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Abstract— Atmospheric correction (AC) algorithms for ocean
color (OC) data processing usually rely on ancillary data docu-
menting the atmosphere and the sea state to help the calculation
of the remote sensing reflectance RRS from the radiance measured
by a space sensor. This study aims at assessing the impact
that the uncertainties associated with these ancillary data have
on the AC outputs. For this objective, a full year of global
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) imagery is
processed with the standard AC algorithm l2gen of the National
Aeronautics and Space Administration with different sets of
ancillary data, the reference case with National Centers for
Environmental Prediction (NCEP) Reanalysis-2 meteorological
data and satellite ozone products, as well as with ten ensemble
members from the European Centre for Medium-Range Weather
Forecast (ECMWF) CERA-20C data. The spread within the
ensemble data and the differences with respect to the reference
case are taken as a measure of the uncertainties associated
with ancillary data. The impact on RRS of perturbations in
ancillary variables vary in space, the variables having the largest
effects being wind speed and relative humidity, and ozone at
bands where ozone absorption is largest, while sea-level pres-
sure and precipitable water have the smallest effect. Sensitivity
coefficients quantifying the relationship between perturbations
in ancillary variables and effects on RRS change with variable
and wavelength. At the global scale, the variations found on
RRS when ancillary data are perturbed are usually small but not
negligible and should be considered in the ocean color (OC) data
uncertainty budget.

Index Terms— Ocean color (OC), sea-viewing wide field-of-
view sensor (SeaWiFS), uncertainties.

I. INTRODUCTION

OCEAN color (OC) provides access to marine bio-
logical quantities, foremost the concentration of

chlorophyll-a [1], a major and universal phytoplankton
pigment. Other in-water quantities can be determined by
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OC remote sensing, e.g., in relation to sediment, dissolved
organic matter or indicators of water quality [2]. Ultimately
all OC in-water products are derived from the spectrum
of reflectance characterizing the water body, expressed as
remote sensing reflectance RRS or water-leaving radiance Lw .
This spectral quantity is recognized as an essential climate
variable (ECV) by the Global Climate Observing System [3],
as is the concentration of chlorophyll-a (Chl-a).

As with any geophysical product, RRS data need to be
accompanied by uncertainty estimates to allow an informed
use of these data by the user community. Even though there is
growing emphasis on the provision of uncertainties for satellite
data [4], [5], this practice is in its infancy in the field of
OC, which can be partly explained by the fact that this is
particularly challenging: OC remote sensing is affected by a
large and complex ensemble of error sources [6], including
errors associated with the top-of-atmosphere (TOA) signal
and the numerous assumptions and approximations needed to
solve the remote sensing problem and find a solution for RRS.
This requires a proper metrological treatment of the
OC data processing to model sources of uncertainties and their
propagation in the various processing steps [7].

The remote sensing reflectance RRS (or equivalently Lw) is
obtained from the TOA signal Lt collected by the sensor in
space through a process termed atmospheric correction (AC).
The AC process is usually supported by ancillary (or auxiliary)
information that documents the state of the atmosphere and
sea surface as seen by the sensor. Appropriate quantities are
typically provided by satellite products or reanalysis meteoro-
logical data given multiple times per day. These data have their
own uncertainties that propagate through the AC algorithm and
affect RRS. This impact has been largely overlooked by the OC
community, assuming that it was small. However, more solid
knowledge is required to construct full uncertainty budgets
for OC products. This issue is addressed here by exploiting
the existence of ancillary data distributed by independent
organizations, including ensemble datasets. In the absence of
uncertainty estimates associated with each ancillary datum,
it is assumed that variations within ensemble simulations and
differences between products from independent organizations
can be used as representations of uncertainties for testing
purposes (as also discussed in [8]). In practice, the present
study relies on the processing by a standard AC of Sea-viewing
Wide Field-of-view Sensor (SeaWiFS) imagery at a global
scale repeated for various sets of ancillary data to evaluate
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TABLE I

LIST OF MAIN TERMS USED IN THIS ARTICLE

the resulting variations in terms of OC RRS products. After
having introduced the datasets and approach adopted for the
analysis, global results are presented for various test cases.
Then the sensitivity of the AC process to individual ancillary
variables is discussed before conclusions are given.

II. DATA AND METHODS

Besides being introduced in the text, the main terms used
in this article are listed in Table I.

A. Satellite Data

SeaWiFS level-1 global area coverage (GAC) data were
obtained from the Ocean Biology Distributed Active Archive
Center (OB.DAAC) of the National Aeronautics and Space
Administration (NASA), Greenbelt, MD, USA, for the
year 2003. They were processed to level-2 with the stan-
dard configuration of the l2gen AC of the SeaWiFS data
analysis system (SeaDAS) [9] and remapped on a 12th-
degree sinusoidal global grid (∼9 km in grid cell size) to get
daily global maps. A specific dataset (subsequently referred
to as the pixel dataset) is also assembled by accumulating

all valid pixels (i.e., with valid AC outputs) of all level-2
images for four representative days in the year (15th of
March, June, September, and December). Even though smaller
than the 2003 daily level-three data (but with 3.7 million
pixels distributed globally and across four seasons), it serves
for pixel-based analyses that need to compare data before
any averaging takes place (as happens with level-3
data).

B. Atmospheric Correction Algorithm

The l2gen standard AC algorithm [10], [11] requires a set
of ancillary variables, including surface wind speed (WS),
mean sea-level pressure (SLP), precipitable water vapor (PW),
relative humidity (RH), total ozone concentration ([O3]), and
nitrogen dioxide concentration ([NO2]). Both zonal and merid-
ional components of WS are actually distinguished but only
the modulus of the wind vector is used in the AC. Data
of sea surface temperature and sea ice concentration are
also requested but were not considered here as they do not
directly impact the AC process. Local variations observed in
[NO2] can have a significant impact on the AC [12]–[14] but
they are found mostly in coastal regions [15]. In addition,
l2gen relies on satellite products for [NO2], which are not
available for the entire satellite OC record (and [NO2] is not
distributed by CERA-20C). For these reasons, the processing
carried out in this study used climatology values for [NO2] as
the standard NASA processing. It is, however, acknowledged
that a dedicated analysis of the impact of [NO2] focusing on
coastal regions should be encouraged.

In this section, the main characteristics of the l2gen AC are
recalled to ease the interpretation of the results. First, the
radiative transfer problem is expressed by the following where
Lt is a sum of contributions from Lw and the radiance
associated with air molecules (Rayleigh radiance, Lr ), aerosols
(La), white caps or sea foam (L f ), and glint (Lg) [10], [11]:

Lt(λ) = tg,v (λ)tg,s (λ)
[
Lr (λ) + La(λ) + td,v (λ)Lw(λ)

+td,v (λ)L f (λ) + Tv (λ)Lg(λ)
]

(1)

where td,v and Tv are the diffuse and direct transmittance in
the sensor-viewing direction [16], while absorption by gases
(e.g., O3 and NO2) is written by the transmittance terms
tg,v and tg,s for the paths from Sun-to-surface and surface-
to-sensor, respectively. Note that in this equation, Lw is
not the signal that would be actually measured in the field
(as it does not include gaseous absorption occurring along the
path Sun-to-surface). In the l2gen code implementation, this is
corrected by having tg,s as denominator of Lw in (1), so that
the l2gen Lw output (that can be saved in level-2 files) is
comparable to that observed in situ. In (1), there is no term for
correction of polarization effects as these are not considered
for SeaWiFS, and corrections for out-of-band effects are not
made explicit.

For further use in bio-optical algorithms, Lw goes through
a process of normalization (sensu Gordon and Clark [17] and
Morel and Gentili [18]) correcting for the path transmittance
and bidirectional effects, and providing the normalized water
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leaving radiance LWN or remote sensing reflectance RRS

RRS(λ) = LWN(λ)

E0(λ)
= Lw(λ, θv , θs, φ) CBRDF(λ, θv , θs, φ)−1

cos θs tg,s(λ, θs)td,s(λ, θs)E0(λ)(d̄/d)2

(2)

where θs and θv are the solar and satellite zenith angles,
respectively, and φ the relative azimuth between viewing
and illumination direction; td,s(λ) is the solar-path diffuse
transmittance; d and d̄ are the actual and average Earth–Sun
distances, respectively. The correction for the bidirectional
reflectance distribution function (BRDF) is written as

CBRDF(λ, θv , θs, φ) = f (λ, θs)

Q(λ, θv , θs, φ)

Q0(λ)

f0(λ)

�(λ, θv, θs)

�0(λ)
(3)

following [18], Q being the ratio between irradiance and
radiance just below the water surface, f the ratio between
irradiance reflectance and bb/a (ratio of water backscatter-
ing and absorption coefficients), and � being a function
combining all reflection and refraction effects at the air-sea
interface [18], [19]. In the l2gen code, the ratio f/Q is
obtained from look-up tables (LUTs) [20] with a depen-
dence on geometry and Chl-a, which means that it ultimately
depends on all inputs to the code. � is also dependent
on geometry, and on WS for its above-to-below irradiance
transmittance term, but this latter dependence is only seen for
high solar zenith angles, above 60◦ [19].

For open ocean waters, where Lw in the near-infrared
(NIR) can be assumed negligible following a black-pixel
assumption [21], La can be computed knowing the other terms
of (1). The ratio of the aerosol reflectance (converted into
its single-scattering equivalent) at 765 and 865 nm (noted �)
can then be compared with tabulated values [10], [22]. The
algorithm relies on 80 aerosol models [23] associated with
eight values of RH (RH of 30%, 50%, 70%, 75%, 80%, 85%,
90%, and 95%) and ten values of the fraction (in volume) of
the fine aerosol mode (from 0% to 95%). First, the two groups
of aerosol models with RH bracketing the value obtained from
the ancillary data are identified, and for each group, the two
most appropriate models are selected on the basis of � [10].
Ultimately, La can be computed in all bands by weighted
averages from the four selected models.

This serves as the first step of an iterative process by
which a possible contribution of Lw in the NIR is computed
through a bio-optical model [24]. The contribution from Lw

is then subtracted from Lt in the NIR bands leading to a new
estimate of La , and the process starts again until convergence
(or a maximum number of iterations) is reached. Therefore,
for any perturbation affecting (1) at one band, Lw will not
only be impacted at that band but also potentially at all other
bands by this loop between visible and NIR wavelengths.

For the clarity of the discussion, it is worth introducing
the various algorithmic modules where the ancillary data
intervene.

1) WS: WS intervenes in various components of the algo-
rithm. The radiance L f due to white caps is a cubic func-
tion of WS for values between 6.33 and 12 m s−1 [25]:
with WS below 6.33 m s−1, L f is considered negligible,
while L f for WS above 12 m s−1 reaches saturation.

Since wind modifies the air-water interface geometry,
it also has an effect on the glint radiance Lg [26], and
on the computation of the Rayleigh radiance Lr [27].
As introduced earlier, WS is also found in the calculation
of RRS from Lw .

2) SLP: By modifying the Rayleigh optical thickness τr

(proportional to SLP), SLP has an impact on the trans-
mittance terms td,s , td,v , and Tv . The Rayleigh radi-
ance Lr also depends on SLP [28].

3) PW: In the case of SeaWiFS, PW does not directly
impact the gaseous transmittance terms. It has however
an impact on the out-of-band corrections operating in
the conversion between single and multiple scattering
applied to aerosol reflectance.

4) RH: As explained earlier, RH is a major input to the
algorithm as it modulates the selection of the aerosol
models.

5) [O3]: The concentration of stratospheric ozone has an
exponential effect on the gaseous transmittance tg .

C. Ancillary Data

Two independent sources of ancillary data were consid-
ered for the analysis. The first set relies on meteorological
products (WS, SLP, PW, and RH) from National Centers for
Environmental Prediction (NCEP), College Park, MD, USA,
Reanalysis-2 data [29], [30] available every six hours on
a 1◦ rectangular grid, and on satellite-derived [O3] given on
a daily basis on a 1.25◦ × 1◦ grid. For 2003, the latter is
provided mainly from the Total Ozone Mapping Spectrom-
eter (TOMS) and secondarily from the TIROS Operational
Vertical Sounder (TOVS) for a few days (11) when TOMS
data are not available [31]. In the rest of this article, this source
of [O3] data will be referred to simply as TOMS.

An alternative source of ancillary data was provided by the
CERA-20C dataset from a coupled atmosphere–ocean assim-
ilation system of the European Centre for Medium-Range
Weather Forecast (ECMWF), Reading, U.K. To favor the
coupling between ocean and atmosphere, surface field obser-
vations of pressure and marine wind were assimilated in the
system [32]. Interestingly, CERA-20C (simply called CERA
thereafter) comes in the form of a ten-member ensemble given
every 3 h (i.e., ten realizations are provided for each variable
and time step). The CERA-20C ensemble generation accounts
for errors in observations assimilated in the reanalysis as well
as model errors, and its spread can be seen as a measure of
uncertainty even though it is likely an underestimate, possibly
by a factor of 2 for some variables [32]. CERA-20C directly
provides all ancillary data required for l2gen, except RH that
was computed from 2-m surface temperature and 2-m dew-
point temperature [33] (the result can, therefore, be considered
equivalent to NCEP RH given at 1000 hPa).

The spread of the CERA ensemble and the differences
existing between the CERA data and the NCEP or TOMS
data are taken as representative estimates of the uncertainties
characterizing such ancillary data (see typical values of uncer-
tainties in ancillary data in [6] and discussion in [8]). To drive
l2gen with the CERA data (obtained on a 1◦ grid), the latter
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is selected at the NCEP 6-h time steps for the meteorological
variables, and bilinearly interpolated on the TOMS grid and
averaged for the day for [O3] (the TOMS data being based
on polar-orbiting satellite retrievals, a daily global map is not
associated with a fixed time). Practically, NCEP or TOMS data
were substituted in the files by the CERA equivalent data for
easy ingestion within l2gen, where the values applied for each
pixel are obtained by linear interpolation, in space (at the pixel
location from the gridded ancillary data) and in time (from the
ancillary data just before and after the satellite pass).

Besides the reference case based on the original NCEP and
TOMS data, it was then possible to process the same SeaWiFS
imagery using each member of an ensemble ancillary dataset,
thus creating ensemble level-3 SeaWiFS data. In practice,
global level-3 SeaWiFS data for 2003 were created 10 times
in association with each ensemble member for the following
cases.

1) WS case: Only WS is substituted by the ten members
of the CERA data, keeping all other variables at their
reference value (NCEP or TOMS).

2) SLP case: The same for SLP.
3) PW case: The same for PW.
4) RH case: The same for RH.
5) [O3] case: The same for [O3].
6) MET case: only the meteorological variables WS, SLP,

PW, and RH are substituted by the ten members of the
CERA data, keeping [O3] at its TOMS value.

7) ALL case: All five variables are substituted by the ten
members of the CERA data.

Adopting vocabulary typical of ensemble simulations, the
ensemble variations of ancillary data that are input to l2gen
will be termed perturbations.

For the cases where not all variables are perturbed, it is
admitted that ancillary data are no longer strictly consis-
tent (one variable coming from CERA and the others from
NCEP/TOMS). However, the distributions provided by NCEP
and CERA data are very similar (not shown) and the scope of
the analysis is just to quantify the impact of small variations
of each ancillary variable in terms of RRS output.

D. Statistical Analysis

For a given variable x j , average and standard deviation were
computed over a year of data with the following expressions:

μyr = 1

Nt

Nt∑
j=1

x j (4)

σyr =
√√√√ 1

Nt − 1

Nt∑
j=1

(x j − μyr)2 (5)

where Nt is the number of time steps: when applied to
ancillary data, Nt was the number of 6-h intervals for the
meteorological data (4×365) and the number of days for [O3],
whereas it was the number of valid daily level-3 values for OC
products. While μyr provides the average level of a quantity,
σyr is a measure of its natural variability.

For a given time step j and grid cell, average and stan-
dard deviation among the Nens = 10 ensemble members

(xi, j )i=1,Nens (whether input ancillary data or output OC prod-
ucts) were computed as

μ j = 1

Nens

Nens∑
i=1

xi, j (6)

σ j =
√√√√ 1

Nens − 1

Nens∑
i=1

(xi, j − μ j )2 (7)

σ j is the ensemble spread and represents a measure of the
difference between the ensemble members. In order to obtain
average estimates of the ensemble spread σ j over the available
time steps j of the year, a quadratic average σens was computed
as

σens =
√√√√ 1

Nt

Nt∑
j=1

σ 2
j . (8)

Therefore, σens is an estimate of the average ensemble spread
for the ancillary data or for the output level-3 SeaWiFS
data.

Considering the NCEP/TOMS datasets as a reference xref

(as reflecting the standard processing but without implying
a higher quality), the differences between the average of the
ensemble cases and the reference case were documented with
the root-mean-square (RMS) difference σdif and the average
difference δdif computed over the Nt available time steps

σdif =
√√√√ 1

Nt

Nt∑
j=1

(μ j − xref, j)2 (9)

δdif = 1

Nt

Nt∑
j=1

(μ j − xref, j ). (10)

Again, these statistics were computed for the input ancillary
data or the output OC products. While σens represents the
average spread associated with the ensemble, σdif and δdif

document the distance between CERA and NCEP/TOMS data,
or between their associated OC outputs.

III. GLOBAL ANALYSIS WITH LEVEL-3 DATA

A. Variations Within the CERA Ensemble

The impact of ensemble perturbations in ancillary data
on the OC products is shown by Fig. 1 for the various
cases where one variable is varied. These results pertain to
the year 2003 but are very representative (similar results
are obtained for other years as illustrated by the frequency
distributions of the statistical quantities σens, σdif and δdif

shown for the ancillary data in Fig. 1 in the Supplementary
Material). Fig. 1(a) and (b) shows the average ensemble
spread σens for WS (of global median 0.75 m s−1, Fig. 1 in the
Supplementary Material) and the resulting average spread for
RRS(443), taken as a representative OC product [RRS tend to
show similar patterns, with various amplitudes, for all bands—
see example at 555 nm in Fig. 2]. There is a clear relation
between σens of WS and RRS(443), with the largest values
in the Southern Ocean (where σens can exceed 1.5 m s−1

for WS) and secondary patterns in the northern Pacific Ocean
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Fig. 1. Average ensemble spread σens over 2003 for (a) WS, (c) SLP, (e) precipitable water PW, (g) RH, and (i) ozone [O3], and the resulting average
ensemble spread σens for RRS at (b), (d), (f), and (h) 443 and (j) 555 nm, when only the individual ancillary variable is perturbed. Gray indicates land masses
or coast lines, while black is associated with the absence of valid values.

and southern Indian Ocean. Some relatively high values of
σens are seen for RRS(443) in the North Atlantic without a
clear equivalent in WS. Distinct features seen in the equatorial
Pacific and Atlantic Oceans for WS are likely the signatures

of observational arrays [34], [35] that provide field data for
assimilation in the CERA system (that to the contrary does not
assimilate satellite data); related faint features can be noticed
for RRS(443).
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Fig. 2. Average ensemble spread σens over 2003 when all five ancillary data are perturbed, for (a) τa(443), (b) α, (c) RRS(443), and (d) RRS(555). Gray
indicates land masses, while black is associated with the absence of valid values.

The case of SLP is shown by Fig. 1(c) and (d) [notice
the changes in color scale for RRS(443) in Fig. 1]: for SLP,
σens is most often below 0.5 hPa (global median 0.34 hPa,
Fig. 1 in the Supplementary Material), with the highest values
in the Southern Ocean (of the order of 1.5 hPa) and northwest
Pacific. The resulting ensemble spread in RRS(443) is lower
than in the WS case, with only small variations except in the
Southern Ocean in agreement with large σens found for SLP.
Secondary patterns seen for SLP (like in the northwest Pacific
Ocean) trigger only small responses in RRS.

In general, σens for RRS is small when only PW is perturbed
[Fig. 1(e) and (f)]. There is a general similarity between σens

of PW and RRS in the tropical region where σens is highest
for PW; a local σens minimum is observed for RRS(443)
around the globe slightly north of the Equator, associated
with relatively low σens values for PW. The highest variations
for RRS are observed in the southeast Atlantic, and along the
coasts of India and northwest Africa, without a corresponding
signature for PW in the latter two cases. These regions are
very challenging for the AC process because of clouds and
aerosols and are associated with scarce OC data coverage so
that a few cases might have a disproportionate impact on the
annual average.

When only RH is perturbed, σens for RRS(443) shows some
similarity with RH’s σens [Fig. 1(g) and (h), with a RH global
median of 3.2%]: for instance local minimum values in the
Equatorial Pacific cold tongue with relatively high values
in the equatorial western Pacific and Indian Oceans. More
generally, σens has relatively widespread medium values and

shows a few features with extreme values. As in the case
of PW, the coasts of India, northwest and equatorial Africa
are characterized by high, relatively noisy, patterns of σens for
RRS(443) without an equivalent for RH.

For [O3], σens (of global median 4.8 dobs) shows a clear
gradient of increase with latitude, exceeding 10 dobs in the
Southern Ocean [Fig. 1(i)]. The variations in terms of RRS

are not presented at 443 nm as the resulting σens values are
very small and fairly noisy (see its frequency distribution in
Fig. 3). Differently, σens for 555 nm shows a clear latitudinal
gradient well consistent with that observed for [O3] [Fig. 1(j)].
Of course, the different impact on RRS resulting from varia-
tions in [O3] is due to a different ozone absorption, 30 times
higher at 555 nm than at 443 nm.

The average ensemble spread σens in the ALL case (when
all five ancillary data are perturbed) is given by Fig. 2 for the
aerosol optical thickness τa at 443 nm, Ångström exponent α
(characterizing the slope of log(τa) between 510 and 865 nm),
RRS at 443 and 555 nm. The observed patterns are similar for
these four products (as well as for other bands) even though
with different relative amplitudes. For instance, regions of
highest variations are seen in the Southern Ocean for RRS with
usually smaller values in the tropical oceans; to the contrary,
high values of σens are comparable for τa at low latitudes
and in the Southern Ocean. Relatively low values are found
for α in the high northern latitudes. Comparing Fig. 2 with
Fig. 1, it can be seen that variations of WS contribute most in
the northern Pacific and Atlantic Oceans and in the Southern
Ocean, reinforced in that case by variations in SLP, whereas
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Fig. 3. Frequency distributions of average ensemble spread for (a) τa(443),
(b) α, (c) RRS(443), and (d) RRS(555), for the case when all five ancillary data
are perturbed (black line, “ALL”) and for the cases where only one variable
is perturbed.

variations in RH are felt mostly at low latitudes [compare
Figs. 1(h) and 2(c)]. For wavelengths where ozone absorption
is relatively high (e.g., at 555 nm), the impact of variations
in [O3] is seen in the high latitudes.

These results can be summarized by Fig. 3 showing the
frequency distributions for the various cases. This confirms
that variations in WS and RH usually are by far the largest
contributors to variations in the AC outputs. For RRS at
443 nm, the median σens is 0.901 in units of 10−4 sr−1

when all five ancillary data are varied [Fig. 3(c)]. When
looking at individual cases with only one variable perturbed,
the highest median is found for the WS case (0.569) closely
followed by RH (0.539). Lower by a factor 5 is the PW case
(0.119), whereas the SLP and [O3] cases have the lowest
median σens (0.089 and 0.084, respectively). As anticipated
above, [O3] has a larger impact at bands with relatively high
ozone absorption, such as 555 nm [Fig. 3(d)]: the median σens

is 0.25 10−4 sr−1 for the WS, RH and [O3] cases, approxi-
mately half the value obtained in the five-variable ALL case
(0.479 10−4 sr−1). Interestingly, the square root of the sum
of the squares of the five σens values obtained when per-
turbing one variable is usually close to σens obtained when
perturbing all five variables, which suggests that the effects
are fairly uncorrelated; for instance, this RMS for RRS(443) is
0.802 10−4 sr−1 versus 0.901 10−4 sr−1 in the case of all five
variables perturbed (0.432 versus 0.479 10−4 sr−1 at 555 nm).

B. Variations Between CERA and Reference Case

A similar analysis can be conducted about the impact on
the OC products resulting from the differences between the
CERA data and the reference dataset (NCEP and TOMS).
As introduced in Section II-D, two metrics were used to

document differences between datasets, the RMS difference
σdif and the average difference δdif . As documented by Fig. 1 in
the Supplementary Material, the differences between ancillary
datasets, as quantified by σdif , are usually higher than the
CERA ensemble spread (σens) (the σdif global median is
1.64 m s−1, 1.05 hPa, 5.1 kg m−2, 8% and 20 dobs for
WS, SLP, PW, RH, and [O3], respectively). Consequently, the
differences observed between OC products when processed
with CERA and NCEP/TOMS data are usually higher than
differences observed for the ensemble spread, as can be seen
by comparing Figs. 2 and 4 (note the change in color scales).
For the sake of brevity, this section does not repeat for σdif the
full analysis done on σens; it merely shows σdif obtained when
changing all five ancillary variables (Fig. 4), whereas it focuses
on the impact of systematic differences between ancillary
datasets on the OC products.

The distribution of σdif in general bears some resemblance
with σens but significant differences can be noted beside the
generally higher values. For τa(443), patterns of high σdif are
seen in various northern seas (Okhotsk, Bering, Labrador Seas,
and Hudson Bay), in the Mediterranean Sea, and along the
west African coasts, while the Southern Ocean does not stand
out as for σens. For the Ångström exponent α, σdif is rather
more homogeneous than σens [Fig. 4(b)]. The largest σdif for
RRS(443) is seen at high latitudes and in some specific regions
like the west African coasts [Fig. 4(c)]. The impact of WS
is predominant in the northern Atlantic and Pacific Oceans
(but not close to the coasts) and in the Southern Ocean, while
variations in RH have the largest effect elsewhere (not shown).
While the median σdif is 1.93 10−4 sr−1 when all five variables
are changed, it is 1.02 and 1.27 10−4 sr−1 for the WS and RH
cases, respectively. Despite the low resolution of the ancillary
data, some local features can be noticed, like a high σdif

associated with the wind regime in the Gulf of Tehuantepec
(Pacific coast of Central America) [36]. At 555 nm, variations
in WS and RH contribute to σdif in the same regions (see
Fig. 2(a) in the Supplementary Material for σdif associated
with the MET case) but variations of [O3] now have the largest
impact on RRS: with all five variables changed, the median σdif

is 1.29 10−4 sr−1 while it is 0.42, 0.53, and 0.99 10−4 sr−1

for the WS, RH, and [O3] cases, respectively.
Differences between CERA and reference datasets have a

systematic component at the scale of a year, the effect of
which is seen as expressed by δdif in Fig. 5 for the five
cases of individual variables being changed. It is recalled
that δdif is positive (negative) when values associated with
a CERA case are higher (lower) than the reference case.
When only WS is substituted by CERA data, the resulting
differences in RRS(443) follow fairly closely those seen for WS
[Fig. 5(a) and (b)] but there are noticeable exceptions. For
instance, areas of positive δdif for RRS(443) in the North Pacific
are not obviously linked to patterns in WS. In the Indian sector
of the Southern Ocean, δdif for WS is positive only far from the
Antarctic continent which is not so for RRS(443). The feature
observed in σdif in the Gulf of Tehuantepec is associated with
a negative δdif for both WS and RRS(443).

In the SLP case [Fig. 5(c) and (d)], δdif is usually small for
RRS(443) with higher values in the Southern Ocean that appear
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Fig. 4. RMS difference σdif over 2003 (ALL case) between the SeaWiFS products obtained with CERA data (averaged over the ensemble) and the SeaWiFS
products obtained with reference ancillary data (NCEP and TOMS), for (a) τa(443), (b) α, (c) RRS(443), and (d) RRS(555). Gray indicates land masses, while
black is associated with the absence of valid values.

negatively correlated with SLP’s δdif . The impact of PW is
weaker still [Fig. 5(e) and (f)], but some positive correlation
can be seen in the equatorial regions: for instance negative
δdif in the Pacific cold tongue region or equatorial Atlantic for
both PW and RRS(443), and positive values in the Intertropical
Convergence Zone (ITCZ).

Results in the RH case [Fig. 5(g) and (h)] show higher
values of δdif . At low and mid-latitudes, δdif for RH and
RRS(443) are mostly negatively related. Positive δdif for RH
in the Indian Ocean, the tropical Pacific (except in its eastern
part), or the Mediterranean Sea are associated with negative
δdif for RRS(443); along the Atlantic African shores, δdif for
RH is seen positive in the north and south and negative in the
equatorial region, contrary to δdif for RRS(443). Negative δdif

for RH in the mid-latitude ocean is also usually reversed for
RRS(443). This inverse correlation is, however, not respected
everywhere as can be seen in the Labrador Sea or the Hudson
Bay. As for σens, the [O3] case is illustrated at 555 nm
[Fig. 5(j)]: a very clear correspondence is seen in δdif with
a poleward gradient from negative to positive δdif , reflecting a
strong impact of the differences in [O3] that exceed 20 dobs,
particularly in the northern basins. Since these differences in
[O3] appear high, it is mentioned here that the CERA-20C
simulations do not include [O3] data in its assimilation scheme.
Varying all meteorological data but not [O3] (MET case) leads
to much lower δdif and a loss of the latitudinal gradient (see
Fig. 2(b) in the Supplementary Material).

Fig. 6 shows δdif obtained in the ALL case (when all five
ancillary variables are changed to the CERA data) for τa at
443 nm, α and RRS at 443 and 555 nm. In general, δdif has the
same sign for τa(443) and α even though there are exceptions
(e.g., Okhotsk and Bering Seas, Hudson Bay) [Fig. 6(a) and
(b)]. This is expected: for a given τa at 865 nm, τa at 443 nm
will vary with α. For both aerosol products, the maps obtained
for δdif are very close to those obtained when only RH is
changed to CERA values (not shown). Also for both quantities,
δdif at low latitudes is mostly positive (i.e., CERA-based data
higher than the reference case) with some exceptions like the
eastern Equatorial Atlantic and Pacific regions [Fig. 6(a) and
(b)], following the difference in RH [Fig. 5(g)]. This relation
is no longer obvious for high latitudes. In the open subtropical
ocean, α is usually lower than 1 (e.g., [37]), corresponding to
the candidate aerosol models of the AC having low fractions of
the fine mode [23], and for these models, α tends to increase
with RH, which is no longer true for higher fractions of the
fine mode.

The signs of δdif tend to be opposite for RRS(443) and
τa(443) (as variations in the aerosol radiance tends to
compensate variations in RRS) but this is not systematic
[Fig. 6(a) and (c)]. Broadly speaking, for RRS(443), the effect
of WS in terms of δdif are predominant in the Southern Ocean
[following Fig. 5(b)], while variations in RH have the largest
effect elsewhere, with secondary effects from PW (in low
latitudes), SLP, and [O3]. At 555 nm, δdif for RRS mostly
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Fig. 5. Average difference δdif over 2003 between (a), (c), (e), and (g) CERA and NCEP data and (i) CERA and TOMS data, for (a) WS, (c) SLP,
(e) precipitable water PW, (g) RH, and (i) ozone [O3], and the resulting average difference δdif for RRS at (b), (d), (f), and (h) 443 nm and (j) 555 nm, when
only the individual ancillary variable is changed. Gray indicates land masses or coast lines, while black is associated with the absence of valid values.

bears the signature of [O3] [compare Figs. 5(j) and 6(d)] with
secondary influence from the other ancillary data.

C. Synthesis of Results

The preceding sections documenting the impact of varia-
tions in ancillary data on OC products show distinct patterns

but their amplitude appears fairly small. In order to put
these results in perspective, frequency distributions of various
statistical indicators applied to RRS are given in Fig. 7: annual
average μyr, annual standard deviation σyr, σens and σdif ,
allowing the comparison of the latter two indicators with
the average level of RRS and its average natural variability
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Fig. 6. Average difference δdif over 2003 (ALL case) between the SeaWiFS products obtained with CERA data (averaged over the ensemble) and the
SeaWiFS products obtained with reference ancillary data, for (a) τa(443), (b) α, (c) RRS(443), and (d) RRS(555). Gray indicates land masses, while black is
associated with the absence of valid values.

(see Fig. 1 in the Supplementary Material for statistics asso-
ciated with ancillary data). First, the order of magnitude
of the standard deviation of RRS amounts to approximately
a fifth of its annual average except at 670 nm where σyr

is closer to μyr [in the global ocean, RRS(670) is usually
small and its variations consequently tend to be high in
relative terms]. As anticipated earlier, σdif is generally higher
(by a factor ∼ 2) than σens. For completeness, it is mentioned
that the OC products are stored as integers in level-2 files
with a slope of 2 10−6 sr−1 for RRS and 0.0001 for the
aerosol products (τa or α), which quantifies the noise due to
digitization of the data.

Reasoning in orders of magnitude with the global median
of the ratios between the various statistical indicators, σens is
only ∼1.3% of μyr between 412 and 490 nm, but increases
to 2.8% and 7% at 555 and 670 nm, respectively (Table II).
Compared with the natural variability σyr, σens amounts
to 6%–12%. Looking at σdif instead, its median ratio with
respect to μyr is 2.5%–4% between 412 and 510 nm, increas-
ing to 7.6% and 16.1% at 555 and 670 nm, respectively. These
median ratios are five times larger with respect to σyr, reaching
33% at 555 nm, a band for which RRS average and variability
are low in a large part of the ocean.

IV. PIXEL-BASED ANALYSIS

Section III is based on annual statistics using level-
3 data. While these provide general results, they do not
allow a finer analysis that is instead possible with the pixel
dataset.

TABLE II

GLOBAL MEDIAN RATIOS OF STATISTICAL INDICATORS

FOR 2003 (EXPRESSED IN %)

The first point that can be addressed with the pixel-based
dataset is the importance of the selection of aerosol models.
All ancillary data have, more or less directly, an impact on
the radiance terms at 765 and 865 nm, and therefore, on the
selection of the four aerosol models used in the AC for each
pixel. The pixel dataset can be used to quantify how often
the perturbations in ancillary data within the CERA ensemble
result in a change in aerosol model selection (i.e., when at
least one of the four models selected for the pixel is changed)
for at least one ensemble member. When only WS, SLP,
PW, RH, and [O3] are perturbed using the CERA ensemble,
a change in aerosol models happens for 32%, 7%, 15%, 84%,
and 6% of the pixels, respectively. In all cases, σens found
for RRS when a change in aerosol models occurs is on average
higher than σens without any change in model selection: for
instance at 443 nm, σens is higher by a factor that varies from
1.6 (for the SLP case) to 3.4 (for the RH case). The examina-
tion of individual images reveals that high variations can occur
for isolated pixels due to a change in aerosol model selection
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Fig. 7. For RRS and the year 2003, frequency distributions (normalized by
their maximum) of (a) the annual average μyr, (b) the standard deviation σyr
(computed from daily data), (c) the average ensemble spread σens, and (d) the
RMS difference σdif between SeaWiFS data computed with CERA and
reference ancillary data. For each distribution and SeaWiFS band, the median
of the distribution is reported (in sr−1). The scale for σens and σdif is identical
to allow an easy comparison.

triggered by one of the many factors having an influence on
this selection (see examples in [8]).

A change in aerosol model selection has an impact on the
whole visible spectrum and will tend to create the largest
perturbations in RRS. Not surprisingly, the RH case is asso-
ciated with the highest incidence of change since RH has a
direct action on the model selection, and RH is the variable
having the largest weight in the ensemble spread observed
for RRS (Fig. 3). On average, WS is the second contributor
to σens and is also associated with a fairly high incidence
of the aerosol model change. Even for the other variables,
a change in aerosol model selection is not unusual. When all
five ancillary data are perturbed, a change in aerosol models
happens for 89% of the pixels, indicating that even the small
variations in ancillary data observed in the CERA ensemble
have a widespread impact on the functioning of the AC.

The pixel dataset also allows a direct, pixel-based, analysis
of the relationships between differences in ancillary data and
differences in OC products and tentative interpretations of
the observed behavior. For this, each member of the CERA
ensemble (for the cases where one ancillary variable is per-
turbed) is selected and compared with the reference dataset,
since this offers a larger dynamic range than when comparing
two members of the ensemble. Results are illustrated for RRS

at 443 nm (and at 555 nm for the [O3] case) by Fig. 8 in

the form of scatter plots colored according to the density of
points (complete results for all RRS bands and aerosol products
are shown in Figs. 3–8 in the Supplementary Material). The
Pearson correlation computed on all (3.7 million) pairs is
always significant (p < 0.01) for all variables (τa at 443 and
865 nm, α, and RRS) for all five cases. However, the simple
linear regression running on all points does not always appear
representative of the average behavior of the data distributions,
likely overly reacting to outliers (see Fig. 8). Therefore,
differences in ancillary data first were binned and the median
difference in the OC product was computed for each bin. Then,
a linear regression was performed between the middle values
of the bins associated with differences in ancillary data and
the resulting median values of the differences in OC products.
Only bins contributing to at least 1% of the dataset were
considered (the black crosses in Fig. 8). The slopes of linear
regression given in Table III are averages of slopes obtained
over the ensemble when comparing each ensemble member
and the reference case (coefficients of variation are given in
the caption), while Fig. 8 is based on the first member of
the ensemble for illustrative purposes (general results do not
change with the choice of ensemble member). Values reported
in Table III can be seen as representative estimates of the sensi-
tivity coefficients ∂ RRS/∂x (where x is one ancillary variable)
of the relationship between ancillary data and OC products.
These estimates should, however, be treated with caution as
there are sometimes large variations in this relationship (Fig. 8)
and results might depend on the considered dataset.

A. Wind Speed

In general, in the WS case, τa(865) is barely affected, while
τa(443) and α tend to decrease with WS (negative slope in
Table III) and RRS tends to increase in all bands [Fig. 8(a)
and Fig. 3 in the Supplementary Material]. Equation (1) can
be written as

Lt (λ) = tg,v (λ)tg,s (λ)

× [
Lr (λ) + La(λ) + td,v (λ)L f (λ) + Tv (λ)Lg(λ)

+ cos θs E0(λ)td,s(λ)td,v (λ)RRS(λ)
]

(11)

by assuming the Sun at its mean distance and neglecting the
BRDF effects for simplicity. As discussed in Section II-B,
WS has a direct influence on Lr , L f , and Lg , and an indirect
impact on La through the influence on the former radiance
terms in the NIR. WS is also found in the above-to-below
irradiance transmittance term acting in the conversion between
Lw and RRS but with a small impact only seen for high
solar zenith angles, typically above 60◦ [19]. Neglecting the
impact on τa , and therefore, on the transmittance terms, partial
differentiation of (11) with respect to WS (simply noted w)
leads to
∂ RRS

∂w
= − 1

cos θs E0td

∂Lr

∂w︸ ︷︷ ︸
[1]

− 1

cos θs E0td

∂La

∂w︸ ︷︷ ︸
[2]

− 1

cos θs E0td,s

∂L f

∂w︸ ︷︷ ︸
[3]

− 1

cos θs E0td

∂(Tv Lg)

∂w︸ ︷︷ ︸
[4]

(12)
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TABLE III

ESTIMATES OF SENSITIVITY COEFFICIENTS USING BINNED DATA (SEE TEXT). FOR THE AEROSOL PRODUCTS (τa AND α), UNITS ARE IN m−1S, hPa−1,
kg−1m2, %−1, AND dobson−1 FOR THE CASES WS, SLP, PW, RH, AND [O3], RESPECTIVELY. FOR RRS , THE UNITS ARE THE SAME MULTIPLIED

BY sr−1. VALUES ARE AVERAGES COMPUTED USING THE TEN ENSEMBLE MEMBERS. FOR RRS IN THE WS CASE, THE COEFFICIENT OF
VARIATION (CV, RATIO OF STANDARD DEVIATION AND AVERAGE) IS BETWEEN 2.1% AND 5.8% (AND 14% AT 670 nm). IN THE

SLP CASE, CV IS LOWER THAN 1.2% FOR WAVELENGTHS BETWEEN 412 AND 555 nm. CV IS BETWEEN 3% AND 4%
FOR THE PW CASE. FOR THE RH CASE, IT IS 10%–13% (BUT 43% AT 670 nm). FOR THE [O3] CASE, CV IS IN THE

INTERVAL 2.6%–3.2%. NO VALUES ARE PROVIDED WHEN VARIATIONS ARE OBVIOUSLY TOO CLOSE TO THE
DIGITIZATION LIMITS ASSOCIATED WITH THE STORING OF THE DATA (SEE THE

SUPPLEMENTARY MATERIAL FOR THE COMPLETE SET OF SCATTER PLOTS)

Fig. 8. Scatter plots of differences in RRS (a)–(e) at 443 nm and (f) 555 nm
versus differences in meteorological data (CERA—NCEP) for (a) WS,
(b) SLP, (c) PW, (d) RH, or (e) and (f) ozone data [O3] (CERA—TOMS).
Colors go from blue to red with an increasing density of points, with light
gray associated with the 2-D bins of the scatter plots contributing less than
1% of the maximum density. The gray line represents the linear regression
performed over all points. Dots and crosses represent a 2-D binning of the
distribution (see text), with dots associated with bins with less than 1% of the
data. The black line shows the linear regression using the binned data with
only bins accounting for more than 1% of the data (crosses).

by noting td the product td,s td,v . The importance of each
term can be quantified by approximating ∂Y/∂w by �Y/�w,
where Y is any of the relevant variable (e.g., RRS), �w is
the difference in WS between the CERA and NCEP values
and �Y the resulting difference for Y . Only pixels for which

�w ≥ 0.5 m s−1 (66% of the total number of pixels) are
considered (to avoid too small differences for numerical rea-
sons). Fig. 9 shows the various terms of (12) with associated
median �RRS/�w. First, it is worth noting that the observed
distribution of �RRS/�w is consistent with the slope reported
in Table III [compare the first line of Table III with the median
values of �RRS/�w in Fig. 9(a)]. Let us first consider the
term [4]. For 73% of the analyzed pixels (�w ≥ 0.5 ms−1),
�Lg is equal to 0 at all bands, which is explained by the
fact that the glint correction only operates in the algorithm
for glint conditions retained as moderate [38]. The remaining
values are widely spread (mostly positive, leading to [4] being
negative) without showing distinct patterns (so that [4] is not
included in Fig. 9). For example at 412 nm, [4] has a median
of −0.94 10−4 sr−1m−1s when it is not null, which means that
the impact of WS through the glint radiance can be significant
for individual pixels.

The radiance due to white caps L f increases as a cubic
function of WS, which might decrease RRS in the radiance
budget of (11), everything else being assumed equal. The
term [3] is equal to −1/π∂ρ f /∂w where ρ f is the white
cap reflectance. For 55% of the analyzed pixels, the term [3]
is null at all bands: L f is equal to 0 when WS is lower
than 6.33 ms−1, while for winds higher than 12 ms−1, the
effects of WS do not operate as the calculation of L f saturates
above this value. For medium WS, the term [3] remains
anyway very small, tailing from 0 toward the negative values
as expected [Fig. 9(d)].

Even though only slightly and not systematically, Lr tends
to decrease with WS in the blue (favoring an increase
in RRS), a behavior that tends to be reversed for higher
wavelengths [27], leading to the distributions observed for
the term [1] in Fig. 9(b). These effects are reinforced with
high solar zenith angles, so more frequently in high latitude
regions (which is consistent with the geographical patterns
seen in Fig. 1(b). It is the term [2] related to �La/�w that
has the largest weight in defining the distribution of �RRS/�w
[compare Fig. 9(a) and (c)]. This action originates in the NIR
in three ways related to L f , Lg , and Lr . In the NIR, where
Lw is usually very small, an increase of L f with WS tends
to decrease La , a change that is propagated across the visible
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Fig. 9. Frequency distributions (normalized by their maximum) of the terms
associated with (12): (a) �RRS/�w, (b) [1], (c) [2], and (d) [3]. Median
values are indicated for the six wavelengths [listed in panel (a)] in units of
10−4 sr−1m−1s, except for [3] where all median values are null. To allow
readability, only the distributions for 412, 490, and 555 nm are shown. For [3],
they are in practice superimposed.

domain. In addition, the white cap reflectance decreases with
wavelength in the NIR [39] so that a higher L f leads to a
lower � (ratio of aerosol reflectance), again leading to lower
La values in the visible bands. The pixel dataset was also
created removing the correction for white cap reflectance, and
the results are comparable with those observed in Fig. 8(a)
(or Fig. 3 in the Supplementary Material), with a distribution
of points closer to the regression line (not shown), indicating
that the impact of L f is small, either through the term [3]
or through its action on La . In the same way, variations in
Lg affect La in the NIR, and therefore, across the spectrum.
Another pixel dataset was generated removing the corrections
for white cap reflectance and for the glint, leading to a
distribution of points again comparable to the case with both
corrections but still closer to the regression line (see Fig. 4 in
the Supplementary Material). Therefore, the term [2] mostly
comes from the variations of Lr in the NIR, generally leading
to a decrease of La across the spectrum [and a term [2] usually
positive, Fig. 9(c)].

In conclusion, �RRS/�w is largely the result of changes
of Lr at the considered wavelength and through their actions
on La in the NIR, with a decreasing amplitude for higher
wavelengths (see slopes in Table III). This primary effect of
WS is perturbed for some pixels by the actions of L f and
Lg (terms [3] and [4]), which are negative at a given visible
wavelength but are indirectly compensated through the NIR by
their actions on La . These indirect actions actually seem to be
prevalent as the observed sensitivity factor ∂ RRS/∂w is lower
when L f and Lg are ignored in the AC process. For instance,
the slope for RRS(443) associated with the first ensemble
member [Fig. 8(a)] is 2.9 10−5 sr−1m−1 s; removing the impact

of white caps, this slope becomes 2.5 10−5 sr−1m−1 s, and
2.4 10−5 sr−1m−1 s when white caps and glint are neglected.

B. Sea-Level Pressure

In the SLP case, there is a clear negative relationship
between the OC products (for both aerosol and RRS) with
fewer outliers compared with the other cases, so that the slopes
of linear regression computed on all data and on binned data
are similar. The amplitudes of changes are, however, small [see
Fig. 1(d) and (b) and Fig. 5 in the Supplementary Material],
with variations close to the digitization levels for RRS(670)
and τa(865) (2 10−6 sr−1 and 0.0001, respectively) so that no
sensitivity factors are given for these quantities in Table III.

An increase of Lr in the NIR due to SLP might lead to
a decrease in La in the NIR, and thus, across the spectrum,
favoring an increase in RRS. In addition, the relative increase
of Lr with SLP changes very little with wavelength, so that for
a given SLP increase, Lr will increase more at 765 nm than
at 865 nm (Lr being higher at the former wavelength), so that
La will be relatively more depressed at 765 nm, decreasing �
and again La at all bands. This is consistent with the negative
regression slopes found for τa(443) and α (Table III). However,
the most direct impact of a change in SLP is a change of the
same sign for Lr [27], leading to an opposite change in Lw

and RRS. For a given wavelength and everything else being
equal, a higher SLP also leads to lower td,v and td,s , and
consequently higher RRS [since their product appears in (11)].
These contrasting impacts can be written at a given wavelength
in the following way, neglecting BRDF effects and assuming
a mean Sun–Earth distance, with partial differentiation with
respect to SLP [noted p in (13)]

∂ RRS

∂p
= − 1

cos θs E0td

∂Lr

∂p︸ ︷︷ ︸
[1]

− 1

cos θs E0td

∂La

∂p︸ ︷︷ ︸
[2]

−∂ td
∂p

RRS

td︸ ︷︷ ︸
[3]

. (13)

In that case, there is no dependence of L f and Lg on SLP.
Fig. 10 shows the distribution of the various terms of (13)
in the approximate form �Y/�p for �p ≥ 0.5 hPa. Again,
the median values obtained for �RRS/�p are in excellent
agreement with the slope of linear regression obtained on the
binned data given in Table III. The distributions of �RRS/�p
are fairly narrow with some tails toward more negative values,
which is consistent with the distribution of points along the
regression line in Fig. 8(b) (or Fig. 5 in the Supplementary
Material). In (13), the term [3] (that can be written as
+τr/2AM/p0 RRS with τr the Rayleigh optical thickness,
AM the air mass equal to 1/ cos θs + 1/ cos θv , and p0 the
standard SLP of 1013.25 hPa) is approximately an order of
magnitude lower than the other terms (Fig. 10). The main term
is term [1] associated with the direct effect of Lr on RRS, that
is partly compensated by the term [2] (indirect effect of Lr on
La), leading to the remarkable relationship seen in Fig. 8(b)
(and Fig. 5 in the Supplementary Material).

C. Precipitable Water

There is a larger variability in the PW case [Fig. 8(c)
and Fig. 6 in the Supplementary Material], with a generally
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Fig. 10. Frequency distributions (normalized by their maximum) of the terms
associated with (13): (a) �RRS/�p, (b) [1], (c) [2], and (d) [3]. Median values
are indicated for five wavelengths [listed in (d)] from 412 to 555 nm, in units
of 10−4 sr−1 hPa−1 (�RRS being close to the digitization level at 670 nm).
To allow readability, only the distributions for 412, 490, and 555 nm are
shown.

positive relationship between differences in PW and in RRS.
The slope is also slightly positive for τa at 865 nm, but
becomes negative at 443 nm and for α (Table III). These
results are consistent with a slight increase of La at 865 nm,
associated with a decrease of �, and therefore, of La across
the visible bands, ultimately leading to an increase in Lw

or RRS (Table III). This action operates predominantly in
the NIR bands for which water vapor absorption becomes
more significant (e.g., [40]). As anticipated in Section II-B,
PW affects out-of-band corrections performed in multiple-
to-single and single-to-multiple scattering conversions of the
aerosol reflectance, and a deeper understanding of the mech-
anisms at play would require a dedicated study. It is anyhow
recalled that the impact of PW (within the range of values
tested) is small among the five cases considered in this study.

D. Relative Humidity

The frequency distributions found for the RH case do not
show a linear pattern even though the relationship tends to
be slightly negative for RRS and positive for the aerosol
products [Table III, Fig. 8(d) and Fig. 7 in the Supplementary
Material]. As described in Section II-B, the calculation of the
aerosol reflectance in the visible is performed as a weighted
average of contributions from (up to 4) aerosol models, and the
position of the observed RH with respect to the eight tabulated
values (30%, 50%, 70%, 75%, 80%, 85%, 90%, and 95%)
defines the weights given to the models associated with values
bracketing RH. If RH moves across a tabulated value, the
selected aerosol models are changed, which introduces a
divergence in the calculations of La . This happens more often

Fig. 11. Frequency distributions (normalized by their maximum) of the terms
associated with (15): (a) �RRS/�O3, (b) [1], and (c) [2]. Median values are
indicated for the six wavelengths [listed in (c)] in units of 10−5 sr−1 dobs−1.
To favor readability, only the distributions for 412, 510, 555, and 670 nm are
shown.

for high RH as the steps in tabulated values become finer (5%),
an aspect which is not really relevant as RH over the oceans
is mostly above 70% [8]. The ultimate effect on the AC of a
change in RH depends, among other things, on the selected
aerosol models and their associated fine-mode fraction. For
instance, the Ångström exponent α usually increases with RH
for low fractions (below 0.3), and therefore, low α, while it
decreases for high fractions (above 0.8) and high α. The results
of Table III merely suggests that the former scenario happens
more often, which is consistent with the fact that most of the
open ocean, at least in low-to-mid latitudes, is characterized
by α not exceeding 1 [37], [41], [42].

E. Ozone Concentration

In the [O3] case, there is not much impact of the differences
in ancillary data for τa(865) but a larger, positive, slope for α
and τa(443) is seen (Table III, Fig. 8 in the Supplementary
Material). For RRS, the slope is found negative at 412 and
443 nm but becomes increasingly positive between 490 and
555 nm [Fig. 8(e) and (f)] and is still positive at 670 nm.
Neglecting the impact of NO2, gaseous transmittance tg

(the product of tg,s and tg,v ) for SeaWiFS bands is e−τO3.AM

with τO3 the optical thickness due to ozone, i.e., the product
of [O3] and the absorption coefficient kO3. Again, the effect of
variations in [O3] on RRS can be seen as the sum of a direct
effect through tg , and an indirect effect through the NIR on La ,
leading to the following differentiation:

Lt
∂(1/tg)

∂O3
= cos θs E0td

∂ RRS

∂O3
+ ∂La

∂O3
(14)

which can be rewritten as
∂ RRS

∂O3
= kO3.AM

cos θs E0td tg
Lt

︸ ︷︷ ︸
[1]

− 1

cos θs E0td

∂La

∂O3︸ ︷︷ ︸
[2]

. (15)

Fig. 11 shows the distributions of these terms in the approxi-
mate form �RRS/�O3, the median values of which are com-
parable to the slope of linear regression obtained on the binned
data given in Table III. For a given Lt detected by the sensor,
a larger [O3] increases the value of the TOA radiance that
is input to the AC after correction for gaseous transmittance.
In the visible bands, everything else being assumed equal, this
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is translated into an increase in RRS in a manner proportional to
ozone absorption [Fig. 11(b)]. In the NIR (where Lw is very
small), this same effect instead leads to an increase in La ,
a change that is relatively higher at 765 nm (O3 absorption
being 2.44 times higher at 765 nm than at 865 nm), both
effects that tend to increase La at all visible bands (as well
as α and τa) and decrease Lw . Therefore, when the ozone
absorption is small such as at 412 or 443 nm, the term [2]
dominates and the sensitivity factors ∂ RRS/∂O3 are negative.
When ozone absorption increases, the opposite effect is seen,
for instance at 555 nm where term [1] becomes an order of
magnitude higher than term [2], leading to a largely positive
sensitivity factor, 5.5 10−6 sr−1 dobs−1.

V. DISCUSSION AND CONCLUSION

This study aimed at quantifying the impact of uncertainties
of ancillary data on the outputs of a standard AC algorithm.
Of course, the results are applicable only for the considered
algorithm (l2gen) and for SeaWiFS, but they are expected to
hold in general terms for other multispectral sensors when
processed by l2gen since the bands are similar and the phys-
ical relationships underpinning the algorithms are identical.
They might have a more general validity at least in terms
of orders of magnitude and/or signs of the impact. Indeed
other AC codes based on various algorithmic approaches
rely on LUTs for Rayleigh radiance calculations (for which
a similar dependence on atmospheric pressure and WS is
usually included), model a contribution from white caps,
and/or include a correction for ozone (e.g., [43]–[46]). On the
contrary, RH is not of general use in AC algorithms. Some
results are also conditioned by the considered wavelengths
so that they might be affected for sensors with different
band sets. Moreover, dedicated analyses would be needed to
estimate how uncertainties in ancillary data, particularly the
concentrations of absorbing gases (e.g., O3 or NO2), might
affect the subtle spectral features provided by hyperspectral
missions, such as Plankton, Aerosol, Cloud, ocean Ecosystem
(PACE) [47].

As explained in Section II, any perturbation occurring in the
NIR bands has an impact across the spectrum for all variables
(through the calculation of the aerosol radiance), while any
perturbation occurring at one visible band can also have an
impact at all bands if the black-pixel assumption is not valid
and the iterative process is activated (this is true for 443, 555,
and 670 nm through the Lw NIR correction, and possibly for
other bands if used in the calculation of Chl-a). The algorithm
contains LUTs (for aerosol and Rayleigh reflectance) and
divergence points (associated with the selection of aerosol
models), and some radiative contributions are affected by
thresholds and saturation, like the calculation of the white
cap and moderate glint radiances. Changes in ancillary data
have an impact on the AC process in various, sometimes
compensating, ways. All these elements make understanding
the effects of variations in ancillary data particularly challeng-
ing and, in general, impede an analytic derivation of these
effects. Based on simplifying assumptions, the development
and analysis of (12), (13), or (15) go some way into explaining

Fig. 12. (a) Average ensemble spread σens for Chl-a over 2003 when all
five ancillary variables are varied; gray indicates land masses, while black
is associated with the absence of valid values. (b) Frequency distributions of
σens for Chl-a and associated global median (in mg m−3), when all ancillary
data are varied (ALL case, in black), when only the meteorological data are
varied (MET case, in red), and when only [O3] is varied ([O3] case, in blue).

some of the observed behaviors but similar developments are
not easily done for all cases. The present analysis relies on cal-
culations performed globally across a year and therefore covers
a representative sample of the large diversity (in the geometry
of illumination/observation, water content, atmospheric, and
meteorological conditions) surveyed by the satellite imagery
so that the net effect of uncertainties in ancillary data could
be documented. Focusing on RRS, it can be observed that an
increase in WS and PW is usually translated into an increase
at all bands, while an increase in SLP tends to reduce RRS.
No clear trend can be ascertained when RH is varied. In the
case of an increase in [O3], RRS tends to increase for bands
above 490 nm (most noticeably at 555 nm) but to decrease at
412–443 nm where ozone absorption is lowest.

Thus, it appears that RRS might respond differently to
variations in ancillary data, in time and space but also
spectrally. The focus of this study is on the outputs of
the AC but, for the sake of discussion, the impact of the
variations observed on RRS on the main OC derived product,
Chl-a, is here briefly presented in terms of σens. Chl-a is the
standard NASA product obtained by a combination of a blue-
to-green maximum-band-ratio algorithm and a band-difference
algorithm (for oligotrophic regions) [48], [49]. The resulting
map of σens [Fig. 12(a)] does not obviously compare with
the variations observed for RRS [Fig. 2(c) and (d)], while
it is more like a Chl-a average map with high values at
high latitudes or in upwelling areas. For instance, while
there is a local minimum for RRS in the eastern equatorial
Pacific cold tongue, there is a local maximum seen for Chl-a
extending much further west. Also notable are the patterns of
Chl-a’s σens in the Southern Ocean that are much less intense
than for RRS, while it is consistently high in the northern
high latitudes. The global median of σens is 0.0034 mg m−3

with most values below 0.1 mg m−3 [Fig. 12(b)], while the
median ratio of σens and annually averaged Chl-a is 2.2%. The
high range of σens, largely associated with the high latitude
northern hemisphere, is significantly contributed by variations
in [O3] [Fig. 12(b)]. The global median of σens when only [O3]
is perturbed ([O3] case) is 0.0025 mg m−3 (1.6% in relative
terms), while it is 0.0018 mg m−3 (1.1% in relative terms)
when perturbing only the meteorological variables (MET
case). This relatively large impact associated with [O3] is due
to the inverse response observed for RRS in the blue and green
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bands (Fig. 8), all the more active in high latitudes with larger
optical paths. Obviously, these results could be very different
for other derived products, such as absorption or backscat-
tering coefficients, and this example on Chl-a suggests that
dedicated uncertainty propagation analyses would be needed
for each form of bio-optical algorithms.

An important assumption of the study is that the spread
within the ensemble data and/or the differences between the
CERA and reference (NCEP/TOMS) data (with frequency
distributions and median values given in Fig. 1 in the Sup-
plementary Material) are representative of the uncertainties
affecting the ancillary products. The former might be an
underestimate [32], while the latter is typical of the differences
that can exist between ancillary data distributed by various
organizations. As the two products cannot be both close to
the truth, their differences are related to the uncertainties of at
least one of them. It is interesting to notice that the ensemble
spread within the CERA data, σens, and the RMS difference
between the CERA and reference datasets, σdif , have important
patterns in common (e.g., in the Southern Ocean and North
Pacific for WS or SLP, in the subtropical region for PW
and RH, a latitudinal gradient for [O3] …), which supports
the idea that they offer a representative view of the relative
geographical distribution of the ancillary data uncertainties,
or at least allow a realistic sensitivity analysis on the AC
(see [8] for a more complete discussion). These elements,
associated with the application of the AC at a global scale
for a full year, indeed suggest that this study encompasses
a fairly comprehensive description of the influence of the
ancillary data uncertainties on the OC output products. This
being said, it is stressed that the results need to be considered
with caution as the variations observed for the OC products
are fully dependent on those associated with the ancillary data
(either expressed as σens or σdif ) and that a similar analysis
should be repeated with actual uncertainty estimates for the
ancillary data. It is also acknowledged that the observed vari-
ations do not include contributions associated with the fairly
coarse resolution (spatial and temporal) of the ancillary data
(typically 1◦ and 6-h-to-daily). For instance, WS in coastal
regions or in the wake of islands, or even NO2 in coastal
regions [14], show variations that are not well represented at
these scales. Therefore, conducting similar sensitivity analyses
at regional scales with appropriate datasets would be welcome.
It is also recalled that the study focused exclusively on the
effect of uncertainties in ancillary data, ignoring uncertainties
associated with the way they are used in the algorithms (related
to model errors). A typical example is significant uncertainty
related to the conversion from WS to white cap coverage
and radiance (e.g., [50]) that might be comparable to the
uncertainty on WS.

A comment is due to the systematic differences between the
CERA and reference datasets. Indeed, a change of ancillary
dataset would require an update of the system vicarious
calibration (SVC) coefficients [11], [51] that would remove
the impact of systematic differences (or bias) between these
data. It is, however, stressed that the systematic difference
observed between CERA and reference data (δdif ) accounts
for only a part of the observed differences (expressed by σdif ).

More importantly, the location of the SVC site operating
the Marine Optical Buoy (MOBY) close to the Hawaiian
archipelago [52] corresponds to fairly low values of δdif for the
meteorological variables and a negative value for [O3] (Fig. 5);
using bilinear interpolation on the four grid points surrounding
the buoy site, δdif is +1.1 m s−1, 0 hPa, −2.3 kg m−2,
0.9%, and −13 dobs for WS, SLP, PW, RH, and [O3],
respectively. Therefore, a correction of the SVC coefficients
due to a change in the source of the meteorological data would
not correct for much larger differences seen elsewhere, e.g.,
in the Southern Ocean for WS and SLP, or in the tropics for
PW and RH. In addition, these larger differences can either
be positive or negative, so an update of the SVC coefficients
could compensate for these differences only in some regions.
This is typically observed for [O3]: RRS products processed
with the CERA ozone data with updated SVC coefficients
would be brought closer to the standard RRS products obtained
with TOMS data at the latitudes of MOBY, but their dif-
ferences would further diverge at high latitudes. Actually,
what is known about the patterns of uncertainties affecting
ancillary data should be added as auxiliary information when
documenting the location of SVC sites [53].

The distributions obtained for statistical parameters such as
σens, σdif and δdif for a full-year show distinct spatial patterns
that consequently are often found in the OC output products.
Considering the range of perturbations applied, WS and RH
appear as the ancillary variables having the largest impact on
the OC variables such τa and RRS, with [O3] playing a role for
bands with high absorption, such as 555 nm. In the variance
space, the sum of variations observed in RRS when only one
ancillary variable is perturbed is close to the variations seen
when all five variables are perturbed, which suggests that
at first order, the effects are fairly uncorrelated. In general,
the variations observed for RRS are fairly low, representing
a few % of the average signal, but they are by no means
negligible; for instance, the median ratio of σens and the annual
average μyr is 2.8% at 555 nm, while the median ratio of σdif

and μyr is 7.6% for the same band. When comparing with the
natural variability expressed by σyr, the median ratio is in the
interval 6.3%–12% for σens, and 13.6%–32.9% for σdif .

In terms of recommendations, including the uncertainties
associated with ancillary data when building uncertainty bud-
gets for AC algorithms is certainly required, and for this,
having uncertainty estimates for each ancillary datum would
be useful. The distribution of representative ensemble datasets
would already represent a noteworthy step in the right direc-
tion.
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