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Abstract— The spectral and spatial resolutions of modern opti-
cal Earth observation data are continuously increasing. To fully
utilize the data, integrate them with other information sources,
and create applications relevant to real-world problems, extensive
training data are required. We present TAIGA, an open dataset
including continuous and categorical forestry data, accompanied
by airborne hyperspectral imagery with a pixel size of 0.7 m.
The dataset contains over 70 million labeled pixels belonging
to more than 600 forest stands. To establish a baseline on
TAIGA dataset for multitask learning, we trained and validated a
convolutional neural network to simultaneously retrieve 13 forest
variables. Due to the size of the imagery, the training and testing
sets were independent, with strictly no overlap for patches up
to 45 × 45 pixels. Our retrieval results show that including
both spectral and textural information improves the accuracy of
mapping key boreal forest structural characteristics, compared
with an earlier study including only spectral information from
the same image. TAIGA responds to the increased availability
of hyperspectral and very high resolution imagery, and includes
the forestry variables relevant for forestry and environmental
applications. We propose the dataset as a new benchmark for
spatial–spectral methods that overcomes the limitations of widely
used small-scale hyperspectral datasets.

Index Terms— Boreal forest, convolutional neural networks,
hyperspectral imaging (HSI), multitask learning.

I. INTRODUCTION

SATELLITE-BASED remote sensing is a widely accepted
tool in forest inventory and for monitoring the extensive

forests covering approximately one-third of the world’s land
surface. This essential service is largely based on high- to
medium-resolution multispectral optical instruments with pixel
sizes of 10 m or more. While the availability of imagery
with better spatial resolution, 1 m or less [called very high
resolution (VHR)] is increasing rapidly, its utility in forestry
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applications has not been demonstrated yet [1]. VHR images
are useful in visual analyses, but lack the large-scale automated
processing chains required for routine forest applications.

A natural approach to automate VHR image processing
is deep learning, building on its breakthroughs in computer
vision and speech recognition. Over the past few years, it has
been increasingly applied in Earth observation (EO) [2]. Deep
learning methods have been successfully adapted to the spec-
tral, spatial, and temporal specificities of EO imagery [3], [4].
In parallel with the ongoing enhancements in spatial image
resolution, hyperspectral imaging (HSI) aims for the same
in the spectral dimension, collecting continuous reflectance
spectra using hundreds of narrow reflectance bands, providing
the best discriminating power in the spectral domain [5]. The
imagery produced by a HSI sensor is often viewed as a
data cube with three continuous axes: one spectral and two
spatial. Building upon the legacy of earlier machine learning-
based spatial–spectral methods [6]–[8], deep learning has also
been applied to HSI data cubes, with convolutional neural
networks (CNNs) being the most popular approach [9]. CNN
models can extract discriminatory features from the data cube
and exploit its spectral and spatial information. The use of
both spectral and spatial information for hyperspectral image
analysis has been shown to improve the accuracy in image
classification [10]–[12]. Several reviews are already available
on machine learning in HSI analysis [13]–[15], indicating that
the field has already an established status.

Hyperspectral image classification is the most popular
method for scene analysis from HSI [16]. Here again, CNNs
have been found to be more accurate compared with other
deep learning methods or the more traditional classification
algorithms, e.g., support vector machines (SVMs) [10], [17].
Recently, 3-D CNN architectures, which use both spectral and
spatial information, have been used for the classification of
hyperspectral data [12], [18]. In addition, novel deep CNNs
that integrate both spatial context and spectral signature have
been designed for HSI classification in a few studies [11],
[19]. Despite numerous works on deep learning for HSI, there
remain research gaps and a fundamental limitation related to
commonly used HSI datasets.

Prediction of continuous biophysical variables from HSI EO
data with CNNs is not yet well studied [20], [21]. Still, these
data–method combination has been used in a few studies. For
instance, Liu et al. [22] achieved good accuracy in predicting
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soil clay content with a 1-D CNN approach (the coefficient of
determination, R2 = 0.83). CNN has also been found to have
great potential for cyanobacteria detection and quantification
with HSI [23].

Multitask learning, defined as jointly solving a set of
prediction problems by sharing information across tasks [24],
has attracted even less attention in scientific publications, but
the situation is improving rapidly [25], [26]. In practical EO,
it corresponds to the joint classification and regression (vari-
able estimation) with a training dataset of mixed continuous
and categorical variables. Furthermore, we chose multitask
learning because in forest mapping and many other real-world
problems, a coherent retrieval of not only target classes, but
also numerous parameters for each detected class, is essential.
With a multitask learning approach, the model has an oppor-
tunity to learn or take into account those hidden correlations
between variables. Multitask learning also saves time and
computing resources compared with training a separate CNN
model for each variable.

In HSI analysis, the viability of multitask learning has
been demonstrated in superpixel-based classification [27] and
combining samples from different hyperspectral images to
improve classification accuracy [25]. However, the machine
learning methods used in EO usually only make use of the
spectral information [28] with multitask learning used to
improve image classification. The full potential of multitask
machine learning in EO, and HSI analysis in general, is yet
to be unleashed.

Whereas numerous machine learning and deep learning
methods have been proposed to make use of the spatial
and spectral characteristics of hyperspectral imagery, the key
limitations of the approach are the adequate training of the
model and a statistically sound accuracy assessment on an
independent dataset. The lack of large-scale labeled HSI
datasets has pushed practitioners to rely heavily on a limited
selection of small aerial imagery (e.g., Indian Pines and
Salinas: University of Pavia [25], [27]), each consisting of
a single image with only a few hundred pixels in each spatial
dimension. Training and evaluating models on such small
images with randomly sampled large patches as inputs leads
to spatial overlap between training and testing sets (directly
or through the receptive field of deep networks), resulting
in a lack of independence between training and testing sets,
and ultimately to over-optimistic accuracy assessment [14].
Although alternative sampling schemes have been proposed to
mitigate these effects [29]–[32], these cannot fully overcome
the physical limitation caused by the small number of pixels.
Fixed data splits between training and testing sets have been
introduced for these datasets by IEEE Geoscience and Remote
Sensing Society (GRSS)1, which further reduce the amount
of data for training models and do not completely solve the
overlap when larger patches are used. Larger HSI datasets have
also been released, such as the Houston University datasets
from GRSS Data Fusion Contests in 2013 [33] and 2018 [34],
and the Chikusei dataset [35]. These datasets include fixed

1IEEE Data and Algorithm Evaluation Website (DASE) - http://dase.grss-
ieee.org

Fig. 1. Location of the test site in European boreal forest zone (dark green
color).

disjoint training and testing sets that mitigate the overlap issue,
yet many pixels are left unlabeled.

The motivation of the manuscript is the need for
a large-scale HSI dataset, which would enable both
deep-learning based multitask learning and a statistically
sound accuracy assessment on an independent test set.
We present TAIGA, an openly available VHR HSI dataset
covering the visible to near-infrared spectral regions (VNIR,
400–900 nm) acquired above a boreal forest in Central
Finland. The imagery, offering 70 million labeled pixels,
is accompanied by extensive and continuous stand-wise
forestry data from regularly updated nationwide measurements
for over 600 forest stands. It exceeds the current standard
benchmark hyperspectral datasets both in image size and
the amount of available labeled data, and enables the joint
classification and regression of forest variables. We obtain
baseline results for this unique dataset by applying CNNs
for multitask learning of the forest variables using strictly
independent samples for testing and training. In addition,
we compare the results with a previous exercise on forest
variable retrieval using only spectral information, therefore
quantifying the advantages of combining spectral and spatial
features in the analysis of VHR HSI data in forestry applica-
tions.

II. DATA

A. Study Site

The HSI data were collected in the southern boreal zone
of Finland, in the vicinity of Hyytiälä forestry field station
(61◦50’44”N, 24◦17’10”E, Figs. 1 and 2). The study area is
mostly covered by managed boreal forests, agricultural fields,
and wetlands. The main overstory species of the forests are,
in the order of dominance, Scots pine (Pinus sylvestris), Nor-
way spruce (Picea abies), and Silver birch (Betula pendula),
either as mixed or single-species stands growing on mostly
Podzolic soils. As a result of management, forest density varies
usually between 500 and 1500 trees/ha. Different shrubs,
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Fig. 2. Aerial view of the landscapes around the Hyytiälä forestry field
station.

lichens, and mosses cover the forest floor, no bare soil is
visible. The 30-year average annual precipitation at Hyytiälä is
711 mm, and the annual mean temperature is 3.5 ◦C [36]. The
area has a mean elevation of approximately 150 m above sea
level (asl) and does not exhibit large variations in elevation,
with some undulating hills reaching less than 200 m asl.

B. Hyperspectral Data

Airborne data were collected with the AISA Eagle II
hyperspectral line scanner [128 bands, 400–1000 nm, spectral
resolution 4.7-nm full width half maximum (FWHM)] from
a height of approximately 1 km above ground. The flight
configuration, the field of view of the scanner (37.7◦), and the
number of across track pixels (1024) led to a spatial resolution
of 0.7 m. Data were obtained from seven flight lines flown
along the south-east to north-west direction, approximately
parallel to the direction of sunrays, under a clear sky on
June 15, 2017. The solar zenith angle decreased from 42.3◦
to 40.3◦ during the data acquisition between 11:37 A.M. and
12:14 P.M. (Eastern European Summer Time, UTC+3). The
hyperspectral data were projected to UTM geographical coor-
dinates using satellite and inertial positioning data and a digital
elevation model based on nationwide laser scanning data
with the Atcor software package (ReSe Applications GmbH,
Switzerland) and resampled onto an orthogonal grid. The
data were further converted to top-of-canopy reflectance with
the Atcor package (ReSe Applications GmbH, Switzerland)
using sun photometer-measured aerosol optical properties pro-
vided by the the AErosol RObotic NETwork (AERONET,
https://aeronet.gsfc.nasa.gov) and mosaicked. A comprehen-
sive description of the data-preprocessing chain applied to the
airborne data is reported by Markiet et al. [37]. The measured
area was approximately 9 km by 3 km. Based on a comparison
with fixed ground points, the geolocation accuracy of the data
was approximately 2–3 m, determined mostly by the accuracy
of the top-of-canopy digital surface model and the inertial
measurement system used during the acquisitions.

C. Finnish Forestry Data

We used field data based on the forest resource information
gathered and processed by the Finnish Forest Center (FFC)
on privately owned Finnish forests. The inventory process is
executed by FFC as a statutory assignment together with a
few Finnish forestry and remote sensing companies. General
outline of the laser scanning based stand level inventory is
described by Maltamo et al. [38] and a more detailed descrip-
tion of the inventory process by Holopainen et al. [39]. The
inventory process is summarized below.

The forest data are collected by nationwide field measure-
ments and airborne remote sensing—Airborne Laser Scan-
ning (ALS) and aerial imaging. The number of reference plot
measurements per one inventory area, approximately 100 000–
200 000 ha, is about 600–800. The plots typically have a radius
of 9 m, and variables measured in the field for each species are
mean height, basal area, stem count, mean diameter, and age.
The reference plots are distributed to represent the existing
forest variation well. The ALS campaign is performed during a
single growing season (leaf-off or leaf-on). If the ALS data are
acquired on a different year than the field measurements, the
reference plots can be grown with models to match the correct
epoch. The aerial imagery are four-channel images (visible and
near-infrared).

In the inventory process, the numerical forest variables
are imputed from ALS data for an inventory unit, a 16 m
× 16 m cell. The units form a nationwide grid. Statistical
nonparametric models are built for each variable for predicting
them from the height distribution and the intensity of the ALS
data, calibrated with the field plot data. The texture metrics
and the spectral statistics of the aerial imagery are used and
auxiliary data source, e.g., in species determination. Due to
their empirical nature, models are specific to inventory areas.
In addition, information about different forestry related soil
properties (e.g., soil type and fertility class) are retrieved for
the grid cells from external data sources.

The stand-wise data by FFC contains information charac-
teristic to the stand (e.g., soil type, fertility class) or to a
class of trees growing inside the stand, called a “stratum.”
Each stratum quantifies the contribution of trees similar in
species, age, height, etc., to the forest stand. The cumulative
characteristics of a stand, such as its basal area, above-ground
woody biomass or stem volume, were obtained as sums of
the corresponding values of the strata; mean tree height and
diameter at breast height (DBH) were computed as basal-area
weighted average of the tree heights of all strata in a stand.
Similarly, the species composition of a stand was calculated
on the basis of basal area. The forest stand boundaries were
contracted by 10-m buffer in further processing to avoid
geolocation errors and border or neighborhood effects in the
hyperspectral data.

In Finnish forestry, forests and their resource data are man-
aged on stand level. A stand is an aggregation of trees that are
sufficiently uniform in species composition, size, arrangement,
and age. Definition of stands starts by a segmentation of
forest area into “micro stands” using canopy height model and
aerial imagery. Forest stands are then delineated by combining
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Fig. 3. RGB image of a subset of the mosaicked hyperspectral data, overlaid
by the stand boundaries of the region (orange).

similar neighboring micro stands into economically viable
forest units (Fig. 3).

The stand-level forest resource data are aggregated from the
grid cells using the vector files with stand geometries. If one
stand geometry includes enough complete or nearly complete
grid cells, the variables of the stand are computed using
these grid cells. If not enough grid cells fall inside the stand,
some partly intersecting grid cells are also taken into account
using their weighted averages, decreasing the accuracy of the
stand variables. The weight comprises two elements: grid cell
surface area proportion within a stand and a weight factor
describing the data reliability of a grid cell. The latter takes
into account the poorer reliability of a cell that partly intersects
the stand compared to one falling completely inside it.

Forests in different parts of the country are measured each
year. The nation-wide forest variable data are continuously
updated based on these measurements, forest management
notices, and empirical forest growth models. We used the
forestry data with a reference date at the end of year 2017.
FFC provides the nationwide forest data as a free down-
load with an open license (Creative Commons Attribution
4.0 International, CC BY 4.0) on a website maintained by
FFC (https://www.metsaan.fi/en/spatial-datasets).

D. Artificial Intelligence Dataset for Forest Geographical
Applications (TAIGA)

The classification of site fertility in Finnish forestry is
based on forest floor vegetation [40]. A majority of the study
sites belonged to the following four fertility classes, listed in
decreasing order of fertility: herb-rich, mesic, sub-xeric, and
xeric heath forests [41] (codes 2–5 in the Finnish system).
The few stands belonging to other classes did not constitute
a sufficient sample and were merged with their closest class
among the four listed above—either herb-rich heath or xeric
forest. Additionally, we significantly reduced the number of
soil types given in the forestry database. In Finnish boreal
forests, soil is covered by mosses, herbs, lichens, and shrubs
and will not have a direct effect on the reflectance signal.
We therefore merged the ten distinct soil types in the database

into two: mineral and organic soils (coded as 1 and 2 in the
data file).

Using the FFC data, we calculated the percentages of pine,
spruce, and broadleaf (i.e., birch) in each stand based on
their basal areas. The species with the largest basal area was
considered the main tree species (note that this differs slightly
from the definition used by the FFC data). For each stand,
we retrieved the key forest variables, mean diameter at breast
height (1.3 m, DBH), stem density (trees per hectare), basal
area (cross-section area of tree trunks at 1.3 m, in square
meters per hectare), and mean tree height.

In addition to the traditional forest variables given in the
database, we estimated the leaf area index (LAI) of each stand
using the forestry data and the biometric regressions published
by Repola [42], [43] for the Finnish boreal forest. We used
the species-specific leaf area and shoot silhouette to total
area ratios suggested by Majasalmi et al. [44] for the same
geographic area, to obtain the total LAI and shoot-corrected
effective LAI for each stratum. The effective LAI values take
into account the effect of the clumping of conifer needles
into shoots on the transmission of incident sunlight and were
considered as potential predictors of the reflective properties
of forests. For broadleaves, effective LAI was equal to the
LAI. Note that the effective LAI values used here are abstract
concepts and are not supposed to correspond to the optical
canopy transmission measurements as only shoot-level clump-
ing was considered; clumping of leaves around branches and
into crowns was ignored due to a lack of reliable information.
The list of the stand characteristics used in the study is given
in Table I. The dataset containing the hyperspectral image,
stand boundaries, and associated forest variables will hereafter
be referred to as Artificial Intelligence dataset for Forest
Geographical Applications (TAIGA). The Python code used
to process the forest variables in TAIGA from the open data
by FCC is available on GitHub in the taiga-baseline directory
in https://github.com/aalto-cbir/AIROBEST.

Part of the stands within the hyperspectral image were not
suitable for further analyses. We created a list of unsuitable
stands using thresholds for minimum area, the normalized
difference vegetation index (NDVI) computed from red- and
near-infrared reflectance [45], and effective LAI. The LAI and
NDVI thresholds, 0.86 and 0.61, respectively, were selected
visually and the minimum area of 0.5 ha is a general rec-
ommendation from FFC. The LAI threshold excluded stands
that were logged between the flight campaign (June 2017)
and the epoch of the forest data (end of 2017); the NDVI
threshold excluded additional recently logged stands with little
leaf cover. The unsuitable stands were mapped as “no data”
in TAIGA.

The TAIGA dataset (https://doi.org/10.23729/fe7ce882-
8125-44e7-b0cf-ae652d7ed0d5), including the hyperspectral
image, forest variable data, and metadata are available through
the Fairdata IDA service (https://etsin.fairdata.fi), a continuous
service for safe research data storage organized by the Ministry
of Education and Culture of Finland. The data are stored as
geolocated rasters in ENVI format. The data are freely avail-
able under Creative Commons Attribution 4.0 International
(CC BY 4.0) license.
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TABLE I

VARIABLES IN TAIGA. FFC REFERS TO DATA DIRECTLY PROVIDED BY
THE FINNISH FOREST CENTER, AN ASTERISK DENOTES A DERIVED

QUANTITY. FOR ALLOMETRIC RELATIONSHIPS, SEE THE TEXT

TABLE II

NUMBER OF STANDS AND PIXELS IN THE TRAINING, VALIDATION, AND
TEST SETS

III. METHODS

A. Data Preprocessing for the CNN

We predicted three categorical and ten continuous forest
variables (Table I) from the first 110 bands in the airborne
HSI data. The bands with wavelengths above 910 nm were
discarded due to their high noise level.

To make the hyperspectral and forest data structurally
similar, we created raster images of the forest variables, where
the values of all forest variables were constant within the
same stand, with the exception of 10-m buffers, in line with
the processing of the hyperspectral imagery. The continuous
variables were normalized between 0 and 1 after clipping to
the 98th percentile.

The stands were split into training, validation, and test sets
(Table II) so that the training and testing samples were never
overlapping, and no single pixel appeared in both training and
testing sets. The input image patch size used by the 3-D CNN
was 45 × 45 pixels. The patch size was selected large enough
to include relevant spatial context for the analysis of submetric
hyperspectral images. We tried several sizes, from 27 × 27 to
91 × 91 pixels, with 45 × 45 offering the best compromise
quantified by the accuracy measures (RMSE and rRMSE) for
basal area and LAI, while still strictly forbidding any spatial
overlap between training and test sets selected within the
TAIGA dataset [46], [47]. The center pixels of the patches
were picked from the stands with stride of 13 × 13 pixels so
that a 27 × 27 image window centered in the sample center
was entirely inside the buffered borders of a forest stand.
We ignored all nonforest pixels (i.e., water, roads, agricultural
fields, and residential areas).

B. TAIGA Hyperspectral Analysis CNN Pipeline

Our baseline 3-D CNN pipeline was inspired by the models
studied by Chen et al [20], who found out that 3-D CNN
could simultaneously utilize both spatial and spectral fea-
tures from the hyperspectral image. For this work, we also
studied and experimented with various other CNN models
that were designed for hyperspectral imagery, including Lee’s
model [19] and He’s model [48]. These models performed
well on single-task learning on small datasets. However, the
performance degraded significantly when applied to multi-
task learning problems. Among these models, Chen’s model
showed the most promising results, while the Lee’s and He’s
models provided clearly inferior results.

The similarities between our model and Chen’s model
include the use of the same feature extraction part (up to the
shared FC layer in our architecture) that utilizes 3-D convolu-
tion operations, and the use of the same data augmentation
methods. Considering the complex nature of the data and
tasks, aside from those similarities, our model has some major
differences in comparison to Chen’s model. Our model has
separate output layers for multitask learning that can predict
both discrete and continuous variables. Besides oversampling
minority classes, we also applied different approaches to
tackle the class-imbalanced problem, including cost-sensitive
learning, class rectification loss [49], and focal loss [50]. Since
our model was designed for multitask learning, we applied
GradNorm [51] and uncertainty loss [52] to balance learning
among specified tasks. We also carried out extensive numerical
experiments to find the optimal choices for the 3-D CNN
model configuration, including the image patch size, number
of convolution kernels, kernel sizes, various regularizations,
and sampling techniques. The detailed experiments and results
of these experiments are presented in [53].

In this article, we describe the best-performing variant of
our experiments as the TAIGA baseline method. The pipeline
of the architectures is illustrated in Fig. 4. We adopted the
hard parameter-sharing approach for our multitask learning
problem, which means that the pipeline includes two parts:
shared layers and task-specific layers.

The shared part of the pipeline consists of four convolu-
tional (Conv) layers (Conv1 to Conv4 in Fig. 4) interleaved
with two pooling (Pool) layers and followed by a shared fully
connected (FC) layer. At each Conv layer, we used a stride of
one and a padding of zero for the 3-D convolution operation.
For the pooling operation, a kernel of size 2 × 2 × 1 was
used. After each pooling layer, we applied the nonlinear ReLU
activation function.

We used kernels with sizes of 3×3×54, 3×3×32 and 3 ×
3 × 32 for the three simple convolution layers Conv1, Conv3,
and Conv4, respectively, in our baseline model. We adopted
the idea of multiscale convolutions in our model, and used a
multiscale convolution block that comprises four convolution
layers with the kernel sizes of 1×1×1, 1×1×3, 1×1×5, and
1×1×11, respectively. These convolution filters were used to
exploit the spectral correlations. No pooling was applied after
these layers. The outputs of the convolution layers were then
summed together.
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Fig. 4. Pipeline of the baseline TAIGA 3-D CNN model for hyperspectral forest variable prediction. The table summarizes the configurations of the Conv
layers.

Fig. 5. Above-ground woody biomass prediction map for the forests in the
area shown in Fig. 3.

The output from the Conv4 layer was flattened and fed to the
shared FC layer, which produced a feature vector with a size of
512. Each task, i.e., one forest variable, had two task-specific
stacked FC layers, which learned the mappings between the
extracted features and the output for each individual task. The
first FC layer took a 512-length feature vector from the shared
FC layer and transformed it into a 200-length feature vector.
If the task was a classification task with C classes, this vector
was mapped to a vector of length C in the last FC layer and
then fed into the Softmax function to compute the probabilities
for all the classes. Otherwise, if the task was a regression task,
the last FC layer was used to predict the output directly.

We used cross-entropy loss for the classification tasks and
mean squared error loss for the regression tasks. The model
was trained with an optimized batch size of 32 samples whose
maximum value was determined by the memory constraints
together with the image patch size. The learning rate was
optimized in our experiments as described in [53], where the

Fig. 6. Relative confusion matrices of the categorical forest variables.
(a) Fertility class. (b) Soil class. (c) Main tree species. Overall and mean
class accuracies are given in Table III. Abbreviations: h-rich = herb-rich,
sub-x = sub-xeric, miner. = mineral, org. = organic.

value 10−4 was found to be optimal in the range [10−7, 10−1].
We used the Adam optimizer with the weight decay η at 10−4,
ρ1 at 0.9 and ρ2 at 0.999, which are commonly used as their
default values.

Since the data are imbalanced, we used sampling with
synthetic minority class samples as described in more detail
in [53] to improve the classification performance of the
categorical variables. For oversampling the minority classes,
we used radiation-based and mixture-based methods as
described in [20]. Class rectification loss [49] and focal
loss [50] are the two loss functions that were used to mitigate
the class–imbalance problem. We used the hyperparameter
values recommended in the original papers for these loss
functions. With the focal loss, our model achieved better
results on our multiclass multilabel classification tasks (see
Pham [53] for details). Oversampling seemed to lead to model
overfitting by seeing rare instances too often.

The code for the model and the baseline experiments for the
TAIGA benchmark are available in the taiga-baseline directory
in https://github.com/aalto-cbir/AIROBEST.

IV. BASELINE RESULTS

Our 3-D CNN model produced predictions of the 13 cate-
gorical and continuous variables for each data pixel in test set
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sample. As an example, a subset of the map for above-ground
woody biomass is shown in Fig. 5. The stand-wise predictions,
used for accuracy assessment, were obtained as arithmetic
means of the pixel-wise values for continuous variables or
as majority estimates for the categorical ones.

For the categorical variables, we computed the over-
all (micro) and the mean class (macro) accuracies and formed
the confusion matrices (see Fig. 6). The micro accuracy tends
to favor the model’s good performance for the majority class
or classes, whereas the macro accuracy gives equal weight also
to the minority classes. For the continuous variables, we used
the basic statistics commonly used in forest remote sensing
studies, such as the root-mean-square error (RMSE), relative
RMSE (rRMSE), relative mean bias (rBias), and coefficient
of determination (R2). Additionally, we computed the widths
of the 90% and 95% confidence intervals for the continuous
variables. Additional experiments and their results in the same
setting can be found in [46].

The retrieval accuracy metrics presented in Table III can
be considered very good for forest variable retrieval from
EO data [55] with R2 ≥ 0.7. The accuracy was generally
better than the results obtained in a previous study based on
the same data [54], but excluding spatial information. The
most accurately predicted variable was tree height (rRMSE
12%). Tree species composition was predicted with the largest
uncertainty—the 95% confidence interval was approximately
50 percentage points for all three species. Besides species
composition, the rRMSE value for stand density (41%) was
higher than that of other structural variables.

For two selected key structural variables, woody biomass
and mean tree height, we can see that the estimated values lie
in several clusters along the diagonal of the predicted versus
target plot (Fig. 7) and the tails of the error histograms fall
off reasonably rapidly (Fig. 8).

The histograms of field data on the variables are not
uniform, indicating that the management regime of forests has
undergone some changes during the rotation period: the tree
height distribution has minima at approximately 12 and 22 m
(Fig. 7). The structure in the target tree height distribution is
not fully represented in the estimated height with an under-
estimation of the tree heights for the tallest stands. A similar
effect of smoothing of the parameter distribution is also visible
for woody biomass.

The overall accuracies varied largely among the categorical
variables. The largest values were generally on the main diag-
onal of the confusion matrices (Fig. 6) with the exception of
mesic sites predominantly predicted to be herb-rich [Fig. 6(a)].

We also wanted to verify that the multitask learning
approach is not only beneficial in the sense of efficiency in
training a single network model instead of multiple ones,
but also leads to prediction accuracies that are not much
degraded. First, we studied the multitask predictions of the
categorical and continuous variables only, so practically having
two models instead of one. Second, we ran experiments where
we predicted each categorical and each continuous variable
separately, which is the basic setup of nonmultitask learning.
When only the categorical variables were predicted, the aver-
age overall micro accuracy was 78.7% and the mean class

macro accuracy 75.3%. It thus seems that multitask learning
of all variables together has been beneficial for the micro
accuracy but not for macro accuracy. For the prediction of only
all the continuous variables, the rRMSE value was 23.6% and
ant the R2 value 0.79. These are both slightly better than those
in Table III, but the obtained average rBias value −3.1% is
worse than the result in the table. Among the single categorical
variables, we chose to evaluate predictions of the fertility
class and obtained micro and macro accuracies of 63.0% and
52.9%, respectively, which can be seen to be inferior to the
multitask prediction results. Correspondingly, basal area was
predicted as a single-task manner and the rRMSE, rBias, and
R2 values were 14.2%, −4.0%, and 0.76, respectively, and
again the rRMSE and R2 values were somewhat better than
the multitask results. It thus seems that the multitask learning
approach neither improves nor degrades the accuracy of the
predictions results considerably, and the observed gains and
losses due to it are approximately equal in size.

V. DISCUSSION

The value of the zettabytes of EO data produced by the
numerous remote sensing satellites can only be utilized by
integrating it with other information sources [56]. This is
especially true for developing and validating novel machine
learning tools for practical, real-life applications. These actions
require a large number of reliably labeled pixels accompanied
by sufficient spatial extent in the spatially registered imagery
to allow spatial separation of the training and testing sub-
sets. Thankfully, many national policies answer this need by
opening up geospatial datasets, such as the high-quality forest
variable data forming a part of TAIGA used in this study.

The forestry dataset used in this study includes both con-
tinuous and categorical variables and is tightly related to the
real-world problems faced by remote sensing scientists. The
forest variables in Table I are relevant not only to the forestry
community but also to biologists, Earth system scientists,
and many others. A simple classification approach, using
categorical variables, does not answer the information needs
for many important mapping activities. The multitask learning
approach presented here was chosen to address these gaps.
With our experiments, we also showed that the multitask
approach gave prediction accuracies comparable to that of
single-task learning while providing the benefit of hugely
reduced complexity in model training.

Furthermore, the amount of published studies on multitask
learning in remote sensing is still fairly limited. We release the
TAIGA dataset openly and propose to use it as a benchmark
for hyperspectral multitask learning in remote sensing, hoping
to encourage more activity and development in this field of
research.

The results presented here are good compared with the
general accuracy obtained for forests with remote sens-
ing [55]. Utilizing both spatial and spectral information
yielded better results compared with earlier Gaussian process
regression-based results with the same datasets and evaluation
procedure [54]. Use of structural information improved forest
variable retrieval somewhat, in line with the analysis by
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TABLE III

BASELINE STAND LEVEL RESULTS WITH A MULTITASK 3-D CNN MODEL: OVERALL AND MEAN CLASS ACCURACIES (ACC) FOR CATEGORICAL

VARIABLES; RMSE, RRMSE, RBIAS, COEFFICIENT OF DETERMINATION (R2), AND WIDTHS OF THE 90% AND 95% CONFIDENCE INTERVALS

FOR CONTINUOUS VARIABLES. THE REFERENCE RESULTS IN THE RIGHT-MOST COLUMN ARE BY HALME et al. [54] USING THE SAME

DATA

Fig. 7. Prediction accuracy of continuous forest variables. (a) Woody biomass. (b) Mean tree height.

Fig. 8. Prediction error histogram for selected continuous forest variables. (a) Woody biomass, signed. (b) Mean tree height, signed.

White et al. [1]. High spatial and spectral resolution data will
not be available jointly on a large scale, at least not in an
operational fashion, in the foreseeable future. The relatively
small advantage of high-resolution imagery does not likely

encourage the development of specialized systems for forest
monitoring with VHR HSI instruments. However, operational
HSI on a global scale is becoming a reality with high-
resolution (pixel size 20–30 m) instruments [57]. While there
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are parts of our planet for which VHR imagery is not readily
available [58], the availability of these data is improving
literally by the day. We suggest that combining VHR and
HSI data from different sensors with advanced machine learn-
ing approaches may considerably improve the robustness of
forestry data, especially for regions where national forest
inventory data are not available.

The 3-D CNN model used to produce the baseline results
of this article was the outcome of a series of experiments and
improvements [53] that were left out from this article for the
sake of brevity. The most important design choice in our CNN
model was the use of multitask learning in one network instead
of devising multiple separate models, one for each output for-
est variable. We are currently in the process of improving our
CNN model for both the categorical and continuous variables.
In particular, we look forward to studying the performance of
the novel transformer architectures [59].

As with many natural observations, TAIGA data are heavily
imbalanced, as is seen from the confusion matrices (Fig. 6).
Furthermore, the reference forestry data have their limitations.
It is based on a large number of forest plot measurements
interpolated by mainly airborne laser scanning, which means
that some inaccuracies are unavoidable. Unfortunately, only a
very small number of the plots were within the HSI area,
making their direct use impossible. Airborne HSI data are
acquired even for a relatively large area within hours to
days, depending on weather. Satellite sensors acquire their
imagery near-instantaneously. Field plots, on the other hand,
may take months to years to acquire on a regional scale, with
national measurements spread over several years. The different
temporal scales direct toward the use of well-maintained
forest variable databases, which are updated based on forest
management action notices and growth models, and can be
used to retrieve forest information for the instance of image
acquisition. The use of stand-level forest variable estimates and
accuracy metrics in this study was motivated by the purpose
of the FFC forestry data: they are computed to minimize
errors at stand level, driven by the requirements of practical
forest management. National forest inventories, for example,
are designed to minimize bias at regional to national scales.

Naturally, a machine learning algorithm cannot exceed the
(largely unspecified) error in the stand-level forest variables
and the room for improving prediction accuracy is limited.
We know that tree height is very reliably estimated from
airborne laser scanning data in Finland with rRMSE values
below 7% [60]. An rRMSE value of 12% for this variable
(Table III) indicates that there is room for improvement.
The indirect nature of the reference data also distorts the
distributions of the forest variables. Still, a lot of structure
is retained in the FFC data (Fig. 7), and some—although
clearly less—reproduced by the baseline retrieval algorithm.
In addition to the accuracy metrics in Table III, the structure
in the predicted distributions is a prerequisite for a successful
EO-based forest variable retrieval algorithm.

Up-to-date and accurate forest data are needed for almost all
regions of the globe. Technical developments are taking place,
which will make hyperspectral (CHIME [57]; EnMAP [61];
PRISMA [62]) and VHR EO data available everywhere,

promising improvements for future forest-monitoring systems.
Machine learning can provide data-processing algorithms
capable of handling the large volume of high-dimensional
data. To develop and test these algorithms, datasets such as
TAIGA presented here will be essential. Our results, although
promising, need to be further improved and extended to be
truly applicable on national to continental scales. To this end,
it would be beneficial to release other benchmark datasets
for multitask learning in different biomes. We hope that the
TAIGA dataset and the baseline results presented in this article
will support improvement of the tools required to implement
them.

VI. CONCLUSION

We have presented the TAIGA dataset containing a
hyperspectral image with more than 70 million pixels
labeled with both categorical and continuous forest vari-
ables. The dataset is available through the Fairdata IDA
service (https://ida.fairdata.fi). We have demonstrated a base-
line system with a multitask convolutional neural network,
which makes use of the spectral and spatial information
in the data, available in the taiga-baseline directory in
https://github.com/aalto-cbir/AIROBEST. The estimations pre-
sented in this article are more accurate than the ones made with
only spectral information. The openly available data and the
presented baseline results will help to make better use of the
ongoing improvements in EO technology.
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