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Abstract— Remote sensing data have become increasingly
vital in target detection, disaster monitoring, and military sur-
veillance. Abundant pan-sharpening and super-resolution (SR)
methods based on deep learning have been proposed and have
achieved remarkable performance. However, pan-sharpening
requires paired panchromatic (PAN) and multispectral (MS)
images, and SR cannot increase the spectral resolution of PAN.
Thus, we introduce a computational imaging-based method to
recover or produce the incomplete data of single PAN or MS.
This work also explores the integration of multiple tasks by
a single neural network. We start with SR and colorization,
study the feasibility of simultaneously finishing SR colorization,
and use a model trained in SR colorization to finish pan-
sharpening without MS. A generic neural network, remote
sensing image improvement network (RSI-Net), is designed
for remote sensing image SR, colorization, simultaneous SR
colorization, and pan-sharpening. To verify its performance,
RSI-Net is compared with the state-of-the-art SR and colorization
methods. Experiments show that RSI-Net can be competitive
in visual effects and evaluation indexes, and it performs well
at simultaneous SR colorization, and RSI-Net finishes pan-
sharpening and only needs to input PAN. Our experiments
confirm the effect of integrating multiple tasks.

Index Terms— Convolutional neural network (CNN), deep
learning (DL), image colorization, image super-resolution (SR),
remote sensing image.

I. INTRODUCTION

REMOTE sensing images play a crucial role in disas-
ter monitoring, target detection, military reconnaissance,

and other fields. Panchromatic (PAN) and multispectral (MS)
images are two vital components in remote sensing images,
with information from different bands over the same area.
PAN has high resolution (HR) but lacks spectral information,
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while MS has spectral information but lacks spatial details.
Because of the limitations of satellite sensors, remote sensing
images obtained from a onefold sensor cannot have both
high spatial resolution and high spectral resolution. Except
for boosting the performance of physical imaging equipment
of the satellite, the super-resolution (SR) and pan-sharpening
methods are effective. The development of efficient comput-
ing hardware and advanced algorithms has strengthened the
capacity of deep learning (DL) to deal with nonstructural
data. DL has shown superiority in computer vision and image
processing fields, such as image pan-sharpening [1], [2],
SR [3]–[5], and colorization [6], [7].

The pan-sharpening methods can fuse detailed PAN infor-
mation and MS color information, but will fail when either
is missing. Likewise, the SR methods cannot improve the
spectral resolution of PAN. We note that pan-sharpening is
a process of enlarging the spatial and spectral resolutions
of PAN, and this can be equivalent to simultaneous SR
and colorization. Therefore, we explore SR and colorization
for MS separately and study the feasibility of finishing SR
colorization simultaneously, and finally use a model trained
in SR colorization to finish pan-sharpening without MS. This
work shows that a multitask neural network can be used to
recover or produce high-quality remote sensing images with
incomplete data.

Image SR aims to restore and recover the HR image from
a low-resolution (LR) image via SR algorithms. SR is an ill-
posed problem, since multiple HR images may result in the
same LR image. Its most common strategy is to artificially
construct paired LR-HR datasets. The first simple convolu-
tional neural network (CNN), super resolution convolutional
neural network (SRCNN), was proposed by Chao et al. [8].
Although it contains only three convolutional blocks, it still
performs better than conventional algorithms. The SR methods
have been updated regularly, performing impressively in terms
of the peak signal-to-noise ratio (PSNR) and structural sim-
ilarity index measure (SSIM). Many deeper DL-based single
image super resolution (SISR) neural networks have achieved
state-of-the-art performance, such as faster super resolution
convolutional neural network (FSRCNN) [9], Laplacian pyra-
mid network (LapSRN) [10], deep recursive residual net-
work (DRRN) [11], residual dense network (RDN) [12], super
resolution generative adversarial network (SRGAN) [13],
multi-scale residual network (MSRN) [14], super resolution
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feedback network (SRFBN) [15], and dual regression net-
work (DRN) [16].

Image colorization aims to obtain a color image with
a grayscale image. Analogously, a grayscale image can
correspond to a crop of color images. Image colorization is a
challenging problem, as two out of three image dimensions are
lost. A variety of colorization methods have been successfully
applied to colorization problems, ranging from brute-force
CNNs [17], [18] to carefully designed generative adversarial
networks (GANs) [19], [20], which differ in aspects such
as training strategies, network structures, and loss func-
tions. Iizuka et al. [17] introduced a classification network to
assist in colorizing grayscale images. Yoo et al. [20] proposed
MemoPainter, which finds color information in training sets.
These colorization methods have been applied to natural
scenes, animation, cartoons, and image translation.

The pan-sharpening methods aim to inject MS color infor-
mation into PAN images; hence, they cannot get rid of either.
In other words, the pan-sharpening methods will fail when
PAN or MS information is missing. However, it is costly to
obtain paired PAN and MS.

SR and colorization are generally treated as separate tasks.
The model structure must be carefully designed for each task,
which requires much effort. Most researchers do not consider
potential associations between them, and they combine them
as an integrated image generation problem. Both SR and
colorization hope to give supplementary information to the
input image, but they are diverse in supplying supererogatory
pixels to input. Therefore, we wish to design a general neural
network structure to adapt to different visual tasks for remote
sensing images. To solve the problems above, we propose
remote sensing image improvement network (RSI-Net),
a neural network to super-resolve and colorize remote sensing
images, which is capable of adapting SR, colorization, and
simultaneous SR colorization of these three visual missions
for remote sensing images with limited data. The main con-
tributions of this work are as follows.

1) We propose a multitasking architecture that can com-
plete four tasks for remote sensing images:

a) Image SR with scale factor ×2, ×4, ×8;
b) Image colorization;
c) Image SR colorization simultaneously when given

an LR grayscale input;
d) Pan-sharpening requiring only PAN input.

2) We design a dual attention block to transfer significant
feature information in image generation tasks, inspired
by convolutional block attention modules (CBAMs).

3) Inspired by Inception modules, we propose a multiscale
residual block (MRB) for feature extraction and recon-
struction in our architecture.

II. RELATED WORK

Recent years have witnessed the rapid development and
application of neural networks in image processing. Diverse
neural network architectures have been designed for different
visual tasks. We present a brief introduction to remote sensing
images, DL-based SR algorithms, and colorization algorithms.

Fig. 1. PAN and MS images.

A. Remote Sensing Image

Remote sensing images are photographs that record the
magnitudes of electromagnetic waves of various features and
are mainly divided into PAN, MS, and hyperspectral images.
PAN and MS are widely studied by virtue of their proper-
ties, but high-quality remote sensing data are normally not
accessible or affordable in practical scenarios. They are not
easily obtained by drones for large-scale applications, such
as mapping, and drone use is legally restricted; hence, image
acquisition often requires human intervention. Due to these
problems, the use of LR satellite images is common, and this
requires the enhancement of image quality.

PAN ∈ R
4H×4W×1 and MS ∈ R

H×W×3 have different wave-
bands of information over the same area. There are multiple
bands of spectral information in MS, and only red, green,
and blue bands are extracted to synthesize truecolor images.
PAN is the image capture of the panchromatic waveband in
ground object radiation, which has high spatial resolution.
But it contains no color information because it is single-
channel. PAN and MS are complementary in spatial and
spectral resolutions, as shown in Fig. 1.

Many DL-based SR [21]–[24] and pan-sharpening algo-
rithms, exploiting different network structures, have been
proposed to acquire high-quality satellite images. The sensors
used to acquire remote sensing images differ from those used
for natural scenes, which results in different image textures.
The SR methods for remote sensing images need precise
details. Pan-sharpening is realized by the fusion of PAN and
MS. This method considers fusing an LR MS and an HR PAN
to obtain an HR MS. To obtain a pair of corresponding PAN
and MS images is not always easy. Pan-sharpening models
come into play when models are designed for different inputs.

B. Image Super-Resolution
In most cases, SR is regarded as a supervised learning task,

whose key is to build proper LR–HR mapping relationships.
The first DL-based SR method, SRCNN [8], overmatches most
conventional methods and has performed impressively in terms
of PSNR and SSIM. Different from the preupsampling SR,
the upsampling layer is placed at the end of the network in
post-upsampling SR. Chao et al. [9] designed a fast SRCNN,
FSRCNN, using a small-size kernel convolutional block and
replacing preupsampling at the beginning of the network
with a deconvolutional block at the end. Profiting from
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this post-upsampling architecture, intermediate feature maps
remain the same size as the input image, which decreases
computational costs. However, the limitations of parameters
result in imperfect results.

Lai et al. [10] introduced LapSRN, a Laplacian pyramid
framework in a deep neural network, to gradually generate
HR images. Ying et al. [11] proposed DRRN, which com-
bines several local residual blocks with a global residual
block, using multichannel residual blocks to avoid vanishing
or exploding gradients. Recursive learning improves perfor-
mance, but the model’s complexity will increase sharply with
increasing recursion. With a dense and residual structure,
RDN [12] obtained successful results, removing batch normal
layers to decrease computational costs and removing pooling
layers to retain pixel-level feature information. SRGAN [13]
used a GAN to generate photo-realistic images. Adversarial
loss encouraged a natural image through a discriminator net-
work to differentiate between SR results and original realistic
labels. SRGAN performed poorly on numerical indexes and
detail textures due to its GAN-based model. Inspired by
residual blocks and Inception models, MSRN [14] used an
MRB to fuse multiscale feature information and original input
information. Feature information was concatenated before the
last reconstruction network. SRFBN [15] used a recurrent
structure and parameter sharing to deepen the network. A dual
regression scheme, DRN [16], used closed-loop mapping to
enhance performance.

Scholars [25]–[27] have recently proposed well-designed
models for remote sensing image SR.

C. Image Colorization

Image colorization is receiving increased attention. There
are two main categories of colorization: automatic and
user-guided.

User-guided image colorization uses humans to influence
factors such as color strokes, reference images, color palettes,
and language. This can make full use of human interven-
tion, but it can be burdensome, and uncorrelated guidance
can produce absurd results. It is not a small sum of its
burden when given a variety of grayscale images through
user-guided image colorization. It is not lighthearted to find
a related reference image when an input contains multiple
instances.

Automatic colorization methods based on DL models pre-
dict color values for every pixel from a grayscale image with-
out human intervention. Iizuka et al. [17] combined global
priors with local image features to colorize grayscale images,
but their model was constrained by classification labels.
Isola et al. [19] realized image-to-image translation with a
conditional GAN. Unfortunately, the GAN-based methods
perform poorly with respect to PSNR and SSIM. Su et al. [18]
used semantic features of the object instance as prior knowl-
edge to guide a deep neural network in colorization, which
led to unnatural transitions between the instance and back-
ground. Once its objection detection algorithm fails, coloriza-
tion results will be influenced. Yoo et al. [20] proposed a
GAN-based MemoPainter to realize high-quality colorization

with limited data, but it could not pay attention to details when
several subjects appeared in diagrams.

SR and colorization are commonly acknowledged to be ill-
posed problems, and they are distinguishing in the direction of
replenishing additional information. The purpose of SR is to
expand the pixels surrounding an original pixel. This takes
place independently on each channel. Colorization predicts
two or three color channels on the basis of a luminance
channel. We focus on a universal architecture for various visual
missions in remote sensing images, which can learn mapping
from LR to HR and finish the transformation from grayscale
to color.

III. PROPOSED METHOD

We present the details of our approach and an architecture
that can complete four tasks for remote sensing images

IHQ = M(ILQ) (1)

where ILQ is the low-quality input (LR, grayscale,
LR grayscale, and LR PAN), IHQ is the high-quality input
(HR, color, HR color, and HR MS), and M denotes the
proposed RSINet.

As shown in Fig. 2, our model can be explained in terms
of two main elements:

1) feature extraction network-based MRBs
2) information recovery architecture (IRA)

a) involution-based downsample block (IDB)
b) intensive multiscale upsample block (IMUB)
c) dual-stream attention block (DAB).

A. Multiscale Residual Block

Inception [28]–[30] models have shown success at image
classification tasks, with the extensive use of special Incep-
tion blocks. Inception blocks are multibranch blocks, where
branches extract features by themselves, with the number of
convolution blocks set differently to acquire diverse receptive
fields. A larger number of convolution blocks and a larger
convolution kernel generally led to border receptive fields.
The locations and sizes of subjects vary by image, so the
whole and parts of images must be considered comprehen-
sively. In this process, feature maps are often one-off, and
most significant tensors will be selected before being sent
to the next block. Representative image features are passed
on in this continuous process, and many original details are
filtered.

Different from image classification, the image generation
task aims to restore missing information while retaining input
information. To adapt to image generation missions, an MRB
for feature extraction based on Inception ResNet blocks is
proposed.

As depicted in Fig. 3(d), an MRB differs from Inception
blocks in the following aspects:

1) the global residual structure is removed and local resid-
ual structures are scattered over each branch;

2) the depth of a block is deepened to expand the receptive
field.
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Fig. 2. Structure of the proposed algorithm.

MRB can be represented as

Resk(X) = Ck(X) + X (2)

feats =
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MRB(X) = C1(concat[feats]) (4)

where X is the input, Ck is a k × k convolution operation with
an activation function, Resk is the residual block, a group of
feats is obtained by diverse residual blocks, and concat denotes
concatenation. The most significant feature maps are acquired
by a convolution operation after concatenation of feats in the
channel dimension.

Multilocal residual structures help MRB convey the infor-
mation of the image and avoid the vanishing gradient problem.
MRB expands the multibranch Inception blocks and deepens
the branch depth to obtain wider receptive fields. A remote
sensing image contains many targets, such as roads, houses,
grasslands, and soil, and the objects can be easier to distin-
guish in our improved remote sensing image, which may be
beneficial to its applications.

While the image generation task must output a final com-
plete image, feature maps cannot always be reduced like that

in image classification tasks, so pooling layers are removed
in MRB. MRB is placed at the beginning of the model
because:

1) MRB has a powerful feature extraction capability,
which can directly obtain abstract features from the
input;

2) We desire a low feature dimension of the input MRB,
which will reduce computation.

B. Information Recovery Architecture

U-net [31], with its contracting path and symmetric expand-
ing path, was first used in image segmentation and has subse-
quently been applied in all kinds of computer vision tasks.
Zhou et al. [32] proposed U-net++, based on the original
U-net, which redesigns skip pathways between the encoder
and the decoder, and it generates full-resolution feature maps.
U-net++ is applied in our IRA due to its strong capacity
for information reconstruction. To finish four remote sens-
ing image tasks, we improved U-net++ from the following
aspects:

1) the dense block is removed;
2) the skip pathway consists of a dual attention block and

a residual structure;
3) the root and end blocks are designed for different visual

missions.
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Fig. 3. Inception modules and the proposed MRB.

The stack of feature maps in IRA represented by Xi, j is
computed as

Xi, j =

⎧⎨⎨⎨⎨⎨
⎨⎨⎨⎨⎩

fea, i = 0, j = 0

D�
Xi−1,0

�
, i > 1, j = 0

A�
Xi, j−1

�
+U�

Xi−1, j−1
� + Xi−1, j−1, otherwise

(5)

where D is IDB, A is DAB, and U is IMUB.
IRA can correct previous feature information and recover

high-frequency or color information. In IRA, the first-layer
network can stably deliver features, and the networks of other
layers generate new information at different scales, which is
continuously supplied to the first layer.

1) Involution-Based Downsample Block: Pooling and con-
volution with stride are commonly applied in downsampling
in U-net. Through a downsample block, features are changed
to half the size of the original, and the number of channels
will increase occasionally. Features obtained in this way are
still part of the previous features, and most U-net-based neural
networks pay no attention to downsampling. We introduce an
attention mechanism to this process, which can reconstruct
more significant information.

Li et al. [33] inverted the design principles of convolution,
and their so-called involution block could be powered by
different visual networks. The involution block is used in
conjunction with a convolution block, and it can aggregate
contextual semantic information and be adaptively assigned to
different positions in a model.
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Fig. 4. Intensive multiscale residual upsample block (IMRUB).

Fig. 5. CBAM and dual attention block.

The designed IDB includes an involution block and two
convolution blocks. A 1 × 1 convolution block determines
the output dimension, a 3 × 3 involution block (stride = 2)
generates small-size features, and it ends with a 3 × 3
convolution block.

After passing a convolution block, a feature does not
change much. After passing an involution block, the feature
information can be reorganized to extract 1/4 of the original
feature, and another convolution block outputs results.

2) Intensive Multiscale Residual Upsample Block: On the
basis of MRB, we develop an intensive multiscale residual
block (IMRB) with a pyramid structure. Several convolution
block groups are used to extract features in various receptive
fields and features of varying sizes, rather than single feature
maps. As shown in Fig. 4, a group of multiscale features
are obtained by resizing input features with the idea of a
Laplace pyramid network. They are sent into the same feature
reconstruction structure and adjusted to the desired shape. The
aggregation of reshaped features is not added directly, and they
are concatenated before passing through a convolution block.

3) Dual-Stream Attention Block: Jie et al. [34] proposed
squeeze-and-excitation (SE) Net, a network based on attention
mechanisms that emphasizes informative features and pays
less attention to other features. The SE block consists of
global average pooling layers, fully connected layers, and a
sigmoid function. CBAM [35] was proposed to strengthen
the spatial and channel attention (CA) mechanisms. Given
an intermediate feature map, a CBAM block gets spatial and
CA maps and multiplies input feature maps by attention-based
maps to optimize adaptive features.

There are two attention mechanisms in CBAM: CA and
spatial attention (SA):

In CA, two 1-D vectors are obtained by compressing the
feature map using average and max pooling in the spa-
tial dimension. These are converted into a CA map by a
weight-sharing network and an add operation, and the final
feature is the product of the input feature and the attention
map.

In SA, the channel is compressed to obtain average and max
feature maps in the channel dimension, and the concatenated
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Fig. 6. SR ×4 results of different methods on the NWPU-45 datasets.

maps are sent to a convolution block to obtain an SA map.
Since the obtained feature map contains insufficient informa-
tion, it must be multiplied by the input. It is worth mentioning
that CA maps are normalized by a sigmoid function.

CBAM generates a finer attention map sequentially than in
parallel for image classification tasks. But these fine atten-
tion maps are insufficient for the task of restoring image
information.

For this reason, we designed a DAB, as shown in Fig. 5,
with three stages:

1) SA and CA are used to obtain two extracted feature
maps;

2) a set of weight-sharing SA and CA is applied to extract
deeper abstract features from previous features;

3) features obtained in the second stage are added up.
This is equivalent to using four kinds of attention mechanisms:
reinforced CA, SA, and alternate combinations, which helps
it strengthen important features and weaken irrelevant ones.

IV. EXPERIMENTS

A. Dataset and Evaluation Measures

Remote sensing information includes roads, bushes, houses,
and other surface information, which is of great significance
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Fig. 7. SR ×8 results of different methods on the NWPU-45 datasets.

in monitoring and military affairs. In SR, the accuracy of lines
and patterns constitutes important attributes, and incorrect
results will seriously affect the above applications. In col-
orization, since high-frequency detail information is already
available, we only pay attention to whether the color is
accurate.

Northwestern Polytechnical University reported on a large-
scale dataset, NWPU-45 [36], which covered 45 types of
scenes with 700 images, each of size 256 × 256 pixels.
We randomly selected 9920 images in 16 classes of remote
sensing scenes as training samples and 800 as test samples.

To verify the capacity of our model, we also tested some exam-
ples on the RSSCN7 [37] and aerial image dataset (AID) [38]
datasets. Besides, the PANs that come from Gao Fen (GF)-2
satellite are used for pan-sharpening.

For image restoration, we used PSNR and SSIM as evalua-
tion metrics. Given images I and Î , both with N pixels, they
are defined as

PSNR = 10 × log10

�
(L)2

MSE

	
, MSE = 1

N
�I − Î�2

F (6)
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Fig. 8. SR ×8 results of different methods on the RSCNN7 datasets.

where �·�2
F is the Frobenius norm, and L is the dynamic range

of pixel values, usually equal to 255, and

SSIM = (2μxμy + c1)(σxy + c2)�
μ2

x + μ2
y + c1

��
σ 2

x + σ 2
y + c2

�
c1 = (k1 L)2, c2 = (k2 L)2 (7)

where μx is the mean of image x , μy is the mean of image y,
σ 2

x is the variance of image x, σ 2
y is the variance of image y,

σxy is the covariance of images x and y, and k2 is a constant
for stability, equal to 0.03.

B. Implementation

The proposed method can complete SR, colorization,
SR colorization, and pan-sharpening tasks. Colorization will
not change the shape of an image and does not require
an upsampling layer. Two MRBs are joined sequentially for
feature extraction. The extracted features are upsampled by
a group of conv and pixel shuffle [39] operations. In IRA,
the depth d is set to 3 or 4, and the growth rate g is 32.
The last convolution block helps export the desired results.
The Mish [40] activation function is applied instead of rectified
linear unit (ReLU).

In SR, colorization, and SR colorization, we compute the
L1 loss between the ground-truth HR image ŷi and the

reconstructed image yi as

L1 = 1

NB

NB

i=1

|ŷi − yi | (8)

where NB is the batch size, which is equal to 4. This loss is
optimized by Adam with an initial learning rate of 1 × 10−4.
Cosine annealing LR [41] is chosen to assist in optimizing
the model parameters. Different from the usual SR training,
we do not cut the label into small pieces for training. We use
256 × 256 images as labels and get corresponding inputs
by bicubic interpolation. For image colorization, we use the
OpenCV algorithm to transfer red, green, blue (RGB) labels
to gray inputs.

Training and testing are carried out in PyTorch, which is
boosted using a 24G Nvidia RTX 3090. The proposed method
devotes more time to model training than part of other methods
due to its complex structure, while also performing better.

C. Ablation Studies

To investigate the impact of the proposed modules, we per-
formed experiments on MRB, IMRUB, and DAB for remote
sensing image SR ×2. All evaluations used the same config-
urations. PSNR (6) and SSIM (7) were the judging criteria.
Higher PSNR and SSIM means that generated results are of
better quality.

Table I gives the PSNR and SSIM values of the images
of several Inception blocks and the proposed MRB, from
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Fig. 9. SR ×8 results of different methods on the AID datasets.

TABLE I

ABLATION STUDY ON SR ×2. BEST RESULTS ARE IN RED; SECOND BEST ARE IN BOLD

which it is seen that the performance of MRB is enhanced
by local residual structure and greater depth. The results of
other altered MRB structure validated our idea.

Table I also shows the results of various attention mech-
anisms. Because of the particularity of the image generation
task, each type of attention block is combined with the residual
structure so as to convey the original characteristics. CBAM
obviously has a counter effect in the generation process, and
a single-stream attention block is improper for generating

images. This result confirms the distinction between image
generation and classification tasks. The combination of a
dual-stream attention structure and residual can help recover
high-quality images.

It is seen from Table I that a well-designed IMUB sur-
passes the other two upsample blocks. IMUB uses pyramid
and multibranches to construct a convolution group which
is similar to MRB to accumulate various features before a
pixel shuffle block, which is used to rearrange the feature
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Fig. 10. Colorization results of methods on the NWPU-45 datasets.

maps, regardless of whether the values are useful. IMUB
accumulates feature maps that can offer more valued pixels.
The ablation experiments demonstrate the usefulness of the
designed modules.

D. Comparison With State-of-the-Art Models

1) Super-Resolution: For image SR, the proposed method is
compared with bicubic interpolation, which is used as a base-
line, as well as with the state-of-the-art methods SRCNN [8],
FSRCNN [9], LapSRN [10] DRRN [11], RDN [12],
SRGAN [13], MSRN [14], SRFBN [15], DRN [16],
mixed high-order attention network (MHAN) [25], dense

deepback-projection network (D-DBPN) [26], and hybrid-
scale self-similarity exploitation network (HSENet) [27].
We evaluate all the methods on the 2×, 4×, and 8× SR task
based on PSNR and SSIM.

The comparison results are shown in Table II, which
shows that our proposed method outperforms the baselines
on the NWPU-45 datasets. For image 2× SR, our method
(depth = 3) performs better than our method (depth = 4) due
to a deeper network that is unsuitable for relatively simple
tasks. The outputs of 4× and 8× enlargement are visualized
in Figs. 6 and 7, from which we can find that PSNR and
SSIM are higher for our method. However, SRFBN gets the
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Fig. 11. SR ×2 and colorization results on the NWPU-45 datasets.

Fig. 12. SR ×2 and colorization results on PANs.
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TABLE II

COMPARISON FOR IMAGE SR. BEST RESULTS ARE IN RED; SECOND BEST ARE IN BOLD

TABLE III

COMPARISONS FOR IMAGE COLORIZATION. BEST RESULTS
ARE IN RED; SECOND BEST ARE IN BOLD

highest SSIM in SR SR 8×. Input is sparse in SR SR 8×, and
the loop structure of SRFBN help learn a few times more. The
experiments shown that the image of our method is better than
that of SRFBN, visually. Besides, our method can be used for
four tasks, simultaneously.

For a precise and fair comparison, all the methods were
trained on the NWPU-45 datasets and some examples of the
AID and RSCNN7 datasets. The 8× visual results are shown in
Figs. 8 and 9. Our model can adapt to remote sensing images
of different resolutions. Although it was not trained on the
RSCNN7 and AID datasets, it could still achieve good results.
As shown in Figs. 8 and 9, our method has the highest PSNR
and SSIM and also has accurate texture information, making
it closest to the original image.

2) Colorization: The image colorization of the proposed
method was compared with the state-of-the-art methods,
including those of Iizukas [17], Isolas [19], Sus [18], and
Yoos [20]. As shown in Table III, our method can obtain higher
PSNRs than the others. Our results have visual advantages,
as shown in Fig. 10. Iizukas [17] cannot accurately finish
colorization, as seen by its lower PSNR and SSIM. Isolas [19]
and Yoos [20] have color bleeding problems, such as a road
turning green. Sus [18] sometimes produces grayscale images
because image segmentation algorithms are leveraged, and
terrible colorization occurs once segmentation algorithms fail.

E. Combination of SR and Colorization

After verifying that the proposed method can independently
finish SR and colorization, we combined these tasks, which

proved feasible. The results are shown in Fig. 11, which indi-
cates that the proposed model can extract sufficient features
from limited input and produce color information while recon-
structing detailed information. Given an LR grayscale MS, our
model can produce reasonable details and color information.

F. Pan-Sharpening

There are three reasons to use a trained model in SR
colorization to finish pan-sharpening:

1) pan-sharpening can be regarded as the union of SR and
colorization, which are consistent in the transformation
of the image shape;

2) the information contained in PAN and MS covers the
same area; hence, their texture information is close;

3) the spatial resolution of training datasets is close to that
of PAN;

4) there are no realistic color labels for PAN images, which
results in an inability to provide training datasets.

From Fig. 12, a pretrained model can give reasonable color
information while improving the spatial resolution. The colors
of roads and grass are natural, and detailed information has
been restored.

V. CONCLUSION

We proposed a neural network to enhance the spatial and
spectral resolutions of remote sensing images. Based on the
Inception modules, we proposed an MRB and an IRA con-
sisting of IDB, IMUB, and DAB. MRB can help convey the
detailed information of an image and expand multibranches of
Inception blocks. IMUB extracts features in various receptive
fields for upsampling. DAB strengthens important features and
weakens irrelevant features.

Comparative experiments on the NWPU-45 dataset demon-
strated that our method not only obtains the best SR results
on different resolution images but also outperforms other
colorization methods. We combined SR and colorization
into one mission to finish remote image SR colorization.
Finally, we used a model trained in SR colorization to finish
pan-sharpening without MS.
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As a result, our method will be beneficial in recovering
high-quality remote sensing images, and the results can be
applied in object identification, disaster monitoring, military
reconnaissance, and other fields.
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