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Abstract— Automated solutions for sea ice-type classification
from synthetic aperture radar (SAR) imagery offer an oppor-
tunity to monitor sea ice, unimpeded by cloud cover or the
arctic night. However, there is a common struggle to obtain
accurate classifications year round, particularly in the melt and
freeze-up seasons. During these seasons, the radar backscatter
signal is affected by wet snow cover, obscuring information
about underlying ice types. By using additional spatiotemporal
contextual data and a combination of convolutional neural
networks and a dense conditional random field, we can mitigate
these problems and obtain a single classifier that is able to classify
accurately at 3.5-m spatial resolution for five different classes of
sea ice surface from October to May. During the near year-long
drift of the Multidisciplinary Drifting Observatory for the Study
of the Arctic Climate (MOSAiC) expedition, we collected satellite
scenes of the same patch of Arctic pack ice with X-band SAR
with a revisit time of less than a day on average. Combined
with in situ observations of the local ice properties, this offers
up the unprecedented opportunity to perform a detailed and
quantitative assessment of the robustness of our classifier for
level, deformed, and heavily deformed ice. For these three classes,
we can perform accurate classification with a probability >95%
and calculate a lower bound for the robustness between 85%
and 88%.

Index Terms— Machine learning, robustness, sea ice, synthetic
aperture radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) enables the monitoring
of sea ice, unimpeded by cloud cover, weather effects,

or the absence of sunlight. To this day, operational ice charting
from SAR scenes is still largely carried out manually. This
places a restriction on the resolution and frequency of updates.
A solution to finding suitable automatic counterparts has
obvious advantages, in both time investment and detail of
classification. It is not feasible for a human to segment pixel
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Fig. 1. Chart showing the mean sigma nought calibrated backscatter for the
HH band, for LI and DI from October to May. The data are extracted from
52 manually labeled TerraSAR-X scenes.

by pixel, while this poses no problem to an autonomous
algorithm. Such autonomous solutions have been proposed as
early as 1986 [1]. Early algorithms were based mainly on
extracting texture and polarimetric features from the image
and then performing classifications using lookup tables [2]
or Bayes classifiers [3]. In parallel, the idea of using neural
networks for the same task was also investigated [4]. Similar
data-driven algorithms are since becoming more attractive,
as the volume of available data and the computational power
are steadily increasing. Algorithms vary from simpler artifi-
cial neural networks using initially computed texture features
[5]–[8] or unsupervised segmentation, with manual segment
selection [9], [10] to convolutional neural network (CNN) and
deep learning techniques [11]. Historically, these approaches
have yielded good results for winter and spring seasons [12],
[13], where the pack ice is largely dry and changes in ice
characteristics are usually minimal. During freeze-up and
melt periods, however, classification becomes increasingly
difficult. The main challenges here are wet snow lowering
radar penetration depth, snow metamorphism, and increased
ice dynamics [14]. We observe increased backscatter in those
transitional seasons and a general downward trend in radar
response after freeze-up (Fig. 1). However, the warmer seasons
also bring a loss of contrast between the ice types.
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Due to the decreased penetration depth, the SAR texture
features, essential to most autonomous classifications, become
decreasingly reliable as the backscatter signal becomes more
uniform across the different ice types. A possible approach to
tackling this is the inclusion of more contextual image data,
for example, with larger sliding windows around the ice to
be classified. Then, using automated feature extraction and
classification with a CNN is especially helpful because the
neural network can learn to relate all the information in the
window to only the center pixel one that is trying to classify.
Thus, it handles large contextual windows better than texture
feature-based classification. Recently, it has, for example, been
successfully employed for C-Band Sentinel 1 imagery [11]
with good results at lower resolution. In this work, we further
develop such a classifier, to be able to deal with high-resolution
X-band data.

C- and L-band SARs have historically been preferred for
sea ice classification. Not only is there greater coverage, with
large satellite missions such as Sentinel-1 and Radarsat, but
also longer wavelengths offer bigger penetration depths [15]
and make it easier to discriminate between ice classes from
backscatter and texture features alone. The classification from
X-band SAR consequently has more to gain from the inclusion
of additional contextual image data and can provide ice types
at high resolution.

We propose a scheme that allows to classify pixelwise at
high accuracy by using context windows at various zoom
levels. In a postprocessing step, we reintroduce some spatial
awareness by using a dense conditional random field (DCRF).
This concept of adding spatially aware boundary refinement
has been implemented in image segmentation as early as
2014 [16]. Random fields have been used successfully in
the past for automatic ice charting [17] and have shown
promise as a postprocessing step with sparse labels in image
processing [18]. The combination of a CNN and conditional
random field has also recently been shown to be successful
for ice concentration mapping [19].

A central challenge in producing a robust classifier lies
in the absence of comprehensive ground-truth data. Despite
large amounts of satellite data being collected daily, in situ
observations are rare. Some approaches have used manually
labeled operational ice chart data as ground truth, but the
polygon size of ice classes is quite large, so the effective res-
olution is low and it is known that the same patches of ice are
therefore sometimes labeled inconsistently in different scenes.
This problem is discussed in [11], where a 50×50 pixel patch
of Sentinel 1 imagery is classified using a CNN. At such patch
size, the effects of the rough labeling are still manageable,
but when classifying smaller patches, it becomes increasingly
impactful. Classification at high resolution thus relies on
manually labeled data. Here, however, due to the dediousness
of the labeling process, there is naturally less data. Thus,
it often struggles to capture the span of possible backscatter
across different ice types—especially across different seasons.

To truly obtain a measure of robustness of a classifier, one
has to show continuity in the classification of overlapping and
near coincident SAR scenes, which demonstrates that a patch
of pack ice is predicted to be of the same class across different

scenes. For large lower resolution scenes, this is feasible,
but even here, much research (e.g., [20]) has been focused
only on few such overlapping scenes and robustness across
a greater range of conditions is still a challenge. At high
resolution, coverage is small, and thus, it is an even more
complex task to image a small region of pack ice for an
extended time. Not only does the drift of the ice have to be
tracked, but it also needs to be predicted, due to the delay
of the ordering and the capturing of a scene. Over the course
of Multidisciplinary Drifting Observatory for the Study of the
Arctic Climate (MOSAiC), this task has been tackled by a
variety of spaceborne SAR sensors and coordinated by the
authors. In this investigation, we use such a dataset captured
by the TerraSAR-X satellite in Dual-pol StripMap (HH, VV)
mode. It presents the opportunity to validate the robustness of
a classifier over an extended time period and a large number
of scenes.

While this research stands alone as to the applicability of
deep learning techniques for high-resolution SAR ice classifi-
cation, it also serves as a preliminary study for further inves-
tigations using the quantitative in situ data collected during
the MOSAiC mission, which is currently being processed and
quality checked [21] The aim is to use the robust techniques
described in this article in further research with high-resolution
airborne measurements [22].

II. DATA

The training and test datasets used in this article are com-
prised of 44 and 8 TerraSAR-X Dual-pol StripMap scenes,
respectively. The test scenes contain one randomly chosen
scene from every month of the drift. The data points extracted
from the 44 training scenes were split into two disjoint
training and validation sets, with a size ratio of 9:1. The
classifier is trained on the training set, while performance on
the validation dataset is used to stop the training in time to
prevent overfitting. The data used for robustness analysis are
made up of 162 scenes. We will henceforth refer to it as
the robustness evaluation dataset. The scenes were acquired
between September 2019 and May 2020 over or near the
Polarstern vessel, during its drift with the Arctic pack ice.
The two channels acquired are the HH and VV polarizations.
The images have a row and column spacing of 3.5 m and
are typically around 16 000 pixels × 4000 pixels in size. This
corresponds to 56 km × 14 km.

Labeling was done by hand on the basis of the X-band SAR
data for five classes chosen to be in line with qualitative in situ
observations made by members of the MOSAiC expedition.
First, we found suitable classes and respective areas to be
labeled using the in situ observations as a guide. Then, the
established logic was extrapolated to the rest of the areas
manually using the SAR data only. The five classes are shown
in Table I. The color coding used can be found there as well.

All scenes in the robustness analysis dataset entirely contain
the immediate area around Polarstern (a 3 km × 3 km square).
To keep similar time spacing between scenes, not more than
one scene was used per day.

Due to the drift with the Arctic pack ice, the RV
Polarstern entered very high latitudes at the beginning of 2020.
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TABLE I

TABLE SHOWING CLASS DEFINITIONS AND LABELS

Fig. 2. (a) Average incidence angle that the scenes were acquired at. The
red line at 45◦ indicates the limit of the full performance range of the satellite
sensor. (b) Mean ambient temperature measured on the Polarstern vessel over
the time period. (a) Incidence angle θ . (b) Temperature T .

In Fig. 2(a), we see that in this time, the SAR images were
consistently taken outside of full performance range, which
is between 20◦ and 45◦ for StripMap images. The SAR mea-
surements for such high incidence angles have significantly
lower signal-to-noise ratios, making it increasingly difficult to
differentiate ice types. Weather conditions varied throughout
the mission, including events such as storms and warming
periods [Fig. 2(b)]. Their effects in regard to this study are
constrained to the contribution to increased ice dynamics,
as the radar signal is not susceptible to atmospheric conditions
at X-band.

III. METHODOLOGY

First, we will give an overview of the general approach, and
then, the individual parts are described in detail. The core of
the classifier is a CNN. For added robustness, a discriminator
and a DCRF are used for further processing. The algorithm
assigns one of five classes (Table I) to a given 5 × 5 pixel
patch of an SAR imagery.

Fig. 3 shows the classification pipeline for the algorithm
used. After preprocessing, features of varying scope and reso-
lution (zoom levels) are supplied along with each 5×5 image
slice that is to be classified (Table II). A CNN is fed these
features and makes an initial prediction for that patch (see
Fig. 10 in the Appendix for details). The predictions are then
checked by a second discriminating network that removes
some labels, deemed to be misclassifications. Finally, a DCRF
smooths over the labels by relating the spatial context of the
labeled data and the underlying image. This also fills the
missing values left by the discrimination step.

1) Preprocessing: In the initial step of data preprocess-
ing, the original dual-polarized SAR scene is calibrated to
slant range (β0) and a false-color composition of the data
is constructed. The composition consists of four channels:
HH, VV, HH-VV, and HH/VV. The difference and ratio are
common for manual ice charting and visualization of SAR

Fig. 3. Flowchart showing the pipeline for the proposed ice classification
algorithm.

scenes, as they promote contrast across ice types and open
water (OW). In addition, they have been shown to be useful
for classification in the past [23]. The raw backscatter channels
HH and VV are rescaled with a tanh function. The composite
features HH-VV and HH/VV are also scaled with a tanh
function and an additional offset. The exact parameters are
manually selected to give a good contrast. While the network is
in principle able to learn these features, feeding them directly
alleviates some of the workload of the network and gave
improved results in preliminary testing.

2) Convolutional Neural Network: The core of our classifi-
cation approach is a CNN (see Fig. 10). It predicts one of five
classes for each 5 × 5 pixel patch of the SAR scene. These
patches (“local features”) are appended by some additional
information of the surroundings. The first of these additional
features is a 16 × 16 pixel patch (“superlocal feature”) of the
surrounding area, which is taken from the SAR scene rescaled
by a factor of 5. Thus, moving to the right one 5 × 5 patch in
the original image moves one pixel to the right in the rescaled
product the superlocal patch is taken from. This patch gives
some insight into the surrounding area, allowing the algorithm
to take advantage of surface features nearby, such as ridges or
leads, to gain some spatial context. For example, the CNN
might learn that heavily deformed ice (HDI) is more likely to
occur with well-defined edges, such as the edge of a multiyear
ice floe, in the surrounding area. The patch sizes of 5 × 5 and
16×16 were established empirically. In general, both of these
are compromises of resolution and accuracy. The larger the
windows will get, the better the accuracy will become (as
there is more information in the image to use). However, the
more difficult also becomes for the classifier to relate all this
information to only the data in the center of the patch. This
leads to a lack of effective resolution in the classified product.

To give a more complete picture, the entire scene (or
the largest possible near quadratic slice of it) is additionally
resized to 64 × 64 pixels and input to the model (“global
feature”). The StripMap data used here are captured in rec-
tangular strips, typically around four times longer than wide.
In such a case, we split the scene into four near quadratic
slices along the azimuth axis (the long axis). The global input
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feature allows some insight into large-scale features, such as
the general brightness of the scene, interfaces between ice
masses, or (not important for this dataset) the ice–water edge.
These can then be related to the high-resolution features and
particularly helped with classification of scenes that had very
high backscatter (e.g., melt onset) or low radar response (e.g.,
high incidence angle). As we parse the entire range domain of
the scene here, it is no longer possible to ensure that the region
to be classified lies in the center of the image. Consequently,
a fourth input (“extra feature”) consisting of four parameters is
provided, containing the position of the region to be classified
in the larger 64×64 input. It also contains the incidence angle
of the patch and the time at which the product was acquired.
A summary of these input features is included in Table II.

The training dataset consists of 44 scenes. Most often, the
scenes are split into four near quadratic slices for the global
feature. Thus, the number of different inputs for that feature
is only ≈44 × 4 = 176. A substantial risk that the algorithm
overfits to the training data lies here. It might memorize where,
in each scene, which ice class is located, rather than deduce
the ice class from a combination of the inputs. To combat
this potential problem, some data augmentation techniques are
applied [24]. Specifically, we use random crops, rotations, and
flips.

The effect of the incidence angle on radar backscatter is
well researched, and thus, its inclusion in the model is easy
to motivate. Incidence angle normalization to σ0 has been
shown to be useful in the past, but this does not account for
different gradients across the ice classes, which are reported,
for example, by Mahmud et al. [25] and Lohse et al. [26].
In our study, we included the incidence angle as an input to
the classifier. This gives the model the opportunity to learn
these differing incidence angle dependencies of the sea ice
backscatter, similar to the classifier in [26], provided that
the range of incidence angles is covered well enough by the
training data. However, as we do not force the network to
make use of the incidence angle information, this is only done
implicitly. Because our classifier spans multiple seasons that
have strong correlations to ice-type distribution and the radar
response, including the acquisition time also proved to be a
helpful parameter for the model. As we only have 44 different
acquisition times, we applied strong artificial noise to reduce
the risk of overfitting. The random noise added is sampled
from a normal distribution with a standard deviation of one
week.

The exact details of the parameters of our network are
largely based on heuristics and our experiments. The 3 × 3
kernel size has proven most useful, as our input features
are not that large themselves. We found more success in
downsampling with convolutions with step size 2, instead of
max-pooling layers—in tests, it seems that the network lost a
little information upon in the max-pooling layer that was still
useful for classification. We apply LeakyReLU as an activation
function, which introduces some necessary nonlinearity and
does not suffer from the problem of vanishing gradients.
The latter property is especially useful for deeper networks.
We used strong regularization with multiple dropout layers
with a dropout rate of 0.3, as our data are still quite sparse

TABLE II

INPUT FEATURES AND THEIR CONTENT. THE RESOLUTION rrel IS
GIVEN RELATIVE TO THE FULL RESOLUTION PRODUCT. THE FOUR

CHANNELS USED ARE (HH, VV, HH-VV, AND HH/VV).
THE COORDINATES xglobal AND yglobal ARE THE NORMALIZED

PIXEL COORDINATES OF THE REGION TO BE CLASSIFIED
IN THE RESCALED GLOBAL PATCH

in contrast to the scope of possible backscatter signatures
from sea ice, and thus, overfitting is a concern. In addition,
we opted for small spatial dimensions after convolutions
(before flattening) and lower number of neurons to force
the network to parameterize the input features—which lead
to better extrapolation to unseen data. Batch normalization
in the early layers slightly sped up the convergence of our
network. The Adam optimizer was used to update weights
during training.

The network uses a categorical cross-entropy loss appended
by an additional term from the FEature and Spatial relaTional
regulArization (FESTA) loss [18], specifically the distance of
the softmax outputs. The additional term encourages the sep-
aration of labels independent of correct classification, which
helped with the convergence of our classifier.

In addition, we make use of smoothed labels. Instead of
feeding a one-hot vector as a label—where the correct label
is denoted as 1 all others as 0, uncertainties are integrated
into the labeling in a rudimentary way. The idea is to treat
the label vector as a set of probabilities rather than as a
Boolean vector. This is particularly useful for the ice classes
where manual labeling is most error-prone. In our case,
distinguishing deformed ice (DI) and level ice (LI) benefitted
most of this treatment because it is partially nonlocal property.
Explicitly, ice has varying deformations across larger regions
so that individual pixel-sized areas might be smooth, but it is
apparent from the surrounding ice that the area is deformed.
We found that including uncertainties only minimally lowered
the accuracy. However, it leads to significantly increased
robustness, which we preferred in this case. This is in line with
observations made in [27]. To smooth the labels, we sample
a random number from a uniform distribution in a given
interval that conveys the uncertainties. The intervals used
across the different classes are listed in Table III and were
chosen qualitatively through testing and in line with experience
of which areas are difficult to label. Note that after random
sampling, each output vector is normalized.

The network was implemented using the TensorFlow library
for python [28]. On an Intel i7-9850H, a commercially avail-
able midrange CPU, inference for an entire scene consisting
of ≈2.5 × 106 classifications takes around 8.5 min.

3) Discriminator: The discriminator model has a
near-identical structure to the classifier (Fig. 11), except
for the additional input layer containing a proposed label
and the output being 1-D. Its task is to check whether the
proposed label is correct or not. This binary classification is
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TABLE III

LABEL SMOOTHING PARAMETERS USED. U[a,b] DENOTES A RANDOM
SAMPLE FROM A UNIFORM DISTRIBUTION FROM THE INTERVAL [a, b].

THE LABEL VECTORS WERE NORMALIZED

AFTER RANDOM SAMPLING

fundamentally easier than predicting one of five classes and
can correct for some systematic errors the classifier makes.
The discriminator is trained on randomly mislabeled data as
ground truth for mislabeled patches, which performed better
than a discriminator trained specifically on the correctly
labeled and mislabeled data of the classifier. We suspect this
to be the case because specific training promotes an overfit
to training data. This step particularly helps with mitigating
OW and thin ice (TI) misclassifications.

4) Conditional Random Field: The pixels deemed to be
wrongly classified by the discriminator are removed from the
classified product. Then, a DCRF is applied, which has a bilat-
eral kernel next to the unary potential. This fills the missing
values as well as clears up some noise-like mislabels, such as
single pixels classified differently than all their surrounding
pixels. The application of the DCRF is straightforward using a
Python implementation [29] for an algorithm published in [30].
A bilateral approach is used, with the energy function given
by a unary φu and a bilateral term φb, such that for N feature
vectors yi and labels xi

E =
N∑
i

φu(xi , yi ) +
N∑
i, j

μ
(
xi , x j

)
φb

(
yi , y j

)
. (1)

The label compatibility function μ is learned and describes the
relationship of how likely labels are to occur next to each other.
Thus, incompatible labels close to one another are penalized
by the energy function. In this case, the features consist of
a vector of color intensities �I = (Ir , Ig, Ib) across the RGB
channels of a color composite image as well as the position
of the pixel �P . The RGB channels in the color composite
image are VV, HH-VV, and HH/VV, appropriately scaled to
capture the relevant dynamic range. The unary potential is
given as the logarithm of the probability p(xi |yi) of label xi

given feature yi . It is modeled by the softmax output of our
classifier. The bilateral term consists of weighted differences in
position and color. Thus, the energy function can be expressed
as

E =
N∑
i

log p(xi |yi) +
N∑

i �= j

[
� �Pi − �Pj�

sxy
+ ��Ii − �I j�

sc

]
(2)

where �. . .� denotes the Euclidian norm. The weights sxy

and sc were adjusted manually to balance smoothness and
classification accuracy.

A. Evaluation

As was mentioned in Section I, we have a large number
of scenes to test the robustness of our classifier across eight

months of different conditions in the arctic ice. The idea is
to test the ice distribution of the same patch of sea ice over
this entire time period and investigate how it changes over this
timeframe. This should give some insight into how stable the
classifier performs at high resolution. Given the positioning of
the RV Polarstern, there is no pack ice that we can track more
accurately than the ice around the research vessel itself. Thus,
this is the region we will use. We evaluate all scenes in the
robustness analysis set and then calculate the probability of
pixels not changing class, which we can use as a measure of
robustness. The window chosen is approximately 3 km × 3 km
in size. Of course, we do not expect the ice to stay static over
the entire time period; ice dynamics and new ice growth will
change the ice-type distribution. A rapid change in ice type is
constrained to the OW and TI classes. Change due to shifting
of the floe is easily spotted by looking at the individual images
and thus can be considered qualitatively during the evaluation
of our model. It should also be noted that care was taken not to
label the area used for robustness analysis in the training set,
so the classifier has not “seen” these regions. Using the ship’s
GPS information, we can correct for the drift of the ice using
a coordinate transformation to local ship coordinates [31] and
identify the same area for each scene.

To obtain a quantitative measurement of robustness,
we define a robustness criterion for our analysis. We will
deem a (pixel-sized) area of ice to be classified robustly in
one scene if the same prediction is made for the previous and
the following scene. As we want to define this criterion for
a single scene, note that the computed probability P3

i (c) of
finding the same class c at the same spot for a scene i and its
two nearest neighbors is a product of the probabilities Pi(c)
of having robustly classified in each of the scenes

P3
i (c) = Pi−1(c)Pi (c)Pi+1(c). (3)

With the assumption that Pi (c) ≈ Pi+1(c), we will approx-
imate the probability Pi (c) of having classified robustly for
scene i and class c as

Pi (c) = (
P3

i (c)
) 1

3 . (4)

The regions of ice we use to test this are the pixels in the
stabilized images, such as seen in Fig. 7. In the following
analysis, we make statements based on the assumption that
the same pixel over three scenes actually maps to the same
physical area of ice for three consecutive scenes. However,
we note that this is not universally true, as the stabilization we
use is not perfect and ice dynamics are entirely neglected in
this assumption. We treat these phenomena as some underlying
noise in the analysis and must hence satisfy ourselves with
computing a lower bound for robustness.

IV. RESULTS

The classifier was trained on 44 scenes and tested on 8,
which does not contribute to training data. The eight scenes
that make up the test set are randomly selected scene from each
month of October–May. We will be looking at the performance
of the classifier across the two datasets. As a comparison,
we also use a simple VGG16-inspired [32] architecture as an
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Fig. 4. Illustration of robustness analysis for two consecutive days in December 2019. (a) and (b) Subscenes after classification and discrimination. In
(c) and (d), DCRF has been applied. (e) and (f) Scenes cropped and rotated to the region of interest. The false-color compositions are using (VV, HH-VV,
and HH/VV) in the (R, G, and B) channels, respectively. The top two rows additionally show the area used for robustness analysis, which is cropped to in
the final row. (a) December 13, 2019, θinc = 45.69◦ . (b) December 14, 2019, θinc = 49.55◦ . (c) December 13, 2019, θinc = 45.69◦ . (d) December 14, 2019,
θinc = 49.55◦ . (e) December 13, 2019, θinc = 45.69◦ . (f) December 14, 2019, θinc = 49.55◦ .

TABLE IV

CONFUSION MATRIX SHOWING THE PERCENTAGE OF THE VGG16’S

PREDICTED CLASSES (COLS) FOR ALL GROUND-TRUTH
LABELS (ROWS) ON THE TRAINING DATA. CLASSES

ARE OW, TI, LI, DI, AND HDI

alternative classifier (see Fig. 12 in the Appendix for details),
which classifies based only on the superlocal 16 × 16 input
data. The classifiers’ performances are shown in Tables IV
and V for the training set and Tables VI and VII for the test set.

TABLE V

CONFUSION MATRIX SHOWING THE PERCENTAGE OF OUR

NETWORK’S PREDICTED CLASSES (COLUMNS) FOR ALL
GROUND-TRUTH LABELS (ROWS) ON THE TRAINING DATA.

FOR EXAMPLE, 0.11% OF DATA POINTS OF OW WERE

INCORRECTLY PREDICTED TO BE TI. CLASSES
ARE OW, TI, LI, DI, AND HDI

The two classes on which our and the VGG16 style classifier
perform worst are OW and TI. The classification across the
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TABLE VI

CONFUSION MATRIX SHOWING THE PERCENTAGE OF THE
(USED FOR COMPARISON) VGG16 STYLE NETWORK’S PREDICTED

CLASSES (COLS) FOR ALL GROUND-TRUTH LABELS (ROWS)
ON THE TEST DATA. CLASSES ARE OW,

TI, LI, DI, AND HDI

TABLE VII

CONFUSION MATRIX SHOWING THE PERCENTAGE OF OUR

NETWORKS’ PREDICTED CLASSES (COLS) FOR ALL GROUND-TRUTH

LABELS (ROWS) ON THE TEST DATA. FOR EXAMPLE, 8.12% OF

DATA POINTS OF OW WERE INCORRECTLY PREDICTED TO BE
TI. CLASSES ARE OW, TI, LI, DI, AND HDI

other three ice classes is more accurate, particularly for our
classifier. HDI stands out as being especially easy to classify
accurately. OW and young ice examples are scarcest in the
training and test scenes. Despite balancing the amount of
samples per class upon training, this means that the dataset
is a lot less diverse for these samples. In other words, the
number of regions with OW or TI is significantly lower than
that of the other classes. This can be seen (albeit at a smaller
scale) in Fig. 5.

To illustrate the entire process of assessing our classifier,
we give an example with two consecutive scenes from Decem-
ber 13 and 14, 2019 in Fig. 4. In the first step, the StripMap
scene is cropped along the longer range axis to a near quadratic
slice, which is needed for the global input feature (Table II).
This slice is then labeled using the classifier and checked
by the discriminator. The results of this step are shown in
Fig. 4(a) and (b). The next step is to apply the DCRF to
refine labels and fill missing values left by the discriminator.
The results of the DCRF for the two example scenes are shown
in Fig. 4(c) and (d). Finally, the image is rotated and cropped
to the surroundings of the RV Polarstern, allowing us to image
the same region of ice continuously. For the two scenes from
December used as an example, the cropped images are shown
in Fig. 4(e) and (f).

By executing the procedure shown in Fig. 4 for all scenes
from October to May, we have the data necessary to perform
the quantitative robustness analysis. Fig. 5 shows the evolution
of the predicted ice-type distribution over the investigated time
span.

The distribution chart allows some insight into the per-
formance of the classifier over large timescales and shows
lower stability, especially in the discrimination of level and
DI. Spikes of OW and TI are generally tied to some ice
dynamics. To gain some additional insight into the variance of

Fig. 5. Chart showing the predicted ice distribution in the 3 km × 3 km
area surrounding the Polarstern vessel from October to May.

Fig. 6. Relative standard deviation of the distribution of LI, DI, and HDI at
each date and the four nearest scenes.

these classes, we compute the relative standard deviation of the
ice-type fraction for every scene and its four nearest neighbors
(Fig. 6). When interpreting this as a deviation of the classifica-
tion, we implicitly assume the real ice-type distribution to be
stable over five neighboring scenes, which neglects physical
changes of the surface. Specifically, we cannot include the
OW and TI classes, which are rare and only present in case
of strong sea ice dynamics such as leads forming and thereby
not able to be analyzed in this way, as we cannot assume these
classes to be stable over time.

The chart of the standard errors reveals three time periods
with heightened error. In fact, the one stable period around the
beginning of January stands out. Here, conditions are optimal,
as ice dynamics are minimal and the incidence angle is inside
the full performance range. While the early and later periods of
increased variance can likely be explained by snow metamor-
phism, wet snow or increased ice dynamics in melt and freeze
seasons, the increased uncertainties from mid-January to early
March can be rationalized with the increased incidence angle
during this time period [see Fig. 2(a)]. It is also apparent that
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Fig. 7. Pairs of classified scenes from time intervals with low robustness.
The left parts show the cropped classified image and the right parts are false-
color compositions. (a) November 22, 2019, θinc = 40.71◦ . (b) November 25,
2019, θinc = 43.33◦ . (c) February 29, 2020, θinc = 57.36◦ . (d) March 1, 2020,
θinc = 54.27◦ . (e) May 2, 2020, θinc = 36.90◦ . (f) May 3, 2019, θinc = 50.82◦ .

this cause of error plays a role in the increased uncertainties
observed during the melt season.

To qualitatively gauge the performance of the classifier in
these three periods with increased error, we highlight three
pairs of scenes (Fig. 7) from those time spans, specifically
late November, late February, and finally early May.

The scenes from the end of November are only three days
apart yet drastically different due to ice dynamics. In the
earlier scene [Fig. 7(a)], one can see some freshly frozen over
leads with TI cover, and in the later scene [Fig. 7(b)], the
leads have closed up again and all signs of young ice have
disappeared. These pictures document the most drastic of these
events, where the central floe split; however, most of the strong
ice-type deviations in early winter can be attributed to such
events and are thus real changes of the surface. The pair of
scenes from late February [Fig. 7(c) and (d)] are both taken
at very high incidence angles, far above full the performance
range of 20◦–45◦. It is evident from the images that the signal
is significantly weaker. At this angle, we see an overestimation
of the DI class in the second image. This is especially notable
in the top-left quarter of the patch, which was dominated
by a LI surface, but is classified as almost entirely DI in
the scene from the first of March. At such high incidence
angles, the classification seems to become more volatile.
Two scenes from early May [Fig. 7(e) and (f)] give insight
into how both ice dynamics and incidence angle changes
are responsible for high variance in the scenes from early
May.

Most of the high variances in ice class distribution change
can be attributed either to ice dynamics or to struggles with
high incidence angles. The classifier seems robust in the
discrimination of classes with a larger area, but the transitional

Fig. 8. Chart showing a moving average of the probability Pr (c) of robust
classification for three ice classes: LI, DI, and HDI. We compute Pr (c) as the
percentage of robustly classified pixels of class c per scene.

TABLE VIII

AVERAGE PROBABILITY Pr (c) OF ROBUST CLASSIFICATION FOR

LI, DI, AND HDI ACROSS THE ENTIRE DATASET

TABLE IX

BOUNDS OF ROBUST AND CORRECT CLASSIFICATION FOR

LI, DI, AND HDI OF THE CLASSIFIER

areas between classes are seemingly classified less robustly
[see the extent of the LI on the left of the image Fig. 7(e)
versus Fig. 7(f)]. This effect is particularly evident at high
incidence angles.

In Fig. 8, we can observe the development of robust classifi-
cation across the analyzed time span. This was smoothed over
by a moving average, weighted with a quadratic function, and
averaging over five scenes. Note that the dip in the beginning
is due to strong ice dynamics. In Fig. 9, we show a comparison
of our model with the VGG16-inspired classifier for two
months. We also compute an average robust classifications
probability over the entire time span. The results are shown in
Table VIII.

We now propose a probability Prc(c) of robust and correct
classification as the product of the two, i.e.,

Prc(c) = Pr (c)Pc(c). (5)

With classification probabilities Pc from Table VII and the
lower bounds of Pr from Table VIII, we can compute the
bounds of probabilities of robust and correct classification
Prc for the three solid ice classes. The results are shown in
Table IX.
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Fig. 9. Charts showing a moving average of the probability Pr (c) of robust
classification for three ice classes LI, DI, and HDI, for our classifier and a
VGG16-inspired model. (a) Our classifier (Fig. 3). (b) VGG16-inspired CNN
(Fig. 12).

V. DISCUSSION

Before turning to the advantages of our approach, we will
mention some limitations and challenges. First, let us dis-
cuss the data itself—the foundation of any machine learning
approach. The training dataset of 44 scenes is, of course, not
comprehensive enough to capture all the intricacies of different
backscatter from varying ice types, which makes it difficult to
classify robustly. Leads freezing over are a good example for
one of these regions. Not only is their occurrence sparse in
the dataset, but also the dynamics during initial freeze over
have a great effect on radar response and are fast relative
to the revisit time of the satellite. This makes it difficult to
capture enough samples in the training set for the classifier to
correctly interpret the entire space of possible radar backscat-
ter. We can observe this struggle in some scenes where the
radar response of a frozen lead is so bright, and it becomes
very similar to HDI backscatter. This can, for example, occur
when frost flowers form atop the lead, leading to high volume
scattering. Here, the classifier struggles to differentiate the two
classes.

The OW classification also proved to be a challenge for
this dataset. Traditionally, the polarization ratio proves very
useful in distinguishing this class. We can observe that at high
incidence angles, the radar response becomes very similar to
that of young smooth ice and the discrimination between the
two suffers.

Manual labeling is definitely the greatest source of underly-
ing error and bias. Despite having mitigated the effect of errors
with the use of smooth labels, there are some biases arising
from manual labels that smooth labeling cannot compensate.
This bias is not merely a case of being more likely to mislabel
a certain class—this can be kept minimal by only labeling
classes that are discernible with certainty—it is rather that
the choice of labeled regions is already filtered by a human
selection process. For example, there is a tendency not to label
a region with a small area as it would make the labeling
process very tedious. This translates to the classifier that
struggles with smaller regions of one class, often wrongfully
mislabeling them to be the same as the surrounding ice class.
In addition, when manually selecting polygons, labels at the
boundaries between classes are naturally much sparser than
labels in the center of ice classes, which leads to increased
difficulty of classification in these transitional areas between
ice classes. When viewing the classified robustness analysis

data, this effect was most obvious as the boundaries between
classes were shifting, while pixels in the center of the same
ice regions appear robust. This bias could be eliminated by
deriving ground-truth data from in situ measurements.

The discrimination of DI and LI relies on nonlocal features
and hence suffers most from the abovementioned boundary
problem. DI is not always identified by a higher brightness
and lower polarization ratio for each individual pixel but also
by the density of brighter pixels in the surrounding area. Here,
it is especially difficult to define hard boundaries between
classes, as the transitional areas between level and DI are not
boundaries but a continuum. Hence, it is difficult to define a
hard boundary when labeling data manually. Generally, the
rule when labeling manually is to only label areas, where
one is confident in the label. Therefore, these transitional
areas are not only difficult to classify but also sparse in
the training dataset, which culminates in misclassification
in the transitional areas of DI and LI classes, especially at
high incidence angles, where the signal-to-noise ratio suffers
(Fig. 7).

The success of the algorithm is self-evident in the discrim-
ination of ice classes at high accuracy in multiple seasons
and becomes increasingly apparent in contrast to the VGG16
(see Fig. 9 and Tables IV–VII). Furthermore, the areas of
lower robustness can be seen to occur at high incidence
angles, well outside of the full performance range of the radar
instrument.

Weather effects contribute significantly to snow wetness,
metamorphism, and increased ice dynamics. The most notable
of these is the seasonal warming and freezing, which leads
to decreased robustness in our analysis (Fig. 8). How-
ever, our robustness criterion also fails to consider these
weather-induced changes and we have less training data avail-
able in these time periods as they are at the very beginning
and end of the study period. Thus, it is difficult to isolate
and make statements about the effect of weather events on the
performance of classification.

We have tested this classification approach on Sentinel-1
scenes and obtained the comparable results. We found that the
most important parameters to tune, when applying these ideas
to different sensors, are the sizes of the contextual windows
(“local” and “superlocal” features). On large-scale images, the
inclusion of the “global” feature was particularly successful in
ice and OW discrimination in the marginal ice zone, where the
ice water edge could be detected.

VI. CONCLUSION

We have used accurate geolocation and drift correction
to construct a dataset that enabled testing for robustness of
SAR ice-type classification quantitatively and we are able
to show that our proposed classification method performs
accurately and robustly for three surface ice classes: LI, DI,
and HDI. OW and TI classes have proven harder to classify.
However, it needs to be noted that these classes are also
sparser in the dataset and have also been more difficult to
identify in some scenes, especially at higher incidence angles.
Due to their dynamic nature, we are not able to perform a
robustness analysis for these two ice types. We could also
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Fig. 10. Illustration of the CNN architecture used in the proposed classifier. Wherever the spatial dimensions in the convolutional blocks are downsampled
(decrease by more than a factor of 0.5), a stride of 2 was used. Not included in the image are the batch normalization layers after the first convolutional
layers for each input and the dropout layers used for regularization during training. The parameters xg and yg denote the coordinates of the location of the
local patch in the global patch, θ is the incidence angle, and t is the acquisition time. Parameter count = 120 421.

Fig. 11. Illustration of the CNN discriminator architecture used in the proposed classifier.
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Fig. 12. Illustration of the VGG16-inspired network architecture used as a comparison. Parameter count = 9 889 605.

identify regions of increased classification inaccuracy and lack
of robustness that coincide with shortcomings of a manual
labeling process. Already, now, our ice-type dataset can pro-
vide helpful information for upscaling other MOSAiC in situ
data to a regional context, such as sea ice physical and chem-
ical properties or ecological samples, which all vary by ice
type.

As was mentioned in Section I, this work serves partially
as a preliminary study to using these classification methods
in analysis with fused measurements, such as airborne laser
scanner (ALS) data, e.g., from MOSAiC [21]. Here, we can
derive ground-truth labels from the ALS data without any
human interaction and thus eliminate the greatest source of
bias in the underlying dataset.

APPENDIX

NETWORK ARCHITECTURES

See Figs. 10–12.
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