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Stability of the Dual-Frequency Radar Equations
and a New Method Applied to the GPM’s

Dual-Frequency Precipitation Radar (DPR) Data
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Abstract— A new algorithm is proposed, which estimates
two parameters of the particle size distribution (PSD) at each
range bin from the global precipitation measurement’s (GPM’s)
dual-frequency precipitation radar (DPR) data. The equation
that expresses the relationship of the PSD parameters between
adjacent range bins is derived. By including the attenuation effect
within the bin in the discretized equation, the new algorithm
alleviates the double-solution problem when attenuation within
the bin is sufficiently large. The stability of the solutions to
the equation depends on the value of the mean diameter Dm

and its gradient with respect to the range in the case of liquid
precipitation. There is a critical diameter above which the back-
ward processing of the equation provides a stable or moderately
diverging solution, unlike the forward processing that often gives
unstable solutions. To provide a set of initial conditions without
using the surface reference technique (SRT) in the backward
processing, an initialization method using the Hitschfeld–Bordan
(HB) attenuation correction method is proposed and tested. The
proposed algorithm may provide a tool for investigating the
assumptions used in various algorithms.

Index Terms— Dual-frequency precipitation radar (DPR),
global precipitation measurement (GPM), particle size distrib-
ution (PSD), rainfall rate.

I. INTRODUCTION

THE dual-frequency precipitation radar (DPR) onboard
the core satellite of the global precipitation measurement

(GPM) mission consists of a Ku-band radar (KuPR) and a Ka-
band radar (KuPR) [1]. It was designed to measure backscatter
by precipitation in the same scattering volumes at two different
frequencies so that it would be able to provide two independent
pieces of information about the scattering characteristics of the
particles at each scattering volume. The effective radar reflec-
tivities at the Ku- and Ka-bands differ slightly due to the fact
that the non-Rayleigh scattering effect, or size effect, is more
pronounced at the Ka-band than at the Ku-band. More specif-
ically, if we denote the radar reflectivity factor in dB units at
the Ku-band by dBZe1 and that at the Ka-band by dBZe2,
this difference appears in the dual-frequency ratio (DFR)
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that is defined as

DFR
def= dBZe1 − dBZe2. (1)

Hereafter, subscripts 1 and 2 are used to indicate Ku- and
Ka-band parameters, respectively. (Nevertheless, dBZe for
Ku- and Ka-bands are also written as dBZe(Ku) and
dBZe(Ka), respectively, in later sections to increase readabil-
ity.) If we characterize the distribution of precipitation particle
size by two parameters, one with the mean diameter Dm and
the other with a quantity N0 that is proportional to the number
density Nt , all radar parameters can be expressed as functions
of Dm and N0 provided that other physical and scattering
properties of particles are known. Under such conditions, since
Ze1 and Ze2 are linearly proportional to N0, DFR becomes a
function of Dm alone. Therefore, once DFR is obtained, Dm

is expected to be estimated by using the inverse function of
DFR(Dm).

This logic is the basic idea of estimating Dm by a matched-
beam dual-frequency radar. Its feasibility for snow parameter
estimation was shown by airborne radar data [2]. Neverthe-
less, after the launch of the GPM satellite, it turned out
that estimating Dm independently at each range bin was a
formidable task. The reasons for the difficulty are multifold.
The major difficulty lies in the accurate attenuation correction
without the accumulation of biases at either frequency. In order
to calculate DFR, we need to estimate Ze1 and Ze2 from
measured radar reflectivity factors Zm1 and Zm2 by correcting
the attenuations. To correct for the attenuation, we need to
know the specific attenuations k1 and k2 at each range, but,
to know them, we need Dm and N0. Although it is theoretically
possible to estimate the attenuation from the nearest range
bin to the next successively by solving the equations that
relate Zm(r), Ze(r), and k(r) to Dm(r) and N0(r), this self-
referencing nature of equations tends to accumulate errors in
one direction and often gives unreasonable estimates of Dm

and N0. There are several error sources that cannot be totally
eliminated. They include noise and fluctuation in measured
signals, calibration errors, differences between the assumed
particle size distribution (PSD) models and the actual PSD,
and other assumptions, such as environmental conditions [3].

Attenuation correction by using the path-integrated atten-
uation (PIA) estimated by the surface reference technique
(SRT) [4] is possible and enables an estimation of the DFR at
each range bin starting from the last gate of the column and
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progressing backward. However, because of other concerns
and the difficulty of estimating Dm reliably in many cases, the
initial operational algorithms (V04, V05, and V06) use a con-
servative approach in which Dm is not estimated independently
at each range [5]. The operational algorithms are those used
to produce the operational GPM products disseminated by
National Aeronautics and Space Administration (NASA) and
Japan Aerospace Exploration Agency (JAXA). They are called
standard algorithms, and their products are called standard
products in this article.

This article examines the general properties of PSD para-
meter estimation and proposes a new algorithm that estimates
Dm and N0 at each range. Section II reviews a differential
form of the PSD estimation equation and its properties.
Section III introduces discretized equations that include the
effect of attenuation within the range bin in which the PSD
parameters are estimated. By including the attenuation effect
within the bin, the double-solution problem is partly mitigated.
Section IV describes the general characteristics of the algo-
rithm that includes how the dual-solution problem is mitigated.
Section V shows a few examples of PSD parameters estimated
from DPR data with this algorithm. Section VI discusses the
issues of the PSD estimation. Section VII summarizes this
article.

II. DIFFERENTIAL EQUATIONS FOR

TWO PSD PARAMETERS

A. Formulation of the Problem

We assume that rain is uniform in the lateral directions
perpendicular to the range direction of radar so that the
measurement of rain echo can be treated as a 1-D problem.
Under this assumption, the expected value of the measured
radar reflectivity factor Zm , in dB units (dBZm), at range r
can be expressed in terms of the effective radar reflectivity
factor Ze, in dB units (dBZe), and an attenuation factor given
as the integral of the specific attenuation k

dBZmλ(r) = dBZeλ(r) − 2
� r

r0

kλ(s) ds, (λ = 1, 2) (2)

where k is expressed in dB per unit length and r0 is the range at
which the radar echo starts. Since we assume that we measure
the same rain profiles at two frequencies, any parameters at
these frequencies are distinguished by subscript λ, where λ =
1, 2. Both Ze and k are functions of the PSD N(D). If N(D)
can be well approximated by a model function Nm(D) with
two parameters θ1 and θ2, both Ze and k become functions of
these two parameters. They can be expressed mathematically
as follows:

Zeλ(θ1, θ2) = cZλ

�
σbλ(D)Nm (D; θ1, θ2) d D (3)

and

kλ(θ1, θ2) = ck

�
σtλ(D)Nm(D; θ1, θ2) d D. (4)

Here, σbλ is the backscattering cross section, and σtλ is the
extinction cross section. The coefficient cZλ is defined by
cZλ = λ4/(π5|Kλ|2) with Kλ = (m2

λ − 1)/(m2
λ + 2) where mλ

is the complex refractive index of the particle for electromag-
netic waves with wavelength λ. ck is a proportional constant
that changes with the unit of kλ. Since we use the unit of kλ as
dB per unit length, as in (2), ck = 1/q , where q = 0.1 ln(10)
is the conversion factor from dB to neper.

Taking the logarithm of (2) and differentiating it with
respect to r , we obtain

ddBZmλ

dr
= −2kλ + ddBZeλ

dr
. (5)

Or expressing it in terms of θ1 and θ2, we obtain

ddBZmλ

dr
= −2kλ(θ1, θ2) + ∂dBZeλ

∂θ1

dθ1

dr
+ ∂dBZeλ

∂θ2

dθ2

dr
. (6)

If we have radar reflectivity measurements at two frequency
channels λ = 1, 2, then we have two equations of the form (6),
and we get a simultaneous pair of differential equations for
θ1 and θ2⎛

⎜⎝
dθ1(r)

dr
dθ2(r)

dr

⎞
⎟⎠ = A−1

⎛
⎜⎝

ddBZm1(r)

dr
+ 2k1(θ1(r), θ2(r))

ddBZm2(r)

dr
+ 2k2(θ1(r), θ2(r))

⎞
⎟⎠ (7)

where

A =

⎛
⎜⎜⎝

∂dBZe1

∂θ1

∂dBZe1

∂θ2

∂dBZe2

∂θ1

∂dBZe2

∂θ2

⎞
⎟⎟⎠. (8)

The inverse of A is given by

A−1 = 1

|A|

⎛
⎜⎜⎝

∂dBZe2

∂θ2
−∂dBZe1

∂θ2

−∂dBZe2

∂θ1

∂dBZe1

∂θ1

⎞
⎟⎟⎠ (9)

where |A| is the determinant of A.
The PSD, N(D), can be expressed as the product of the

scale factor Nt and the normalized density function pn(D)

N(D) = Nt pn(D) where
�

D
pn(D) d D = 1. (10)

We define Mi as the i th moment of N(D)

Mi =
�

Di N(D) d D. (11)

To characterize the PSD by two parameters, they must be a
combination of N0 that is proportional to the total number
density and a parameter that characterizes the distribution of
pn(D). In this article, we choose

θ1 = 10 log10(N0), and (12)

θ2 = 10 log10(Dm) (13)

where both N0 and Dm are defined individually by a combi-
nation of the third and fourth moments of N(D) as

N0
def= M5

3

M4
4

= Nt

	

D3 pn(D) d D

�5

	

D4 pn(D) d D

�4 (14)

Dm
def= M4

M3
=



D4 pn(D) d D

D3 pn(D) d D

(15)
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Dm is the volume weighted mean diameter, and N0 is propor-
tional to Nt . The intercept parameter Nw is related to N0 by

Nw = 128

3
N0. (16)

Note that, in the case of ice particles, Dm derived from the
equations in this article refers to the unmelted particle diameter
whereas, in the operational data, Dm refers to the melted
equivalent.

It is known that the natural variations of Ze and k can
generally be approximated well by functions of Dm for each
wavelength once they are normalized by N0 [6], [7]. In other
words

dBZeλ = θ1 + fλ(θ2) (17)

and

dBkλ = θ1 + gλ(θ2). (18)

Then, the matrix A and its inverse become

A =
�

1 f �
1

1 f �
2


(19)

A−1 = 1

f �
2 − f �

1

�
f �
2 − f �

1
−1 1


(20)

where f �
λ = d fλ/dθ2.

Once a model PSD function is selected, we can calculate
fλ(θ2), gλ(θ2), and their derivatives. Since dBZmλ(r) are
measured at discrete ranges r = ri (i = 1, . . . , n), they
can be used to solve the pair of differential equations (7)
to obtain PSD parameters θ1(r) and θ2(r) numerically. Once
these parameters are estimated, we can calculate the rainfall
rate from them. This is the basic idea of retrieving two PSD
parameters and estimating accurate rainfall rates from matched
dual-wavelength radar data.

Unfortunately, however, there are a few problems associated
with (7). They include a possible double-solution problem,
instability of the solution, and no solution cases depending on
the given data and the assumed PSD model.

It is worth noting here that (7) contains the measured data
dBZm,λ by their derivatives only. As a result, constant biases
in dBZm,λ are irrelevant as long as the initial conditions are
properly given. In other words, calibration of echo power
is important only in the process of determining the initial
conditions.

B. Stability of the Solution

The solutions to the differential equation (7) are deter-
mined solely by the initial conditions. This fact indicates the
importance of the selection of the initial conditions. If the
initial conditions deviate from the true conditions, the obtained
solutions may differ from the actual profiles of θ1 and θ2.
Whether small deviations of the initial conditions from the
true values increase with range or decrease to zero can be
analyzed by looking at the stability of the system of equations
for the difference of two sets of solutions to (7), which results
from two initial conditions that differ by a small amount.
More specifically, let the solution obtained from the initial

condition (θ10, θ20) be (θ1(r), θ2(r)) and a nearby solution
obtained from the initial condition (θ10 + �θ10, θ20 + �θ20)
be (θ1(r) + �θ1(r), θ2(r) + �θ2(r)).

For small (�θ10,�θ20), the equation for (�θ1(r),�θ2(r))
can be obtained by taking the first-order terms of the Taylor
expansion of (7) and be expressed in the matrix form as
follows:

d

dr

�
�θ1

�θ2


= B

�
�θ1

�θ2


=

�
b11 b12

b21 b22

�
�θ1

�θ2


. (21)

After some tedious calculations, the elements of B turn out to
be

b11 = 2q
�

f �
1k2 − f �

2k1
�

f �
1 − f �

2
(22)

b12 = 2q
�

f �
1g�

2k2 − f �
2g�

1k1
�

f �
1 − f �

2
− f �

1 f ��
2 − f �

2 f ��
1

f �
1 − f �

2

dθ2

dr
(23)

b21 = 2q(k1 − k2)

f �
1 − f �

2
(24)

b22 = 2q
�
g�

1k1 − g�
2k2

�
f �
1 − f �

2
− f ��

1 − f ��
2

f �
1 − f �

2

dθ2

dr
. (25)

A prime indicates differentiation with respect to θ2.
The stability of (21) is determined by the trace and the

determinant of the coefficient matrix B [8]. It is known that
the stationary point, which is �θ1(r) = 0 and �θ2(r) = 0 in
the current case, is a stable and convergent point (sink) if
det B > 0 and Tr B < 0. If det B > 0 and Tr B > 0, it is
an unstable and divergent point (source). If det B < 0, it is a
saddle point and unstable.

In a case of uniform rain in which θ1 and θ2 do not depend
on range r so that dθ2/dr = 0, the trace and determinant of
B are

Tr B = 2q

f �
1 − f �

2

��
f �
1 − g�

2

�
k2 − �

f �
2 − g�

1

�
k1

�
(26)

det B = 4q2k1k2
�
g�

1 − g�
2

�
f �
1 − f �

2
. (27)

We define the dual-frequency ratio of specific attenuation,
DFk, by

DFk
def= k1

k2
= exp(qg1(θ2))

exp(qg2(θ2))
. (28)

DFk is a function of θ2 alone similar to DFR. Note that
DFR� = f �

1 − f �
2 and DFk� = q(k1/k2)(g�

1 − g�
2). Since

( f �
1 −g�

2)k2−( f �
2 −g�

1)k1 > 0, the sign of Tr B depends only on
the derivative of DFR with respect to θ2. The sign of det B is
determined by (g�

1−g�
2)/( f �

1 − f �
2). DFR� changes its sign from

negative to positive at θ2 = θ2c where θ2c corresponds to the
critical diameter Dmc at which DFR takes its minimum value.
Similarly, g�

1−g�
2 changes its sign at the diameter Dmk at which

DFk takes its minimum value. As a result, when Dm increases
from 0, the sign of detB changes from positive to negative at
Dmk and then to positive again at Dmc if Dmk < Dmc.

Fig. 1 shows how DFR and DFk as functions of Dm change
with the temperature and the shape factor μ of the gamma
PSD for liquid water particles. Dmc at which DFR takes its
minimum value changes with μ. Different temperatures do not
change Dmc much but change the depth of the DFR curve.
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Fig. 1. Dependence of DFR and DFk on temperature and shape factor μ of spherical liquid water particles that follow the gamma PSD. (a) DFR, T = 10 ◦C.
(b) DFR, μ = 3. (c) DFK, T = 10 ◦C. (d) DFK, μ = 3.

On the other hand, DFk is relatively insensitive to μ, but the
depth and location of the minimum depend on the temperature.
One other quantity of interest is Dms , which is the value of
Dm above which the inverse function of DFR(Dm) is single-
valued. Fig. 2 shows how Dmc, Dmk , and Dms change with μ
for different temperatures.

In the uniform rain case, if we solve (7) backward, the sign
of Tr B changes, but the sign of det B remains the same. From
these observations, it can be said that the forward solution is
stable only in the domain Dm < min(Dmk, Dmc) and unstable
in the domain Dm > min(Dmk, Dmc), whereas the backward
solution is stable in the domain Dm > max(Dmk, Dmc)
but unstable for Dm < max(Dmk, Dmc). In the interval
[min(Dmk, Dmc), max(Dmk, Dmc)], neither solution is stable
(see Fig. 3). It is worthwhile to note that changing the
parameters θ1 and θ2 to any other related pair of parame-
ters does not change the stability because the linear trans-
formation of infinitesimal parameters does not change the
trace and determinant of the coefficient matrix after the
transformation.

The mathematical theory of stability can be used to describe
the behavior of solution for r → ∞. For the radar problem,
however, the range of r is finite. As a result, even if the
solution were mathematically convergent, the actual solution
obtained with arbitrary initial conditions would not necessarily
converge over the finite range. This fact also implies that the
solutions do not necessarily diverge from the true solution
very rapidly in the cases in which the true solution is not
a convergent point. The rate of convergence or divergence
is rather complicated; examples of this can be found in
Section IV.

The behavior of solutions near the stationary point can be
analyzed by the eigenvalues and the corresponding eigenvec-
tors. With a gamma PSD model, the two eigenvalues have a
very large ratio of about 100 or more at all realistic values
of Dm and N0. This fact implies that the trajectory of the
solution to a stationary point is actually nearly parallel to the
eigenvector that corresponds to the larger eigenvalue and does
not converge to the stationary point in practice. The trajectories
of solutions are effectively the same as in the case with the
determinant 0 so that the solution approaches a point on the
line of stable fixed points of which direction is determined
by the eigenvector for the smaller eigenvalue. Since the angle
between these two eigenvectors is rather small, if the equation

is solved from the initial values that deviate from the stationary
solutions, because of the finite range, the solutions need not
end at a stationary point, even in stable cases.

In the nonuniform rain case, because of the additional terms
in b12 and b22, the signs of both det B and Tr B depend not
only on θ2 but also on θ1 and dθ2/dr . The additional terms
are independent of θ1, but the first terms in (23) and (25)
are proportional to N0(= exp(qθ1)) and change significantly
with θ1. As a result, even a very small deviation of dθ2/dr
from zero drastically changes the signs of detB and Tr B
for a relatively small θ1. In fact, a gradient of dθ2/dr =
±0.1 dB/km is large enough to modify the original domain
of convergence in the uniform case. Fig. 3 shows the stable
domains for both forward processing and backward processing
when dθ2/dr = 0, +0.1, and −0.1 dB/km. It can be said that,
in forward processing, the stable domain shrinks when there
is a gradient in θ2 regardless of its sign. However, the stable
domain increases in the backward processing by adding a new
stable region in the negative θ2 domain when dθ2/dr < 0 for
relatively small θ2. It can be seen in (23) and (25) that,
if dθ2/dr and kλ increase by the same factor, the dependence
of the signs of det B and Tr B on θ2 remains the same. In other
words, if dθ2/dr increases by a factor of a and θ1 increases
by 10 log10(a), the whole patterns in Fig. 3 shift vertically
along the Nw axis by 10 log10(a), and their dependence on
θ2 does not change. For example, if dθ2/dr changes from
0.1 to 1 dB/km, the patterns in Fig. 3(b) and (c) shift upward
by 10 dB. Note that the stability does not depend on dθ1/dr ,
i.e., the gradient of N0 does not affect the stability.

Although the boundaries of the stable domains change by
the gradient of θ2, the direction of the eigenvector for the larger
eigenvalue remains effectively the same, and the absolute value
of the smaller eigenvalue is always very close to 0. Because
of these properties, the convergence and divergence patterns
of �θ1 and �θ2 in the nonuniform case are similar to those in
the uniform case. The eigenvalues of the matrix B determine
the convergent and divergent rates of �θ per unit distance.
Areas with a positive eigenvalue correspond to a diverging
area, i.e., the area in which the error in the initial conditions
increases with the processing distance. If we accept as a
practically stable domain a small eigenvalue area in which
the error increases only moderately, the practically stable
domain increases substantially. For example, the area with
the larger eigenvalue less than q corresponds to the domain
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Fig. 2. Temperature and μ dependence of Dm at which (a) DFR = 0, (b) DFR’ = 0, and (c) DFk’ = 0 for spherical liquid water particles whose PSD
follows the gamma distribution. They correspond to Dms , Dmc, and Dmk , respectively.

Fig. 3. Stability and error diagrams for μ = 3 and T = 10 ◦C for liquid water particles. The green and orange areas indicate stable regions for forward
processing and backward processing, respectively, in (a)–(c). Neither processing is stable in the white area. The red lines show the locations where the first
eigenvalue changes its sign, whereas the dashed lines show those of the second eigenvalue. The vertical red line near Dm = 0 dBmm corresponds to Dmc at
which DFR takes its minimum value. The stable regions correspond to the area in which the real parts of both eigenvalues are negative. (a) Uniform rain case,
i.e., dθ2/dr = 0.0 dB/km. (b) Dm increases with range at a rate of dθ2/dr = 0.1 dB/km. (c) Dm decreases with range at a rate of dθ2/dr = −0.1 dB/km.
(d) and (e) Regions with the error increasing rate less than 26% per km in the cases of (b) and (c), respectively. The purple areas indicate the areas in which
both forward processing and backward processing satisfy the error condition. Dotted lines show the equi-dBZe lines at the Ku-band.

in which the increase in the error rate is less than 1 dB/km
(≡26%/km). The area defined by this condition shares most
of the practically important part (dBZe(Ku) > 20 dBZ) of
the stable domain in the uniform rain case. Fig. 3(d) and
(e) show such examples. All these properties of the differential
equation (7) are applicable to the discrete equations that will
be discussed in the remaining sections.

It is easy to understand that (7) has a singular point at Dm =
Dmc because A−1 has f �

1− f �
2 in the denominator, which makes

A−1 diverge at Dm = Dmc. Since the right-hand side of (7) is
discontinuous at Dm = Dmc, there is no continuous solution
of θ2 that crosses the boundary at Dm = Dmc. The solution
diverges when it hits this boundary. To cross this boundary,
we need to use a discretized system of equations with a finite
range step. The double value problem and the no-solution issue
will be discussed for such discretized equations in the next
section.

III. DISCRETIZED EQUATION

A new discretized system of equations is proposed in this
section. Instead of discretizing the differential equation (7)
by approximating it by finite steps in r , we start with (2).
We derive a set of equations that relate the PSD parameters
in a range bin to those in the adjacent bin. Once such
equations are found and if a set of initial conditions are
given properly, we can calculate the PSD parameters at
all bins.

We assume that the measured data are available only at
discrete range bins: r = ri (i = 1, . . . , n, n ∈ N). r1 is
the range to the center of the first range bin in which the
precipitation echo starts. We introduce the following notation:

dBZmλ,i
def= dBZmλ(ri ) (29)

dBZeλ,i
def= dBZeλ(ri ) (30)

kλ,i
def= kλ(ri ) (31)

Aλ,i
def= 2

� ri

r0

kλ(s) ds (32)

DFRmi
def= dBZm1,i − dBZm2,i (33)

and

�r = ri+1 − ri , (i = 1, . . . , n − 1). (34)

Here, Aλ,i is the two-way attenuation to range ri at wave-
length λ. With these notations, (2) becomes

dBZmλ,i = dBZeλ,i − Aλ,i , (λ = 1, 2). (35)

We assume that we can approximate the attenuation between
two adjacent bins by the average of the specific attenuations
at the centers of these bins multiplied by twice the distance
between them, that is,

Aλ,i − Aλ,i−1 = 2
� ri

ri−1

kλ(s) ds (36)

≈ �r (kλ,i + kλ,i−1). (37)
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Then, by taking the difference of (35) at r = ri and r = ri−1,
and rearranging the terms, we obtain

dBZeλ,i − �r kλ,i = Cλ,i , (λ = 1, 2) (38)

where

Cλ,i = (dBZmλ,i − dBZmλ,i−1) + dBZeλ,i−1 + �r kλ,i−1.

(39)

A. Forward Equation

Taking the difference of the two equations for λ = 1 and
λ = 2 in (38), we obtain

DFR(θ2,i ) + �r k2,i (1 − DFk(θ2,i )) = C1,i − C2,i . (40)

Taking the ratio of k1,i to k2,i in (38), we obtain

dBZe1,i − C1,i = DFk(θ2,i) (dBZe2,i − C2,i ). (41)

The substitution of (17) into (41) gives

θ1,i + f1(θ2,i) − C1,i = DFk(θ2,i) (θ1,i + f2(θ2,i ) − C2,i ).

(42)

From (42), θ1,i can be expressed as a function of θ2,i as

θ1,i = − f1(θ2,i ) − f2(θ2,i ) DFk(θ2,i )

1 − DFk(θ2,i)

+ C1,i − C2,i DFk(θ2,i)

1 − DFk(θ2,i )
. (43)

Similarly, the substitution of (18) into (40) gives

DFR(θ2,i ) + �r exp(q(θ1,i + g2(θ2,i)))(1 − DFk(θ2,i))

= C1,i − C2,i . (44)

Equations (43) and (44) together with equations in (39)
constitute the equations for θ1,i and θ2,i :

Substitution of θ1,i expressed in terms of θ2,i in (43)
into (44) gives a single equation for θ2,i for given C1,i and
C2,i . Once this equation is solved for θ2,i , θ1,i can be calculated
by (43). Since C1,i and C2,i are given by the measured data and
the PSD parameters at ri−1, the PSD parameters at ri can be
obtained by solving (44) and (43). By repeating this procedure
for all i from i = 1, we can estimate the PSD parameters at
all range bins.

B. Backward Equation

By following exactly the same procedure as in the deriva-
tion of the forward equation, we can derive the backward
equations.

The backward equations for θ1,i and θ2,i are

θ1,i = − f1(θ2,i ) − f2(θ2,i) DFk(θ2,i )

1 − DFk(θ2,i)

+ B1,i − B2,i DFk(θ2,i )

1 − DFk(θ2,i)
(45)

DFR(θ2,i ) − �r exp(q(θ1,i + g2(θ2,i)))(1 − DFk(θ2,i ))

= B1,i − B2,i . (46)

Fig. 4. Flowchart of the backward processing. The initial values of θ1(n)
and θ2(n) must be given by some means. A case with the use of PIAλ,b is
shown in the figure. Note that θ1 = 10 log10 N0, θ2 = 10 log10 Dm , λ = 1, 2,
and �B = B1 − B2. Ld and Ls are defined in Fig. 7.

with

Bλ,i = (dBZmλ,i − dBZmλ,i+1) + dBZeλ,i+1 − �r kλ,i+1.

(47)

Equations (45) and (46) are identical to (43) and (44) except
that the sign of �r is reversed, and C1,i and C2,i are replaced
by B1,i and B2,i . B1,i and B2,i can be obtained from C1,i and
C2,i by replacing subscript i − 1 by i + 1 and by changing the
sign of �r .

A simplified flowchart of the backward processing is shown
in Fig. 4.

IV. BASIC PROPERTIES OF THE ALGORITHM

Since dBZmλ,i is given at all i (i = 1, . . . , n) for both
λ = 1, 2, if θ1,i−1 and θ2,i−1 are known, we can calculate
dBZeλ,i−1 and kλ,i−1, and hence, C1,i and C2,i as well.
Similarly, if θ1,i+1 and θ2,i+1 are known, we can calculate
B1,i and B2,i . Substitution of (43) into (44) gives the forward
equation of θ2,i for given C1,i and C2,i , and substitution of (45)
into (46) gives the backward equation of θ2,i for given B1,i

and B2,i . In either case, the equations depend only on two
parameters C1,i and C2,i , or B1,i and B2,i which contains the
difference of dBZmλ,i between two adjacent range bins. As a
result, the solutions only depend on the initial conditions and
the slope of dBZmλ,i and do not depend on the absolute values
of dBZmλ,i . This property is common with the differential
form of equations mentioned in Section II.

Both the forward and backward equations are basically
derived from equation (37) together with (35), which can be
rewritten as

Aλ,i−1 + �r kλ,i−1 = Aλ,i − �r kλ,i , (λ = 1, 2). (48)
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Both sides of this equation give the attenuation estimate at the
midpoint between ranges ri−1 and ri , i.e., at r = ri−1+�r/2 =
ri − �r/2. In other words, this equation gives the condition
that the attenuation calculated forward from the bin center of
bin i −1 and that backward from the bin center of bin i should
agree at each frequency.

A. Double-Value Problem

This method does not solve the problem of dual solutions.
In fact, the number of the solutions of (44) or (46) changes
with the value of C1,i and C2,i or B1,i and B2,i . To explain
how the number of solutions changes, we define the left-hand
side of the forward equation (44) as L F (θ2; C1, C2) or simply
L F (θ2) and the left-hand side of the backward equation (46) as
L B(θ2; B1, B2) or simply L B(θ2) after substituting θ1 of (43)
and (45) into θ1 in (44) and (46), respectively. When we do
not need to distinguish L F (θ2) and L B(θ2), we simply write
L(θ2) for brevity. The subscript i is omitted below because
the equations hold for an arbitrary range bin. Because of the
smallness of the factor DFk(θ2) in (43) and (45), L F (θ2)
(L B(θ2)) depends much more on C1 (B1) than on C2 (B2).
In other words, L F (θ2) (L B(θ2)) depends much more on the
Ku-band than the Ka-band data.

Fig. 5 shows how L F (θ2; C1, C2) (L B(θ2; B1, B2)) changes
with various values of dBZe(Ku) when true θ2 = −1 (dBmm)
and �r = 1 km. C1, C2, B1, and B2 are calculated from
dBZe(Ku) and the given conditions. Note that C1 and B1 are
approximately equal to dBZe(Ku). As can be seen from
the results, the domain of double solutions of θ2 increases
with dBZe(Ku) for L F (θ2) but decreases with dBZe(Ku)
for L B(θ2). When dBZe(Ku) is sufficiently large, L B(θ2)
becomes a monotonically increasing function of θ2 so that
the double-solution problem disappears. This property can be
explained as follows. Equation (45) gives θ1 as a function
of θ2. Its dependence on θ2 is predominantly determined by
f1(θ2). Since the slope of f1(θ2) is larger than that of g2(θ2),
θ1(θ2) + g2(θ2) in (46) increases with decreasing θ2 for small
θ2 as θ2 → −∞ [note the minus sign in front of f1(θ2)
in (45)]. This dependence of θ1(θ2)+ g2(θ2) on θ2 contributes
an exponential increase in the attenuation term in L B(θ2) when
θ2 → −∞. If dBZe(Ku) is large, θ1 itself becomes large
through B1,i in (45), and hence, the contribution of the positive
slope from the second term in L B(θ2) overwhelms the negative
slope of DFR(θ2) for small θ2.

On the other hand, the domain of dual solutions increases
with increasing C1 in the forward processing. Fig. 6 shows
how the number of solutions depends on the combination
of C1 and C2 or B1 and B2 when �r = 1 km. Note
that the value of C1 (or B1) is close to Ze(Ku) because
both dBZm1,i − dBZm1,i−1 (or dBZm1,i − dBZm1,i+1) and the
attenuation within the bin are generally small. The number of
solutions shown in Fig. 6 is the solution within the interval
of [−3, 6] for θ2. The no solution region in the lower right
corner of the graph comes from the upper limit of θ2 = 6.
The right-hand boundary between single and double solutions
in the forward processing changes with the lower limit of the
allowable domain of θ2.

Fig. 5. (a) Function L F (θ2; C1, C2) for true dBZe(Ku) = 20, 25, 30 dB,
dBDm = −1, and �r = 1 km. C1 − C2 shown by a dotted line
becomes −0.65, −0.33, and 0.66, respectively. (b) Function L B(θ2; B1, B2)
for dBZe(Ku) = 20, 25, 30 dB, dBDm = −1, and �r = 1 km.
B1 − B2 becomes −0.94, −1.26, and −2.26, respectively. Note that θ2 =
10 log10(Dm).

The graph of L B(θ2) shows that the equation
L B(θ2; B1, B2) = B1 − B2 may have up to three solutions
because L B(θ2) goes to −∞ as θ2 goes to −∞. However,
in order to avoid unrealistic solutions, the searching domain
of the solutions is limited within the interval [θ2,l, θ2,u].
In the examples shown later in this article, we choose the
lower limit θ2,l = −2 and the upper limit θ2,u = 6. These
numbers correspond to Dm = 0.63 mm and Dm = 4.0 mm.
Within this searching domain, the number of solutions is 0,
1, or 2 depending on the values of C1 and C2 in the forward
processing, and B1 and B2 in the backward processing.

Let us define Ld as the minimum value of L(θ2) for θ2 ∈
[θ2,l, θ2,u] and θ2,d as the value of θ2 that makes L(θ2,d) = Ld

(see Fig. 7). We also define Ls as the value of L(θ2) above
which the inverse function has a single solution and θ2,s as the
corresponding diameter: L(θ2,s) = Ls . Similarly, we define
Ll = L(θ2,l) and Lu = L(θ2,u). Ls = Ll but θ2,l 	= θ2,s in
general. However, note that θ2,l = θ2,d = θ2,s and Ll = Ld =
Ls when B1 is sufficiently large and L(θ2) is a monotonically
increasing function over [θ2,l, θ2,u].

We take θ2,l large enough so that Ll < Lu even if the
attenuation within a bin is very large in the forward processing.
Under this condition, we can define four possible cases. Let
us define �C = C1 − C2 and �B = B1 − B2. Then, these
four cases are categorized by the interval in which �C or �B
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Fig. 6. (a) Number of solutions in (44): L F (θ2) = C1 − C2 for �r = 1 km.
(b) Number of solutions in (46): L B (θ2) = B1 − B2 for �r = 1 km. Dark
shaded areas have two solutions, and light-shaded areas have a single solution.

Fig. 7. Definitions of Ll , Ld , Ls , Lu , θ2,l , θ2,d , θ2,s , θ2,u , and domains I,
II, and III.

falls: [−∞, Ld ], [Ld , Ls ], [Ls, Lu], or [Lu,+∞]. We label
the interval [θ2,l, θ2,d ] domain I, [θ2,d, θ2,s ] domain II, and
[θ2,s, θ2,u] domain III. Note that θ2,d ≈ 0 and θ2,s ≈ 1 in
the case of μ = 3 correspond to values of Dm of 1 mm, and
1.26 mm, respectively, and are fairly typical values of Dm for
light to moderate rain rates.

When �B is between Ld and Ls , two solutions are possible;
one in domain I, the left-hand side solution, and the other in
domain II, the right-hand side solution. Both solutions satisfy
the equation, but they give different estimates of Zeλ and kλ

for the following adjacent range bin.

When �B = B1 − B2 (or �C = C1 − C2) is less than
Ld , there is no solution to (46) [or (44)]. In this case, the
obvious choice of the solution is θ2,d . However, θ2,d does
not satisfy the equation. The difference L B(θ2,d) − �B (or
L F (θ2,d) − �C) must be accounted for the calculation for
the next range bin. Without this correction, the residual error
accumulates and the retrieved estimates of the PSD parameters
no longer reproduce the measured profiles of Zmλ (λ = 1, 2).
In practice, the difference L B(θ2,d) − �B is subtracted from
B2 in the next step. This compensation method effectively
attributes the difference to the Ka-band measured reflectivity
factor, Zm2, and ignores the weak dependence of L B(θ2) on B2.
The same correction is applied when there is no solution when
�B > Lu .

In the ice region, the DFR is always positive and approaches
monotonically and asymptotically 0 dB as Dm decreases.
In this case, θ2,l = θ2,d = θ2,s , and domains I and II disappear.
If the measured data give �B < Ll ≈ 0, the best choice
without any constraint would be θ2 = −∞ or Dm = 0.
However, a small value of Dm or a large negative value of
θ2(=dBDm) gives a huge estimate of θ1 (=dBN0). This large
estimate of θ1 often causes an overflow in the computation of
k in which θ1 appears in the exponent. To avoid this practical
problem, we need to define a reasonable minimum allowable
Dm or θ2,l . The need for setting a minimum allowable θ2,l is
also applicable to the liquid precipitation.

In contrast to the backward processing, the dual-solution
domain of θ2 increases as the attenuation within the range
bin increases in the forward processing. However, since the
forward processing is applied only in the solid precipitation
region in which the attenuation can be ignored, and since
DFR is a monotonic function of Dm for solid precipitation,
the dual-solution problem does not occur.

The double-value problem is mitigated with the backward
processing when the attenuation between adjacent bins is large.
To make L B(θ2) a monotonically increasing function of θ2, the
attenuation term �rk2 in (46) needs to be at least one dB. For
the DPR, dBZm,λ is available at range intervals of 0.125 km.
With this sampling interval of �r , k2 must be larger than a
few dB/km. Such a large attenuation cannot be expected in
light rain. In actual situations, large attenuations appear only
in rather heavy rain. Such heavy rain is generally associated
with large Dm at which DFR is positive so that the mitigation
of the double-solution issue by the proposed algorithm is not
effective as long as small �r is used. Increasing �r will
increase the attenuation term and, hence, the single solution
cases. The feasibility of this approach is discussed in the
discussion section.

B. Stability

To examine the stability of the solution for the discretized
equations (44) and (46), we assume a uniform rain field in
which the true Zeλ,i and kλ,i are constant, or equivalently,
θ1,i and θ2,i are constant. Equation (44) for a uniform case
(θ1 = θ1,i = θ1,i−1 and θ2 = θ2,i = θ2,i−1) becomes

exp(q(θ1 + g2(θ2)) − exp(q(θ1 + g1(θ2)) = �DFRm

2�r
(49)



IGUCHI AND MENEGHINI: STABILITY OF THE DUAL-FREQUENCY RADAR EQUATIONS 5111818

Fig. 8. Flow from (θ2,i+1, θ1,i+1) to (θ2,i , θ1,i ) in the backward processing
with �r = 0.125 km when the true solution which is shown by the red star is
(−1.5, 40) for domain I (a) and (1.0, 35) for domain II or III (b). The solid
lines indicate the stationary solution line defined by (50). The dotted lines
show Nw for the given Ze(Ku).

where �DFRm = DFRmi − DFRmi−1. Thus, the stationary
solution lies on the line defined by the following equation:

θ1 = 1

q
ln

�
�DFRm

2�r



− 1

q
ln[exp(qg2(θ2)) − exp(qg1(θ2))]. (50)

The true solution is on this line, but it may not be reached
from any initial point in finite steps.

Fig. 8 shows the flow of the solutions in one step with
�r = 0.125 km from various initial points in the Dm-Nw

space in the backward processing. The base of each arrow
is the starting point, and its tip indicates the solution in the
following bin. The directions of arrows are nearly parallel to
the line defined by θ1 = dBZe(Ku)− f1(θ2). Their magnitude
decreases as the initial point approaches the stationary solution
line defined by (50). Since these two lines cross each other
with a small angle, convergence to (or divergence from) the
true solution is not apparent. The solutions remain close to the
stationary line without approaching the true solution. A closer
look reveals that, in the unstable case [see Fig. 8(a)], arrows
are directed away from the stationary solution line, While,
in the stable case [see Fig. 8(b)], they are directed toward
the stationary solution line as long as the initial points are

not far from the true stationary solution. If the initial point
is far from the stationary line, the solution after a final step
may end up at a point separated substantially from the true
solution. As mentioned in Section II, since the ratio of the
absolute values of the two eigenvalues is very large, a stable
solution tends to converge to a point on the stationary line,
which is not necessarily close to the true solution. These
characteristics imply that the selection of the initial conditions
is very important. For example, in the case shown in Fig. 8(b),
the true stationary point is θ2 = 1.0 and Nw = 35. If the initial
values of θ2 = 1.2 and Nw = 37 are given, the solutions
converge to about θ2 = 2.0 and Nw = 30 after 50 steps
(≈6 km). The value of Nw is expressed in dB with units
of m−3mm−1. Note, however, that this solution reproduces
exactly the same dBZm,λ slopes with the measured profiles of
dBZm,λ, but their absolute values are biased. The reproduced
dBZe,λ values are biased as well.

Nevertheless, if the appropriate initial conditions are prop-
erly selected so that they do not cause any significant biases
in the estimates of dBZe,λ, all such solutions satisfy the
attenuation condition given by (37). This attenuation difference
is mainly determined by the Ka-band attenuation. Since the
attenuation in the Ka-band is highly correlated with the rainfall
rate irrespective of the PSD, the estimate of R is generally
close to the true value even if N0 and Dm estimates are not
close to the true values in the convergent region as long as the
total path attenuation is properly given.

The solution from the forward method often gives an
unrealistic profile in ranges where the attenuation becomes sig-
nificant. Nevertheless, when the total path attenuation remains
small, the forward method gives rather reasonable profiles.
This is the case for snow profiling above the bright band in
stratiform rain.

In a solid precipitation region in which the attenuation due
to both scattering and absorption is small, we can assume
that the attenuations are negligible. In such a case, (44)
degenerates to DFR(θ2,i ) = DFRmi . Then, the Dm estimates
are determined mostly by measured reflectivity factors that
are nearly identical to the true effective reflectivity factors.
The solutions of PSD parameters in such a region by the
forward method effectively depend only on the assumed PSD
and scattering models.

This fact can be verified by comparing Dm estimated by the
forward method with the corresponding Dm directly calculated
from DFRm. Fig. 9(a) and (b) shows the estimated Dm at
7 km above the sea level from the forward method and
DFRm measured from the DPR data obtained from orbit
31343, scans 2650∼2749 in the vicinity of hurricane Dorian
on September 4, 2019. The agreement is generally very good.
Fig. 9(c) shows the averages of Dm profiles from the Dorian
case. The estimated average Dm profiles from DFRm and the
forward processing method are effectively identical. Such an
agreement is almost always the case in ice precipitation regions
above the bright band in stratiform rain.

Even in ice precipitation, discrepancies appear when the
measured radar reflectivity factor dBZm is significant. In such
a case, even though the absorption by ice particles is negli-
gible, the attenuation due to scattering causes the difference
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Fig. 9. Estimated Dm at 7 km above the sea level from (a) forward method and (b) from DFRm. (c) Averaged profile of Dm from all profiles in 100 scans
that satisfy the condition of processing that dBZm (Ka) is larger than 20 dBZ for at least ten consecutive range bins (1.25 km). DPR data are from orbit
31343, scan 2650–2749 in the vicinity of hurricane Dorian. Dm is unmelted mean diameter expressed in dB scale in mm. ρ = 0.2 g/mm3 is assumed. Dm
from V06X is melted mean diameter.

between dBZm and dBZe because of the existence of large
particles. Since the PSD of such particles may differ from the
assumed PSD, the Dm estimates may have large biases. In a
heavy convective storm, there may be wet hail stones that
further complicate the problem.

C. Initial Conditions

The convergence property of the algorithm mentioned in
Section II-B implies the importance of the initial conditions.
In the case of forward processing, we can safely assume that
the attenuation to the first range gate is negligible and regard
Zm as Ze at both frequencies at the storm top provided that
the radar is well calibrated. In this case, we can equate DFRm
and DFR from which Dm can be estimated there. N0 can be
calculated from Zm(≈ Ze) and Dm provided that we know
the phase state and density of the particles in the case of
solid precipitation. In the case of liquid precipitation, we may
encounter the double-solution issue.

In the case of backward processing, we need to specify
B1,i and B2,i at the farthest range. To do so is equivalent to
specifying the pair Dm and N0 from which we can calculate
Ze1, Ze2, k1, and k2, and hence, B1,i and B2,i . Instead of Dm

and N0, we can also use the attenuation estimates to the bottom
range since Ze1 and Ze2 can be obtained from Zm1 and Zm2

if the attenuations are known. Once Ze1 and Ze2 are given,
we can calculate Dm and N0 and then k1 and k2 from them.
In particular, if the PIAs to the surface at the two frequencies
are known, we can use them to specify the initial values of
B1,i and B2,i . Appendix A gives a formula that specifies the
initial conditions by the PIA to the surface when there is some
unobservable range between the clutter-free bottom and the
surface under the condition that Ze’s at both frequencies are
constant there.

In addition to the SRT that gives the PIA estimates, however,
a different method is examined to specify the initial conditions
in order to investigate possible biases that may exist in the
SRT’s PIA estimates. In particular, when rain is light, the
relative errors in the PIA estimates by the SRT become rather
large because their absolute values may be comparable to the
fluctuation of surface echoes.

One promising method that is similar to the one used
in the operational algorithm is given as follows [5]. First,

assume a power law k1–Ze1 relation for the Ku-band as
k1 = αZβ

e1 where β is a fixed constant. Use the Hitschfeld–
Bordan (HB) method [9], [10] to estimate the attenuation
corrected Ze1(ri ; α) profile of the Ku-band that depends on
the adjustable constant α. Since the assumed k1–Ze1 relation
defines the relation between Dm (≡ θ2) and N0 (≡ θ1),
as described in the first box in Fig. 10, we can calculate
the profiles of Dm(ri; α) and N0(ri; α) from Ze1(ri ; α). Using
these Dm(ri ; α) and N0(ri; α), Ze2(ri ; α) and k2(ri; α) can
be obtained for the Ka-band from which we can calculate
the profile of the attenuated Zm2(ri; α). The final step in the
procedure is to adjust α to minimize the difference between
the estimated Zm2(ri ; α) and the measured Zm2(ri ) near the
bottom of the profile. More specifically, minimize the follow-
ing squared sum:

n�
i=n−m

	
dBZm2(ri; α) − dBZm2(ri)

�2
(51)

where m is the number of bins from the bottom of the profile
over which the difference is minimized. To reduce the error
caused by the fluctuation of measured data, it is better to use
a large m, but, for the estimation of the attenuation at the
bottom, it is better to use a small m. In the examples shown
in this article, m = 5 is used to estimate the attenuations.
Once the best α is determined, use Dm(rn; α) and N0(rn; α)
as the initial values at the bottom in the backward processing.
We call this method for giving the initial conditions the dual-
frequency HB initialization (DHBI) method. A flow diagram
of this method is depicted in Fig. 10.

V. EXAMPLES

In this section, retrieved profiles of Dm , Nw , and R from
the DPR data using the proposed algorithm are shown. The
PSD is assumed to follow the gamma distribution. Functions
f1(θ2), f2(θ2), g1(θ2), and g2(θ2) are calculated for a collection
of spherical particles with shape factors μ = 0, 1, 2, 3, 4 and
water temperature, T , of 0, 10, 20, and 30 ◦C. To avoid errors
associated with measured dBZm near the noise level, only the
profiles that contain dBZm(Ka) ≥ 20 dBZ over more than ten
consecutive range bins (≡1.25 km) are processed [11].

Fig. 11(a) shows an example of the vertical profiles of Dm

retrieved with the proposed backward algorithm with μ = 3 at
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Fig. 10. Flow diagram of the dual-frequency DHBI method. Note that θ1 =
10 log10 N0 and θ2 = 10 log10 Dm .

T = 10 ◦C in a stratiform area. The Dm profile from the
operational V06X product is also shown by a dotted line. Three
profiles are shown: one with dBZm smoothed by a nine-point
Hanning filter before applying the retrieval algorithm and the
other two without any smoothing to the measured Zm data.
The latter two profiles are the left-hand side solution and the
right-hand side solution. It can be seen that the fluctuation of
the retrieved Dm is significant without smoothing. Similar but
more pronounced fluctuations appear in the Nw and R profiles
[see Fig. 11(b)]. To minimize the fluctuations, the examples
shown in the rest of this article are processed with the
smoothed data. The example in Fig. 11 is a relatively rare case
in which the left- and right-hand solutions differ in multiple
bins. However, the overall profiles from these solutions are
approximately the same. In this example, the liquid phase of
precipitation is assumed at all heights. Therefore, Dm shown
in the figure from the current algorithm in and above the bright
band may not represent the true diameter. The large increase
in Dm at about 5 km above sea level corresponds to the bright
band. Nevertheless, it is not very much different from the true
unmelted diameter in such a region because the DFR as a
function of unmelted diameter is only weakly dependent on
the density of ice and water particles. The major error comes
from the attenuation correction in such regions that affect the
estimate of DFR. Since Dm from the V06X product gives an
equivalent melted diameter, it appears to be smaller than the
Dm estimates from the current algorithm in solid and mixed
precipitation regions.

Note that, when the left-hand side solutions of θ2 are chosen,
the corresponding estimates of R become unrealistically large
in many cases. Accepting a small value of θ2 tends to give
large estimates of R. This is the reason for defining the lower

Fig. 11. Example of retrieved (a) Dm and (b) R profiles with the proposed
algorithm. Note that Dm from the operational V06X shows the melted
equivalent diameter, while Dm from the current algorithm shows the unmelted
diameter. Key “right (left)” indicates the right-hand (left-hand) side solutions.
The number of points for smoothing is denoted by “sm” in the key. The 0 ◦C
isotherm height is 5.8 km.

limit of θ2,l = −2 (≡Dm = 0.63 mm). When �B is between
Ld and Ls , there are two possible solutions. Because the
solution on the left-hand side is unstable as proved previously,
and it often gives discontinuous profiles as shown later, the
examples shown in this article are the data estimated by
choosing the right-hand side solutions all the time unless
otherwise mentioned.

Fig. 12(a) shows the estimated Dm at 3 km above the sea
level from DPR measurements over hurricane Dorian with
the initial conditions selected by the DHBI method proposed
in this article. Fig. 12(b) shows the same estimates but with
the initial conditions given by the SRT. Dm estimates from
the operational V06X product are shown in Fig. 12(c) for
comparison. Fig. 13 shows the estimated R at 3 km above the
sea level from the same datasets. The R distributions estimated
from the current algorithm with the DHBI method and from
the operational V06 product show quite similar distributions
of R although, for the former, estimates are somewhat smaller
than the latter.

The comparison between the estimates from the current
algorithm and those from the operational product can be
seen in Fig. 14. R and Dm shown in these scatter plots are
right-hand side solutions obtained with the DHBI method in
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Fig. 12. Horizontal distribution of estimated Dm at H = 3 km from DPR
measurement over hurricane Dorian (Orbit 31343, scans 2650–2749). (a) Ini-
tial conditions are determined by the DHBI method. (b) Initial conditions are
determined by the SRT-PIA. (c) Dm from the operational V06X product.

backward processing. The PIAs to the surface from the test
data are on average somewhat smaller than the PIA estimates
from the SRT in this example.

Since the solutions from the proposed algorithm depend on
the assumed PSD, their dependence is tested with different μ
values of the gamma PSD. Fig. 15 shows how the averaged
vertical profiles of the retrieved parameters change with the
assumed μ value for pixels with a bright band. The liquid
phase is assumed at all heights. The retrieved profiles of
dBDm , dBNw , R, dBZeλ, and dBZmλ (λ = 1, 2) that are
within 100 scans (4900 beams) in the vicinity of Hurricane
Dorian and are classified as having a detectable bright band,
are averaged. The figure shows cases with μ = 0, 1, 2, 3,
and 4, together with the output from the V06X operational
product. It can be seen that the R profiles with different
values of μ do not change much, in particular, when the DHBI
method is used to select the initial conditions.

Similar differences are found in convective cases as well,
but, in the convective cases, the differences between the
estimates from the current algorithm and those from the
operational product are larger. In the Dorian case, R estimates
with the DHBI method is smaller than the standard product
substantially. Fig. 15(c) shows average profiles of the PSD
parameters from a widespread storm over land. In this case,
the current algorithm with the DHBI method still tends to give
smaller estimates of R than the standard method. Although the
true cause of this difference in R estimates is not clear, one of
the major causes can be the nonuniform beam filling (NUBF)

Fig. 13. Same as Fig. 12 but for the estimated rainfall rate R in dB mm/h.
(a) Initial conditions are determined by the DHBI method. (b) Initial con-
ditions are determined by the SRT-PIA. (c) Dm from the operational V06X
product.

corrections that are applied in the operational algorithm but
not in the current algorithm. Nevertheless, the difference in
the South American case is not as large as in the Dorian
case. This kind of difference between over ocean and over
land may be universal and might arise either from different
PSD characteristics over ocean and land or from a possible
bias in the PIA estimates by the SRT over the wet surface
under rain [12], [13]. Note, however, that the magnitude of
differences between the current estimates and the standard
product varies even among several over-ocean storm cases that
have been tested. It may be worth taking the statistics of such
differences to investigate their possible relationship to the type
of storm system and characteristic PSD.

These examples show to what extent the assumed μ value
affects the estimates. Interestingly, the dependence on the
assumed temperature of liquid precipitation is so small that the
differences are not noticeable in averaged profiles like the ones
shown in Fig. 15 when the temperature is changed from 0 ◦C
to 30 ◦C (results not shown).

Note that Dm from the operational product shown in the fig-
ure is the melted mean diameter, whereas Dm from the current
algorithm gives the actual diameter in the case of ice or mixed-
phase particles. A consequence of this choice is the large Dm

from the current algorithm in and near the bright band. The
scattering cross sections of liquid particles are assumed even
in the bright band in the data shown. The Dm profiles show
that mixed-phase snow aggregates in bright band act as large
liquid particles in the radar echoes. Since the profiles shown
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Fig. 14. Scatter plots of (a) R and (b) Dm and (c) Ka-band PIA to surface between the estimates from the proposed method with the backward processing (Test)
and the corresponding parameters from the operational product (V06). Data include all storm types from the Dorian data. R and Dm data include data between
2 and 4 km above the sea surface.

are obtained by backward processing, a discrepancy in the
assumption of the precipitation phase in the bright band does
not affect the estimates below the bright band.

Another interesting issue is the difference between the
current solutions and the operational product when the initial
conditions are set by the PIA from the SRT. The reason for
the discrepancy is not clear but may come from a different use
of attenuation estimates. In fact, the current method uses the
PIA estimates from the SRT in all cases to define the initial
conditions whenever the reliability flag of SRT shows that the
SRT’s PIAs are reliable or marginally reliable. By contrast,
the operational algorithm uses a weighted combination of the
SRT/PIA and the HB estimates of attenuation. The application
of an NUBF correction in the operational algorithm may also
contribute to differences, particularly in convective cases.

VI. DISCUSSION

Several issues in the dual-frequency PSD retrieval algorithm
are discussed in this section.

A. Noise

The major noise component in the DPR received power is
fading noise. Since the log-averaged power is recorded, the
signal fluctuates around the mean with a Gaussian distribution
in the dB scale. Since dBDm and dBZe are approximately
linearly correlated, estimates of Dm also fluctuate similarly
in the dB scale if no smoothing is applied to the measured
data. If R is calculated directly from the estimated Dm and
N0 and expressed in the linear scale, its positive deviations
are generally larger than the negative deviations due to the
nonlinear transformation of dBR to R, and the average of R
is slightly larger than R calculated from the average of dBR
(Jensen’s inequality). The final estimates of R, Dm , or Nw

depend somewhat on at which stage we take the average to
reduce the fluctuation errors. In the examples shown in this
article, the measured dBZm’s are smoothed with a nine-point
Hanning filter (i.e., over ±0.5 km). No other smoothing is
applied. The choice of the Hanning filter is arbitrary. It is
adopted because the smearing of curved profiles, such as those
near the peak of the bright band, is smaller than the flat moving

average. Other filters, such as the Savitzky–Golay filter that
preserves the signal tendency relatively well, can be used as
well.

The dual-frequency algorithm assumes that echoes at two
frequencies are available at all range bins. This condition
is not met all the time. In fact, quite often, because of the
sensitivity difference and a significant attenuation at the higher
frequency channel, meaningful echoes are available only at a
single frequency at many range bins. As mentioned before,
only the profiles that give more than ten continuous range
bins with dBZm(Ka) larger than 20 dBZ are processed in the
examples shown in this article.

B. Dual-Solution

We show in Section II that small errors in initial conditions
either shrink or increase only moderately in the backward
processing if Dm > Dmc and dBZe(Ku) > 20 dBZ. Since the
majority of rain cases measurable with the DPR belong to this
domain, it is natural to use backward processing. Unless oth-
erwise stated, the examples shown in this article are processed
with the algorithm that chooses the solution in domain II
(θ2 > θ2,d , right-hand side solution) rather than in domain I
(θ2 < θ2,d , left-hand side solution) whenever there are two
possible solutions. Stability is another reason for choosing
the solution in domain II. If we choose the left-hand side
solutions in backward processing, an interesting phenomenon
happens. Fig. 16 shows a retrieved profile of dBDm and dBN0

from a pair of synthetic dBZm,λ profiles. These synthetic data
are created by the condition that dBZe(Ku) = 30 dBZ and
dBDm changes linearly with range. The broken lines show the
true profiles, and the solid lines show the retrieved profiles.
The true dBDm varies from domain II to I as the range
decreases. The backward retrieved solution oscillates between
just above θ2,l and just above θ2,s . This phenomenon happens
because, when the solution is in domain I, the solution at
the next step tends to move toward θ2,l by increasing �B .
However, a small increase in �B often results in the case
in which the solution exists only in domain III (θ2 > θ2,s)
because �B becomes larger than Ls . Once the solution is in
domain III, the algorithm tries to find the next solution with
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Fig. 15. Dependence of the averaged vertical profiles of Dm , Nw , and R of rain pixels identified with bright bands on the shape factor μ. The dotted lines
show the profiles from the operational products V06X. Dm is the unmelted diameter expressed in dB mm except for the operational V06X in which Dm is
the melted diameter. (a) Data from DPR measurement over hurricane Dorian (Orbit 31343, scan 2650–2749, September 4, 2019, east of Florida). The initial
conditions are determined by the proposed DHBI method. (b) Same as (a), but the initial conditions are determined by the PIA estimates with the surface
reference method. (c) Data from a widespread storm over land (Orbit 39356, scan 6500–6599, January 31, 2021, center at Lat = −24.7, Lon = −54.3, South
America). The initial conditions are determined by the DHBI method. The 0 ◦C isotherm height from V06X products is shown by a horizontal green dotted
line.

a smaller �B and decreases Dm . As soon as �B becomes
smaller than Ls = L B(θ2,s), two solutions are possible, and the
solution in domain I is chosen by rule. This cycle is repeated.
As the figure shows, the reproduced dBZm profiles agree
nearly perfectly with the given measured profiles because
the true attenuations are given by the initial conditions. The
retrieved dBZe profiles are nearly identical to the original
profiles.

This simple example indicates that the reproducibility of
Zm profiles does not guarantee the correctness of the retrieved
parameters. Furthermore, the uncertainty in each estimate of
Dm must be rather large when we think about the fluctuation
of measured signals and the small gradient of L B(θ2) in
domain I and II.

Fig. 17(a) and (b) shows the contoured frequency by altitude
diagrams (CFADs) of Dm obtained by the right-hand side solu-
tions and the left-hand side solutions by the backward process-
ing, while Fig. 17(c) shows that by the forward processing.

The assumed phase state of the particles in the retrieval
algorithm is changed from liquid to solid abruptly at H =
5.5 km, which is slightly above the center of the bright band.

In this kind of light precipitation case in a stratiform system
in which attenuation is minimal, the DFRm method and the
forward processing give nearly identical estimates of Dm in
the solid precipitation region, as demonstrated in Fig. 9. The
backward processing deviates from the forward solutions or
the DFRm method in many cases. The Dm estimates by the
backward processing often end up at the lower bound (θ2,l)
of the searching domain in the solid precipitation region,
as can be seen in Fig. 17(a). This discrepancy results most
likely from the fact that the attenuation estimated at the
bright band top by the backward processing is biased due to
an inappropriate attenuation model through the bright band.
Although the estimates are biased, however, the variation of
Dm with altitude by the backward processing is similar to
the forward solutions. The discrepancy of Dm in the solid
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Fig. 16. Behavior of left-hand side solutions in the backward processing when the true Dm changes linearly in the dB scale with range from domain I to II.
The true dBZe(Ku) is assumed constant at 30 dBZ. Input data of dBZm (Ku) and dBZm (Ka) are synthesized from these conditions with a μ = 3 gamma PSD
model. Solutions for (a) Nw and Dm , (b) Zm , (c) Ze, and (d) R.

Fig. 17. CFADs of estimated Dm from (a) right-hand side solutions, (b) left-hand side solutions by the backward processing, and (c) left-hand side solutions
by the forward processing. The assumed phase state of the particles in the retrieval algorithm is changed from liquid to solid abruptly at H = 5.5 km. The
0 ◦C isotherm height is 5.8 km.

precipitation region between the forward processing and the
backward processing cannot be resolved no matter the height
at which the assumed phase is changed from liquid to solid
in the backward processing. It seems necessary to introduce a
layer in the bright band in which the specific attenuations at
Ku- and Ka-bands take a rather different ratio than that given
by a simple liquid particle model. Note that there are many
solutions that end up at the maximum diameter of 4 mm at
low altitude in the forward processing because of the divergent
tendency of the forward solutions in the liquid precipitation
region. It is also worth noting that the left-hand side solutions
in domain I in the forward processing do not diverge to the
minimum allowable value of θ2,l = −2 (Dm = 0.63 mm),
unlike the left-hand side solutions in the backward processing.

The estimates of Dm in these figures are obtained by
assuming the density of snow as ρ = 0.2 g/cm3. As mentioned
before, these estimates are relatively insensitive to the assumed
value of ρ. However, the corresponding Nw estimates depend
on the value of ρ because Ze for a given Dm depends
on ρ. Therefore, even though the discontinuity of the esti-
mated unmelted Dm at H = 5.5 km is not very large, the
corresponding Nw estimates show a very clear discontinuity
at this height (not shown). To estimate continuous and realistic
Nw , we need further information or assumptions in the phase
transition layer and above.

As mentioned in Section III, the proposed algorithm does
not solve the dual-solution problem entirely. Nevertheless,

when the attenuation within the bin is large enough, L B(θ2)
becomes a monotonically increasing function of θ2, and the
dual-solution problem disappears. In fact, with the Dorian
data shown in this article, there are about 50 000 pairs of
adjacent bins in the rain region that satisfies the conditions for
testing the algorithm. Of these 50 000 adjacent pairs, if we use
�r = 0.125 km, function L B(θ2) becomes a monotonically
increasing function in about 9% of the pairs. In the remaining
91%, L B(θ2) is not monotonic, but the actual solutions are
in the single solution domain III (θ2 > θ2,s ) more than 80%
of the cases, and the dual solutions (θ2 < θ2,s ) occur in only
about 10% of the total cases. Increasing the range bin size
will increase the attenuation between adjacent bins and lower
the condition for L B(θ2) to be a monotonic function. If we
use �r = 0.5 km, for example, the number of cases with
a monotonically increasing L B(θ2) increases to 30%, and the
dual-solution cases decrease to about 7%. If we use every pair
of dBZm separated by eight range bins so that �r = 1 km,
the number of cases with a monotonically increasing L B(θ2)
increases to 47%. In the remaining 53% of the total cases,
41% of the total cases are in the single solution domain III, no
solution case (�B < Ld ) occurs in 7% of solutions, and only
4% of total cases are subject to the dual-solution problem. The
latter number decreases to 1% if the threshold of processing
Ka data is increased to 25 from 20 dBZ. In the South American
case, these numbers are 58%, 38%, 3%, and 1% so that the
double-solution cases become very rare.
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Fig. 18. CFADs of estimated Dm for the hurricane Dorian case [(a) and (b)] and South American storm case [(c) and (d)] from right-hand side solutions
[(a) and (c)] and left-hand side solutions [(b) and (d)] by the backward processing with �r = 1 km. The liquid phase of precipitation is assumed in the entire
range. The 0 ◦C isotherm height is 5.8 km in the Dorian area and 4.6 km in the South American storm.

Fig. 18 shows CFADs of Dm from the Dorian and South
American cases when �r = 1 km is used. Because of the
increase in the single solution cases, the left- and right-hand
side solution cases show nearly the same distributions in both
cases. Judging from their distributions in rain regions below
4 km, we can observe that Dm is in domain II rather than
domain I in the majority of cases when �B < Ls . In addition
to the stability issue, this observation is another reason for
selecting the right-hand side solutions as the solutions of this
algorithm in the examples in this article. However, increasing
the step size may violate the assumption of rain uniformity
and may result in an adverse effect. In fact, �r = 1 km is
too large to estimate the PSD parameters in and around the
bright band where the specific attenuation at the Ka-band can
change significantly over a short distance.

C. Uncertainties in PSD and Scattering Model

If valid Zm data are available at two frequencies at n range
bins, we have at most 2n independent pieces of informa-
tion. This fact implies that we can estimate only up to 2n
parameters. In the current case, we choose Dm and N0 at
n range gates. All other parameters that affect the retrieval
must be assumed in some way. For example, they must be
defined as functions of Dm and N0 or given by environmental
data independently provided. In the current case, we need
to assume the functions f1(θ2), f2(θ2), g1(θ2), and g2(θ2).
These functions depend on the PSD and scattering properties
of individual particles. The latter depends on the phase, melt-
ing fraction, density, shape, and temperature of precipitating
particles. In particular, since the specific attenuation depends
on the phase state substantially, phase identification becomes
crucial for accurate estimation.

Liao et al. [2] show that the snow density does not strongly
affect the dependence of DFR on Dm when the DFR is
taken between X- and Ka-bands although the DFR changes
somewhat with the shape factor μ of the assumed gamma PSD.
These characteristics of DFR dependence on the snow density
and the shape factor are the same for the DFR taken between
Ku- and Ka-bands. Therefore, unmelted Dm values estimated
by assuming ρ = 0.2 g/cm3 do not change significantly even
if we assume a different ρ value. However, the melted Dm and
N0 depend on the assumed value of ρ.

As to the estimated Dm for rain, it depends slightly on the
assumed temperature of drops because the minimum values of

both DFR and DFk depend on the temperature, as depicted in
Fig. 1. However, since the differences due to the temperature
difference are small except near the minimum point of those
functions, the estimated Dm does not change much even if
we change the assumed temperature from 0◦ to 30◦. (Dm at
the minimum of DFR changes from 1.00 to 1.02 mm when
the temperature changes from 0 ◦C to 30 ◦C if μ = 3.) The
estimated Dm depends more on the assumed value of the shape
factor μ. (Dm at the minimum of DFR changes from 0.78 to
1.07 mm when μ changes from 0 to 4 when the temperature
is 10 ◦C.) This dependence on μ is more problematic because
the actual PSD changes substantially, and the dependences of
k and Ze on Dm and N0 deviate from those derived from
any PSD model functions. As a result, even if the true rain is
vertically uniform and the attenuation correction is properly
applied to determine the initial conditions, the estimated PSD
profiles may result in some bias in their absolute values and
their vertical gradient.

In a region of dry snow in which attenuation can be
effectively ignored, however, the issue is not very severe.
We can estimate the unmelted diameter Dm from DFRm as
mentioned before. The property mentioned in the previous
paragraph may be used to identify the existence of hail and
graupel by looking at retrieved Dm and Ze values as long
as the particles are dry. However, if some wet hail exists,
the problem becomes formidable. Large hailstones may add
multiple scattering echoes that make the problem even more
difficult. How to deal with such cases is an interesting issue
but outside the scope of this article.

We have shown that the right-hand side solutions in the
backward processing are stable or only moderately divergent
as long as Dm is larger than the critical diameter of about 1 mm
and estimate Dm in rain region reasonably well. However, the
estimates within the bright band may not be accurate because
of uncertainties in the scattering characteristics in the transition
layer from solid to liquid phase. To estimate Dm within and
above the bright band in the backward processing, appropriate
PSD and scattering models are required.

Both NUBF and multiple scattering change the apparent
dependence of k and Ze on Dm and N0. In particular, the effec-
tive k is no longer a local function of Dm and N0 but depends
on the 3-D distribution of precipitation. As a result, attenuation
correction becomes a formidable task, and reliable correction
is virtually impossible when these effects are significant. Since
k cannot be expressed in terms of Dm and N0 locally, the
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current formulation would require some modifications in such
cases.

D. Initial Values

As mentioned in the algorithm section, the solutions of
the proposed method depend critically on the initial values.
A self-consistent DHBI method to estimate the attenuations
to the bottom bin is proposed and tested. This initialization
method, however, depends on the assumed vertical profile of
phase state although its effect is not significant because the
attenuation from solid precipitation range to the total path
attenuation is generally rather small. Nevertheless, there is
room for improvement. There may be a better way to find
initial values of Dm and N0 at the bottom in the backward
processing. If estimation with a fixed PSD model and other
simplifying assumptions, such as no NUBF or multiple scat-
tering effects, does not give reliable estimates, improvement
of the initialization method alone will not further improve
the estimates. Although better ways to specify the initial
conditions have not been pursued, further work along these
lines is warranted.

E. Other Possibilities

In this article, we discussed a method for estimating θ1 and
θ2 as functions of range by solving equation (2) with (3)
and (4) in terms of differential equations or discretized differ-
ence equations. In these methods, solutions are derived from
one range to the next successively. There is a possibility,
however, that 2n unknowns θ1,i and θ2,i can be determined
by minimizing the difference between measured reflectivities
and calculated ones without assuming any continuity

N�
i=1

�
λ=1,2

[dBZmλ(ri ) − dBZmcλ(θ1(ri), θ2(ri ))]2 (52)

where dBZmc,λ denotes the calculated measured radar reflec-
tivity factor. This method does not work in practice because
of the following reasons. First, there are many local minimum
points in the 2n-dimensional space of θ1,i and θ2,i . The
double-value problem associated with DFR also contributes to
this problem. It is not easy to find the global minimum point
by any numerical methods even if the model assumptions are
perfect. Even when there is no noise, the global minimum
point is not a sharply defined minimum in some directions in
the 2n-dimensional space. The existence of noise in actual data
further complicates the distribution of minimum points and
may often result in profiles of θ1 and θ2 that are rather different
from the true profiles. Additional continuity constraints that
allow only small changes of the parameters between adjacent
bins reduce the acceptable minimum points for the solution but
do not eliminate the multiplicity of solutions. These methods
also share the same issues mentioned in this section.

VII. CONCLUSION

General properties of retrieving two PSD parameters from
matched beam dual-frequency radar data are reviewed, and
a specific PSD retrieval algorithm for the DPR is proposed.

An equation is derived, which expresses the relationship of the
PSD parameters between the adjacent range bins, including the
attenuation effect within the bin. This algorithm estimates the
mean diameter of particles by solving the equation in one step
from the measured radar reflectivity factors at two frequencies
and the PSD parameters in the adjacent bin. In the past
attempts for estimating the PSD parameters, the attenuation
correction and the estimation of Dm are carried out in different
steps so that recursive processing is needed in order to include
the attenuation effect within the bin itself.

The stability of the solutions to the equation is examined.
It is shown that the stability depends on the location of the
true Dm in the case of liquid precipitation. A small gradient of
Dm with respect to the range may alter the stable domains of
solutions substantially from the constant Dm case. Neverthe-
less, if Dm is larger than the critical diameter Dmc, which is
about 1 mm, the backward processing provides either a stable
solution in which the initial errors decreases or a solution
whose error increases only marginally with the processing
distance. In contrast to backward processing, the forward
processing gives stable or moderately diverging solutions for
Dm < Dmc and diverging solutions for Dm > Dmc. As a result,
errors in the forward processing tend to increase substantially
with the range in the majority of rain profiles measurable with
the DPR.

It is also shown that, when the attenuation within the
bin is sufficiently large, the backward function L B(θ2)
becomes a monotonically increasing function of θ2 so that
the double-value problem disappears. However, if we use the
range step size of 0.125 km, the double-value problem remains
in many cases in the DPR data. Therefore, the double-value
problem cannot totally be avoided. If the echo profiles are
relatively uniform, by increasing the step size, the double-
value problem is mitigated in most cases for the signal levels
detectable by the DPR.

As a method to provide a set of initial conditions in the
backward processing, an attenuation estimation method based
on the HB attenuation correction method is proposed and
tested. This approach gives reasonable initial conditions, and
the average of estimated R agrees reasonably well with that
estimated with the PIA from the SRT. Since the selection of
the initial values has a decisive impact on the solutions, further
study may be needed to find a better initialization method.

It is also shown that, if the attenuations to the bottom
bin are well estimated, the retrieved profiles of R are nearly
independent of the shape factor of the gamma PSD model
even though the estimated Dm and N0 profiles change with
the μ value. If the NUBF correction is excluded, the current
algorithm produces reasonable R estimates that mostly agree
with the corresponding estimates from the operational products
on average even though there are some differences in the
estimates of Dm and Nw . We find some bias in the case of
Hurricane Dorian. Since the conditions adopted in the test runs
shown in this article are different from those in the operational
processing due to the rather complicated conditions used
in the latter algorithm, some differences are not surprising.
Nevertheless, the current algorithm may provide a tool to
investigate the validity of various assumptions used in the
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operational algorithm. It may also be used to study the PSD
in other more complicated cases, such as convective storms
with hail and graupel.

APPENDIX

USE OF PIAS TO THE SURFACE

AS THE INITIAL CONDITIONS

In the backward equations, we need to give appropriate
initial conditions at the farthest range. If the PIA is avail-
able at two frequencies, we can give such initial conditions.
We assume that Zeλ (λ = 1 for the Ku-band and λ = 2 for the
Ka-band) is constant from the farthest bin (rn) to the actual
surface (rs). Let the distance from the center of the clutter-free
bottom bin to the actual surface be �rs

�rs
def= rs − rn . (A.53)

Then,

dBZeλ,n = dBZmλ,n + Aλ,n

= dBZmλ,n + PIAλ,s − [PIAλ,s − Aλ,n] (A.54)

where PIAλ,s is the PIA to the surface for frequency λ. Since
we assume that Zeλ is constant between rn and rs

PIAλ,s − Aλ,n = 2�rskλ,n

= 2�rs exp(q(θ1,n + gλ(θ2,n))). (A.55)

Substitution of (A.55) into (A.54) gives

dBZeλ,n = dBZmλ,n + PIAλ,s − 2�rskλ,n (A.56)

or in terms of θ1,n and θ2,n

θ1,n + fλ(θ2,n) = dBZmλ,n + PIAλ,s

− 2�rs exp(q(θ1,n + gλ(θ2,n))). (A.57)

Therefore, replacing �ri by 2�rs and Bλ by

B �
λ = dBZmλ,n + PIAλ,s, (λ = 1, 2) (A.58)

we can find the solutions at range n.
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