of considered tasks
after training for the PLASTA-MTL approach can further
improve the characterization of RS image content. Accord-
ingly, as future development of this work, we plan to study
continual learning to include new tasks to the PLASTA-MTL
approach after completing the whole learning procedure while
preserving its plasticity and stability capabilities also for these
tasks.
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