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Abstract—Freeze/Thaw (F/T) surface state retrieval is impor-
tant to further understand hydrological patterns and climate
change. This article investigates the use of Earth-reflected Global
Positioning System (GPS) L-band signals as collected by the
National Aeronautics and Space Administration NASA’s Cyclone
Global Navigation Satellite System (CYGNSS) mission for F/T
surface state retrieval over a target area in South America, cov-
ering the Andes Mountains and the Argentinian Pampas. In the
study, CYGNSS responsiveness to changes in surface permittivity
is leveraged to detect transitions of F/T surface state, at an
improved spatio-temporal sampling as compared to traditional
Remote Sensing missions. A Seasonal-Threshold Algorithm (STA)
is developed and validated using surface temperature data as
provided by the European Centre for Medium-Range Weather
Forecast (ECMWF) ERAS5-Land numerical reanalysis model.
Then, the monthly evolution of CYGNSS-derived F/T surface
state maps is evaluated and an inter-comparison with the Soil
Moisture Active Passive (SMAP) F/T data product is performed.

Index Terms— Andes mountains, Cyclone Global Navigation
Satellite System (CYGNSS), European Centre for Medium-Range
Weather Forecast (ECMWF) ERAS5-Land, freeze/thaw (F/T)
retrieval, GNSS-R, Soil Moisture Active Passive (SMAP).

I. INTRODUCTION

HE spatio-temporal variability of freeze/thaw (F/T) sur-

face state is high over the cryosphere. It has a strong
influence on climate, biogeochemical processes, and seasonal
surface energy exchange [1], and it determines vegetation net
primary production and Net Ecosystem CO, Exchange (NEE)
with the atmosphere [2]. Additionally, it is important to
highlight that more than one-third of the Earth’s land surface is
covered by seasonal or permanent soil frost. Many agricultural,
engineering, and environmental issues are affected by the F/T
surface state [3].

Detecting highly dynamic F/T transitions at large scales
requires spaceborne Remote Sensing observations. Landscape
F/T processes are significantly heterogeneous [4]. Synthetic
Aperture Radar (SAR) missions generate high spatial resolu-
tion (~100 m) but low temporal resolution (~7 to 14 days)
F/T products, which prevents monitoring F/T transitions with
the required spatio-temporal resolution. On the other hand,
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microwave radiometry missions provide high temporal reso-
lution (~3 days) but low spatial resolution (~25 km), which
prevents observing the landscape processes that directly affect
F/T surface state [5]-[7]. Currently, there is no way to simul-
taneously monitor the F/T surface state globally, at appropriate
spatial and temporal scales.

Brightness temperature, backscatter, and forward scatter
vary due to changes in the surface permittivity when water
changes its state (liquid or solid), but also they are a function
of a wide range of surface and instrument properties. The
change in the surface permittivity due to F/T surface state
transitions and how this phenomenon impacts observed surface
reflectivity form the cornerstone of the formulation presented
in this study. The surface permittivity changes when the
temperature goes from below 0 °C to above 0 °C. This
process leads to changes in the surface reflectivity. This is the
fundamental element of F/T surface state change detection.
The permittivity of thawed soil is much higher than that of
frozen soil.

Spaceborne microwave radiometry and SAR missions-
derived measurements at several frequencies have been used
to detect melt onset [8], [9] and landscape F/T state [10]-[15].
In particular, microwave observations at L-band have demon-
strated the ability to detect F/T surface state because of
the following reasons: 1) a strong sensitivity to surface per-
mittivity, which is influenced by the phase of water and
2) a higher penetration depth through the vegetation and into
soil surface than at higher frequencies (starting at C-band)
from sensors such as, e.g., the Advanced Microwave Scanning
Radiometer-Earth Observing System (AMSR-E) [16]. Ground-
based L-band radiometers have been used to detect F/T surface
state [17]-[19] and several algorithms have been adapted to
the Soil Moisture and Ocean Salinity (SMOS) mission [20].
High-resolution L-band data from Phased Array type L-band
Synthetic Aperture Radar (PALSAR) have been used to detect
local-scale variability in F/T surface state transitions [21], [22].
The NASA (Satélite de Aplicaciones Cientificas/D) SAC/
D-Aquarius mission pioneered large-scale L-band radar
response to F/T surface state with coarse spatial (~100 km)
and temporal (weekly) resolutions [23]. After the failure of
the Soil Moisture Active Passive (SMAP) radar, the science
team developed a new F/T surface state product using L-band
radiometer measurements [6].

Global Navigation Satellite Systems Reflectometry
(GNSS-R) can be understood as an L-band passive multi-
bistatic radar, see [24]-[29]. In principle, spaceborne GNSS-R
sensors can provide global coverage and sampling of the
Earth’s surface over multiple tracks simultaneously. Several
spaceborne experiments and missions have been deployed.
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Cyclone Global Navigation Satellite System (CYGNSS) is the
first-ever operational mission [30], providing coverage over
tropical latitudes ~[—40, 40]°. Earth-reflected GNSS signals
have sensitivity to a wide variety of geophysical parameters,
e.g., Snow Water Equivalent (SWE) [31], Soil Moisture
Content (SMC) [32]-[35], vegetation parameters [35], [36],
and inland water bodies [37], [38].

More recently, some pioneering studies have shown a
promising sensitivity to F/T surface state transitions over high
latitude regions, including SMAP GNSS-R mode [34], [39]
and TechDemoSat-1 [40]; and also CYGNSS [41].
CYGNSS [30] was originally proposed for ocean surface
winds speed estimation over tropical cyclones using reflected
L1 Global Positioning System (GPS) signals at left-handed
circular polarization (LHCP). CYGNSS enables observations
of the Earth’s surface along 32 tracks simultaneously. The
unique sampling properties of CYGNSS could enable an
improved understanding of F/T surface state dynamics. In this
work, CYGNSS data are used to investigate the potential capa-
bility of GNSS-R to determine the F/T surface state over the
Andes Mountains. The generated theoretical and experimental
capabilities developed here could be applied to high inclination
GNSS-R missions (Spire CubeSats series and HydroGNSS),
in order to better resolve spatial patterns and temporal dynam-
ics with an improved spatio-temporal sampling as compared
to traditional Remote Sensing missions. The F/T changes of
seasonally frozen ground are an important indicator of climate
change and contributor to global methane distributions.

II. FREEZE/THAW DETECTION WITH GNSS-R:
THEORETICAL BACKGROUND

The CYGNSS-derived surface reflectivity I' is directly
related to the square modulus of the cross-polarization Fresnel
reflection coefficient Ross. This can be theoretically expressed
as follows:

Reross = %(RVV — Run) (1)
where
Ry — gcost; — /e — (sin6;)? @)
ecost; + \/m
and
_cost; — Ve — (sin6;)? 3)

Ruyn =
cost; + v/ & — (sin;)?

are the vertical V-pol and horizontal H-pol Fresnel reflection
coefficients, respectively. ¢ is the complex relative permittivity
of the reflecting medium, and 6; is the incidence angle. For
angles larger than 6; ~ 50°, there is a significant reduction in
the reflection coefficient, while it remains roughly constant in
the range 6; = [0, 50]° [42].

The complex relative permittivity ¢ describes the electrical
properties of the reflecting medium. It can be analytically
computed as follows [43]:

e=¢ +ig"
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Fig. 1.  Target area (Lat = [—35, —28]° and Lon = [—71, —67]°) in
South America.

where ¢’ is the dielectric constant, which is related to the
speed of propagation, and &¢” is the so-called dielectric loss
factor that is related to the attenuation rate of electromagnetic
energy flow. It is highlighted that ¢ depends on the electro-
magnetic wavelength of the incident signal as well as on the
internal components of the reflecting medium and their relative
distribution.

The permittivity of a mixed medium of soil and water &
can be formulated as follows [41], [44], [45]:

)

eg=1+ %(ag — 1) + myeg, —my,
s

where p, is the bulk density, p, is the solid density, and

e¢ and ef, are the permittivity of the solid matter and pure

water, respectively. o is the shape factor, and m, is the total

moisture.

In the case of frozen soil, the phase state of the water
changes. The ice composition can be added to the permittivity
model. The final permittivity of frozen soil can be expressed
as follows [41], [46]:

a a a a a
€5 frozen = ngs + Vaga + Vfwgfw + wagbw + Vigi

(6)

where V is the volume content of different components, and
the subscripts s, a, fw, bw, and i are solid soil, air, free water,
bound water, and ice, respectively.

The transition from thawed to frozen soil surface
significantly decreases the permittivity. Consequently,
R.ross decreases, which in turn reduces the surface reflectivity.
This phenomenon is the fundamental basis of F/T surface
state detection in this study.

III. DATASETS
A. Target Area

CYGNSS provides an unprecedented spatio-temporal sam-
pling of the Earth’s surface over tropical latitudes. The selected
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target area (Lat = [—35, —28]°, Lon = [—71, —67]°) includes
a region of the Andes (Fig. 1) because permafrost takes place
extensively over these high-altitude mountains [47]. In the
northern Andes, permafrost can be detected above ~5000 m.
This lower limit gradually decreases down to ~1500 m in
the Southern regions of Chile and Argentina. The total area
affected by permafrost is ~30 000 km?.

B. CYGNSS

CYGNSS Level 1 (L1) data from the version 3.0 (v3.0)
Science Data Record [48], [49], available at the Phys-
ical Oceanography Distributed Active Archive Center
(PODAAC) [50], are used in this article. L1 daily files are
provided in NetCDF format, each one with the required
calibrated measurements and observables for each nominal
specular point, so as to enable a wide variety of scientific
studies over both land and ocean surfaces. Current v3.0 prod-
ucts incorporate real-time monitoring of transmitted GPS
power [48], [49]. This provides an improvement as compared
to v2.1, which assumes that transmitted GPS power is constant.

C. ECMWF ERAS5-Land

European Centre for Medium-Range Weather Forecast
(ECMWF) ERAS5-Land describes a wide set of land variables
over several decades with an improved resolution as compared
to ERAS. It provides an accurate description of the past
climate using synergistically physical models with global-
scale measurements [S1]. In this study, ERAS-Land reanalysis
SMC and soil temperature data with hourly frequency are
selected as the reference, considering the temperature in the
first layer of the soil (0-7 cm) within the ECMWF Integrated
Forecasting System (IFS). The surface is set at 0 cm in the
IFS, the temperature is set at the middle of each layer, and heat
transfer is estimated at the interfaces between them. The first
layer of the soil is selected because both active and passive
L-band observations (e.g., SMAP, SMOS, and CYGNSS) have
sensitivity to the top ~5 cm of soil [52].

D. SMAP

SMAP Enhanced L3 Radiometer Global and Northern
Hemisphere Daily 9 km Equal-Area Scalable Earth (EASE)-
Grid F/T State product is selected for this study. It provides
a daily classification of F/T surface state derived from the
SMAP L-band radiometer, over the global 9 km EASE 2.0 grid
with a spatial resolution of ~20 km x 20 km [53]. To do so,
the Backus—Gilbert technique is applied. This methodology
enables the use of additional microwave radiometry data that
are not available for the original product because the founda-
tion measurements of brightness temperature are oversampled
in the along-track direction.

IV. METHODOLOGY
A. Reflectivity Estimation

Analog Delay Doppler Maps (DDMs) are selected
(power_analog), along with the required metadata, for esti-
mation of the observables and interpretation of the results.
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Power_analog is the true power that would have been mea-
sured by an ideal (analog) power sensor. Power_digital is the
power measured by the actual 2 bit sensor, which includes
quantization effects. Power_analog (power after radiometric
calibration) has been corrected for quantization effects. One
year of data is considered from January to December 2019 to
develop and apply the retrieval algorithm. The equivalent
“CYGNSS overall quality flag” over land surfaces is used to
filter out the data, improving the quality of the observables
(see the Appendix for more information).

The delay bin resolution of the original 17 x 11 bins
DDMs is 0.2552 GPS Coarse Acquisition (C/A) code chips,
while the Doppler bin resolution is 500 Hz. After resampling,
an interpolation [54] of the obtained 1700 x 1100 bins DDMs
is applied to improve the accuracy, before performing the
estimation of the reflectivity I'. To do so, a spline method
is used.

Earth-reflected delay waveforms WF, ana10¢ are derived from
the improved analog DDMs (|Y,(z, f)|>) at zero Doppler
frequency as

WFr,analog = (|Yr (T, f = O)|2> (7)

where 7 is the delay of the signal from the transmitter to the
receiver, and f is the Doppler shift of the electromagnetic
reflected signal.

In this study, it is assumed that the received power is
described by the reflection model given by the Friis trans-
mission formula [55], [56]. T is obtained as it follows [57]:

I — (477,')2 (WFr,analog—Peak - N)(Rr —|— R,‘)2
12G,G,P,

where WF, anaiog—peak 1S the peak value of the analog delay
waveform, N is the DDM noise floor, P, is the transmitted
power, G; and G, are the transmitter and the receiver antennas
gains, R, and R, are the ranges from the transmitter and the
receiver to the nominal specular point, respectively. G, P; is
the transmitter equivalent isotropically radiated power (EIRP),
which is provided in the metadata files along with the other
variables, except WF, analog—peak and N, which are calculated
from the DDMs.

Over land surfaces, coherent and incoherent scattering
terms contribute to the reflected power in a general sce-
nario [58]-[67]. Some pioneering works have also shown the
impact of topography and vegetation [67]-[70]. Since it is
not practical to switch between reflectivity and Normalized
Bistatic Radar Cross Section (NBRCS) with every DDM,
a choice needs to be made to use one or the other.

The noise power floor is calculated as the mean value of
the region of the DDM where there is no signal [71]. The
delay separation between that region and the peak of DDM
is at least 0.75 C/A code chips. The estimation of I' is not
considered if this distance is below 0.75 C/A code chips.

()

B. Reference Freeze/Thaw Surface State

The assumed F/T surface state at a particular location in
a particular month is derived from the population of hourly
ERAS-Land temperatures, 7;, in that month. If the average
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Fig. 2. Freeze surface state reference in (a)—(d) June, (e)—(h) July, and (i)-(1) August for several confidence levels: (a), (e), and (i) “highest,”

(b), (f), and (j) “high,” (c), (g), and (k) “moderate,” and (d), (h), and (I) “low.” Different colors are associated with different confidence levels to help

the interpretation of the results. Note: White means no data for this level.

of all values is <—1 °C, the state is defined as frozen. If the
average is >+1 °C, the state is defined as thaw. The confidence
in the state definition is derived from the statistical distribution
of hourly samples in the month according to the following

schedule:

1) “Highest” freeze confidence: All hourly samples
T, < —1°C;
2) “High” freeze confidence: All hourly samples 7; < 1 °C;

“Moderate” freeze confidence: Less than 10% of hourly
samples 7; > 1 °C;

3)

4) “Low” freeze confidence: At least 10% of hourly sam-
ples T; > 1 °C;

5) “Highest” thaw confidence: All hourly samples
T, > 1°C;

6) “High” thaw confidence: All hourly samples
T, > —1 °C;

“Moderate” thaw confidence: Less than 10% of hourly
samples 7; < —1 °C;

“Low” thaw confidence: At least 10% of hourly samples
T, < —1°C

7)

8)

Examples of freeze state in Winter (June, July, and August)
and thaw state in Summer (January, February, and March)
with different confidence levels are shown in Figs. 2 and 3,
respectively, for several months. In Winter, the “highest”
confidence freeze state covers almost all the Andes. On the
other hand, the “highest” confidence thaw state covers almost
all the Pampas in Summer. The “moderate” confidence freeze
and thaw states clearly cover the boundaries between the
“high” and the “low” levels. Finally, the “low” freeze and
thaw levels cover the “highest” thaw and freeze levels,
respectively.

The schedule so defined provides the required scenario to
properly evaluate the ability of CYGNSS for F/T retrieval,
accounting for the different degrees of confidence on the F/T
surface state reference. The “low” confidence levels can be
clearly discarded because they cover regions with the “highest”
confidence for the opposite surface state. On the other hand,
“moderate” levels appear in the frontier, so in principle, these
areas are linked with a quite uncertain state. The performances
of the “highest” and “high” levels are quantitatively analyzed
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Thaw surface state reference in (a)-(d) January, (e)—(h) February, and (i)=(1) March for several confidence levels: (a), (e), and (i) “highest,”

(b), (f), and (j) “high,” (c), (g), and (k) “moderate,” and (d), (h), and (1) “low.” Different colors are associated with different confidence levels to help the

interpretation of the results. Note: White means no data for this level.

based on the behavior of the retrieval algorithm hereafter
defined.

C. Retrieval Algorithm

The F/T retrieval approach is based on the Seasonal-
Threshold Algorithm (STA). This algorithm evaluates the
relationship between the time series of CYGNSS-derived
reflectivity I' (Fig. 4) and seasonal reference frozen and
thawed states. For measurement at time t, the seasonal scale
factor A(r) is defined as follows [6]:

F(t) - 1—‘fr

9
I'h — T ©)

A@) =

where I'(7) is the reflectivity measurement estimated at time z,

and I'y and I'y, are reflectivity measurements corresponding

to frozen and thawed reference states, respectively. Different
F/T surface states correspond to different observation times.

GNSS-R Earth’s surface sampling properties are pseudo-

random. A specific gridding strategy is thus required. In this

work, it is defined using CYGNSS’s sampling properties and
it is applied also to data from ERA5-Land and SMAP.

The STA is evaluated for different sizes of the latitude/
longitude grid (0.1°x0.1°, 0.05°x0.05°, and 0.001°x 0.001°),
different numbers of measurements per pixel (5, 10, and 20),
and several temporal windows (1, 2, and 3 months). Finally,
a 0.05° x 0.05° grid is selected, and data are averaged using
a moving window of 0.1° at steps of 0.05°. This selection
provides a trade-off between the spatial resolution and the
available number of measurements per pixel. The associated
spatial resolution is ~10 km at equatorial latitudes.

I'n [Fig. 4(a)] is found by averaging the five largest
values occurring in Summer, while 'y [Fig. 4(b)] is found
by averaging the five smallest values occurring in Winter.
Overall, the standard deviation (SD) in the computation of
both reference values is below ~1 dB [Fig. 4(e) and (f)].
The variability of the maximum I" values [Fig. 4(e)] is larger
over areas with a higher topographic roughness index [72]
[Fig. 4(h)] because of the larger temperature variability over
high-altitude areas. On the other hand, the variability of the
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Fig. 4. Averaged CYGNSS data over the target area. (a) Maximum reflectivity
T'th during Summer 2019, (b) minimum reflectivity I't; during Winter 2019,
(c) July reflectivity I', (d) November reflectivity I, (e) SD of the five largest
values occurring in Summer, (f) SD of the five smallest values occurring in
Winter, (g) November minus July reflectivity I', and (h) topographic roughness
index [72].

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Soil Moisture Content [m3/m3] Jgjfl’y
7w ’

69°W 67" W

a) a . 0

Soil Moisture Content [m3/m3] Noveorg!ber
69’ W ’

7w 67" W

28°s

29's

35°s

b) 0

Fig. 5. (a) July ERAS-Land SMC. (b) November ERA5-Land SMC.

minimum I' values [Fig. 4(f)] shows some few tracks with
higher SD, probably because of the impact of non-geophysical
effects [73], [74]. The computation of both reference values
does not depend on external reference datasets. The whole
Winter and Summer sessions are the time periods over which
It and I'y, are computed. Finally, it is worth pointing out there
is no impact of the SMC in the results [Fig. 5(a) and (b)].
The F/T surface state signal at sub-boreal latitudes has not
such a strong signature as compared to, e.g., Artic areas,
which of course have a much colder and longer Winter
season [75], [76]. The STA could improve detection capability
relative to the ERA5-Land and SMAP datasets when the differ-
ence between [’y and I'y, is greater. Thus, only the smallest and
largest five data samples are used to set the I" references. The
use of a larger number of measurements to compute I'y, and T'y,
could be reasonable, e.g., Artic areas because of the colder and
larger Winter period. It is recommended to test this with data
from future high-inclination GNSS-R missions [76], [77].
Two threshold levels Tt and Ty, are then defined such that
the surface state is frozen if A(z) > Ty, while the surface
state is thawed if A(f) < Ti,. The threshold levels Ty and Ty,
can be varied parametrically to define the receiver operating
characteristic (ROC) freeze and thaw curves, using the F/T
surface state derived from ERAS5-Land temperatures as the
reference. A ROC curve shows the capability of diagnosis
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Fig. 6. ROC curves for “highest” and “high” freeze and thaw confidence levels. (a) July. (b) November.

of a binary classifier as a function of the selected system
threshold. Fig. 6 shows the ROC curves for the “highest”
and “high” freeze and thaw confidence levels for July and
November. It is found that the sensitivity is improved for the
“highest” confidence case, so this is the confidence level used
hereafter. This improvement is higher in July because of the
stronger temperature gradient in the target area as compared
to November. Optimum operating points of the ROC freeze
and thaw curves are selected as the inflection points where
the slope of the curve transitions from >1 to <1. This is the
point beyond which more false than true positives are detected.

The retrieval algorithm is validated for July [Fig. 7(a)—(c)]
and November [Fig. 7(d)—(f)]. The reference F/T surface state
shown is the “highest” confidence case, and the observed F/T
state also corresponds to this case. Frozen areas are depicted in
blue, while thawed areas are in red [Fig. 7(a), (b), (d), and (e)].
Fig. 7(c) and (f) shows the difference between reference and
observed maps. Each pixel is associated with one of the
following states.

1) Freeze detected = both maps show F (blue).

2) Freeze missed detection — reference shows F but

retrieval does not (cyan).

3) Thaw detected = both maps show T (red).

4) Thaw missed detection — reference shows T but

retrieval does not (magenta).

The freeze and thaw detections cover most of the “highest”
confidence areas, both in July and November. The freeze
missed detection is rather low [July ~7% and Novem-
ber ~1%], however, the thaw missed detection pixels are
non-negligible [July ~15% and November ~29%], (Table I).
They are identified in the boundary with areas of “moderate”
and “low” confidence. Overall, the agreement between the
CYGNSS and ERAS5-Land F/T surface state maps is high.

V. RESULTS
A. Yearly Evolution of CYGNSS F/T Detection Capabilities
The retrieval algorithm was validated in Section IV using
two specific months, which are representative of different

climatological conditions in the target area. On the other
hand, the overall main objective in this section is to evaluate
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F/T Obs. November F/T Ref. Highest November F/T Diff. November
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28's 28's 28"s

29's

d) 35S e) 35S

f) 35S

Fig. 7. Algorithm validation in (a)=(c) July and (d)-(f) November.
(a), (b), (d), and (e) F/T maps are blue when frozen and red when thawed.
(a) and (d) F/T maps derived from CYGNSS are labeled “Obs.” (b) and (e) F/T
maps derived from ERAS-Land with “highest” confidence are labeled “Ref.”
Maps showing the difference between “Obs” and “Ref” are labeled “Diff.”
“Diff”” Maps are blue if both frozen, red if both thawed, cyan if “Ref” frozen
but not “Obs,” and magenta if “Ref” thawed but not “Obs.”

the yearly evolution of F/T surface state detection using
ERAS-Land F/T reference maps (Fig. 8), CYGNSS F/T obser-
vation maps (Fig. 9), and CYGNSS/ERAS5-Land difference
F/T maps (Fig. 10 and Table I). All these maps correspond
to the “highest” confidence level.

Fig. 8 provides a graphical description of the monthly
reference F/T surface state in the first layer of the soil (0—7 cm)
along the year, which is useful for the interpretation of the
results. During Summer, the “highest” confidence level areas
appear only for thaw conditions. In Autumn, there is a decreas-
ing extension of the thawed areas from April to June. This
is consistent with the expected transition toward the coldest
period of the year, in the Southern hemisphere. In Winter,
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Fig. 9. “Highest” confidence F/T state-observed maps for each month, derived from CYGNSS. Blue-freeze/red-thaw.

the frozen surface is extended along almost all the Andes
(Fig. 1). Some areas remain thawed over the Pampas, which
provides an adequate scenario to evaluate the STA algorithm.
Finally, the extension of frozen areas gradually decreases in
Spring, with a remaining frozen area in November. On the
other hand, the extension of thawed areas increases with

28

28's
29°s
30's
31's
32's
33’s
34’'s
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“Highest” confidence F/T state reference maps for each month derived from ERA5-Land soil temperatures. Blue-freeze/red-thaw.
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28's

gradually warmer temperatures as we are closer to Summer.
Overall, this target area offers a rich scenario with a wide
variety of climates and transitions from frozen to thawed and

vice-versa.

Fig. 9 shows monthly CYGNSS observed F/T surface state
maps along the year. Over the Andes, the extension of frozen
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Fig. 10. Difference between CYGNSS observed and ERAS-Land reference F/T maps for each month, using the “highest” confidence level of the reference
freeze and thaw state. Freeze detected = both maps show F (blue). Freeze missed detection = reference shows F but retrieval does not (cyan). Thaw
detected = both maps show T (red). Thaw missed detection = reference shows T but retrieval does not (magenta).

TABLE I
STATISTICS OF THE YEARLY EVOLUTION OF CYGNSS F/T DETECTION CAPABILITIES CORRESPONDING TO THE “HIGHEST” CONFIDENCE AREAS

January  February March April May June

Freeze detected 0% 0% 0% 0% 0% 9%

Freeze missed detection 0% 0% 0% 0% 0% 27 %

Thaw detected 100 % 100 % 100 % 100 % 100 % 55%

Thaw missed detection 0% 0% 0% 0% 0% 9%
July August September  October  November December

Freeze detected 42 % 33% 26 % 10 % 2% 0%

Freeze missed detection 7% 37% 4% 2% 1% 0%

Thaw detected 37 % 14 % 55% 54 % 72 % 100 %
Thaw missed detection 15 % 16 % 18 % 33% 29 % 0%

soil clearly increases from June to August, and it gradually
decreases from September to November. On the other hand,
the extension of the thawed soil is clearly larger in Summer,
rather residual in Winter, and it is transitional in Spring and
Summer.

Fig. 10 provides the difference between the F/T maps
observed by CYGNSS and those derived from ERAS5-Land.
In June, the freeze missed detection is ~27%. ERAS5-Land
map [Fig. 8(f)] shows that the surface is frozen over the
Andes; however, the STA algorithm is identifying the surface
as mostly thawed [Fig. 9(f)]. In July, August, and September,
the situation is quite different. Both reference and observed

F/T maps [Figs. 8(g)—(i) and 9(g)—(i)] are rather similar. This
is probably because the ERAS5-Land temperature is not so
accurate in June, since this is a transitional month. A similar
situation is found in October [Figs. 8(j) and 9(j)] and
November [Figs. 8(k) and 9(k)], but for the thaw missed
detection case. The thaw missed detection during October and
November is high and roughly similar in both months,
~33% and 29%, respectively. There is no evidence of the
influence of SMC in this observation (Figs. 5 and 10). In the
boundary with the “moderate” and “low” confidence thawed
areas, CYGNSS detects the soil as frozen while ERA5-Land
maps show that the surface temperature is above 0 °C.
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Fig. 11. Comparison between (a) and (b) SMAP, (c) and (d) CYGNSS, and

(e) and (f) ERAS-Land reference F/T products for (Left column) February and
(Right column) August. Blue-freeze/red-thaw.

It is assumed that the ERAS-Land temperatures are not so
accurate during these periods because the differences appear
over the transitional months (Spring and Autumn). Future
activities should include ground truth stations to elucidate what
is the truth. However, access to most of these regions is quite
complicated because they are high-altitude mountain terrain.
Finally, it is worth commenting that this study uses low
incidence angles in the range 6; = [0, 50]°. In this range,
the impact of the incidence angle on the reflection coefficient
can be assumed to be negligible [42]. Additionally, data
are averaged month-by-month at grid cells ~0.05° x 0.05°.
This strategy helps to homogenize data for the study, and to
minimize the potential impact of the local terrain slopes.

B. Comparison Between CYGNSS and SMAP F/T
Surface State Maps

An intercomparison of CYGNSS observed F/T surface state
maps with the SMAP-radiometer F/T product is provided over
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Fig. 12. Time series of the scale factor over two representative target areas
in (a) Andes and (b) Pampas.

the “highest” confidence areas for two representative months:
February and August. The overall objective is to evaluate the
performance of the new CYGNSS F/T capabilities with the
more classical L-band microwave radiometry approach, which
may provide a higher performance because of the lower impact
of surface roughness. Fig. 11 shows a monthly-averaged F/T
product derived from the SMAP baseline seasonal threshold
algorithm applied to the normalized polarization ratio (NPR)
of radiometer measurements [53]. This monthly product
reports the state as frozen if any SMAP sample within the
month is frozen. In other words, Fig. 11(a) and (d) correspond
to “peak-detection” maps. Thawed areas are depicted in red
and frozen areas in blue, similar to the previous F/T maps.
Added to the figure are the corresponding maps produced by
ERAS-Land (from Fig. 8) and CYGNSS (from Fig. 9). The
surface is totally thawed in February, and frozen areas are
properly identified in August over the Andes. This evolution
generally agrees with the CYGNSS and the ERA5-Land maps.

C. Time Series Analysis

Two representative target areas are selected over the Andes
and the Pampas for a time series analysis along 12 consecutive
months from January to December 2019 (Fig. 12). Both
target areas correspond to the ‘“highest” confidence level.
The objective is to further evaluate the behavior of the F/T
detection capability of the algorithm over time. To do so,
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the scale factor A(¢) is selected, which is the main observable
used in the retrieval algorithm.

Over the Andes [Fig. 12(a)], A(t) shows a significant
increment from May A(r) ~ 0.2 to August A(z) ~ 1.2 due
to the arrival of the Winter. In Spring, it decreases down to
A(t) ~0.8, as is expected because of the higher surface tem-
peratures. In Summer, it shows lower values, which correspond
to a totally thawed surface. In the Pampas [Fig. 12(b)] on the
other hand, A(¢) remains fairly low throughout the year. This
is consistent with the generally thawed state of the land surface
at the location in the Pampas considered.

VI. CONCLUSION

This article describes a CYGNSS-based F/T surface state
specifically designed STA, which is developed and validated
over a target area in South America, covering the Andes
Mountains and the Argentinian Pampas. Then, the capability to
evaluate the monthly evolution of F/T surface state extension is
studied, showing an overall good agreement between STA F/T
maps with those derived from ECMWF ERAS5-Land surface
reanalysis data. Finally, an intercomparison with the SMAP
radiometer-based F/T product also shows consistency with
CYGNSS F/T maps, over this target area. In the future,
the STA could be applied over polar regions using data from
new GNSS-R high-inclination satellites. The higher spatio-
temporal sampling of GNSS-R as compared to more tradi-
tional Remote Sensing techniques could open new insights in
monitoring highly dynamic F/T surfaces processes.

APPENDIX

The equivalent “CYGNSS overall quality flag” over land
surfaces is used to filter out the data, improving the quality
of the observables. If any one of the following flags are set,
then poor_overall_quality is set: large_sc_attitude_err, black_

body_ddm, ddmi_reconfigured, spacewire_crc_invalid,
ddm_is_test_pattern  channel_idle, low_confidence_ddm_
noise_floor,  large_step_noise_floor, large_step_Ina_temp,

direct_signal_in_ddm, low_confidence_gps_eirp_estimate, rfi_
detected, brcs_ddm_sp_bin_delay_error, bres_ddm_sp_bin_
dopp_error, gps_pvt_sp3_error, Sp_non_existent_error,
bres_lut_range_error, ant_data_lut_range_error, bb_framing_
error,  fsw_comp_shift_error, sc_altitude_out_of_nominal_
range, anomalous_sampling_period, invalid_roll_state,
incorrect_ddmi_antenna_selection, sp_in_sidelobe, fatal_nst_
outage, and low_zenith_ant_gain.

REFERENCES

[1] B.P. Selvam, H. Laudon, F. Guillemette, and M. Berggren, “Influence of
soil frost on the character and degradability of dissolved organic carbon
in boreal forest soils,” J. Geophys. Res., Biogeosci., vol. 121, no. 3,
pp- 829-840, Mar. 2016.

[2] M. L. Goulden et al., “Sensitivity of boreal forest carbon balance to soil
thaw,” Science, vol. 279, no. 5348, pp. 214-217, Jan. 1998.

[3] L. @ygarden, “Rill and gully development during an extreme winter
runoff event in Norway,” CATENA, vol. 50, nos. 2—4, pp. 217-242,
Jan. 2003.

[4] J. S. Kimball, K. C. McDonald, S. Frolking, and S. W. Running, “Radar
remote sensing of the spring thaw transition across a boreal landscape,”
Remote Sens. Environ., vol. 89, no. 2, pp. 163175, Jan. 2004.

4302313

[5] Y. Kim, J. S. Kimball, K. Zhang, and K. C. McDonald, “Satel-
lite detection of increasing Northern Hemisphere non-frozen seasons
from 1979 to 2008: Implications for regional vegetation growth,” Remote
Sens. Environ., vol. 121, pp. 472-487, Jun. 2012.

[6] C. Derksen et al., “Retrieving landscape freeze/thaw state from soil
moisture active passive (SMAP) radar and radiometer measurements,”
Remote Sens. Environ., vol. 194, pp. 48-62, Jun. 2017.

[7] J. Obua et al., “Northern hemisphere permafrost map based on TTOP
modelling for 20002016 at 1 km? scale,” Earth-Sci. Rev., vol. 193,
pp. 299-316, Jun. 2019.

[8] J. Mortin, T. M. Schrgder, A. W. Hansen, B. Holt, and K. C. McDonald,
“Mapping of seasonal freeze-thaw transitions across the pan-arctic land
and sea ice domains with satellite radar,” J. Geophys. Res., Oceans,
vol. 117, no. C8, Aug. 2012, Art. no. C08004.

[9] L. Wang, C. Derksen, R. Brown, and T. Markus, “Recent changes in
pan-arctic melt onset from satellite passive microwave measurements,”
Geophys. Res. Lett., vol. 40, no. 3, pp. 522-528, Feb. 2013.

[10] J. S. Kimball, K. C. McDonald, A. Keyser, S. Frolking, and S. Running,

“Application of the NASA Scatterometer (NSCAT) for determining the

daily frozen and nonfrozen landscape of Alaska,” Remote Sens. Environ.,

vol. 75, no. 1, pp. 113-126, Jan. 2001.

A. Colliander, K. McDonald, R. Zimmermann, R. Schroeder,

J. S. Kimball, and E. G. Njoku, “Application of QuikSCAT backscatter

to SMAP validation planning: Freeze/thaw state over ALECTRA sites in

Alaska from 2000 to 2007,” IEEE Trans. Geosci. Remote Sens., vol. 50,

no. 2, pp. 461468, Feb. 2012.

[12] A. Bartsch, R. A. Kidd, W. Wagner, and Z. Bartalis, “Temporal and

spatial variability of the beginning and end of daily spring freeze/thaw

cycles derived from scatterometer data,” Remote Sens. Environ., vol. 106,

no. 3, pp. 360-374, Feb. 2007.

S. M. Bateni, C. Huang, S. A. Margulis, E. Podest, and K. McDonald,

“Feasibility of characterizing snowpack and the freeze-thaw state of

underlying soil using multifrequency active/passive microwave data,”

IEEE Trans. Geosci. Remote Sens., vol. 51, no. 7, pp. 4085-4102,

Jul. 2013.

A. Roy et al., “Evaluation of spaceborne L-band radiometer measure-

ments for terrestrial freeze/thaw retrievals in Canada,” IEEE J. Sel.

Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 9, pp. 4442-4459,

Sep. 2015.

[15] L. Farhadi, R. H. Reichle, G. J. M. De Lannoy, and J. S. Kimball,
“Assimilation of freeze-thaw observations into the NASA catchment
land surface model,” J. Hydrometeorol., vol. 16, no. 2, pp. 730-743,
Apr. 2015.

[16] M. Watanabe et al., “Analysis of the sources of variation in L-band
backscatter from terrains with permafrost,” IEEE Trans. Geosci. Remote
Sens., vol. 50, no. 1, pp. 44-54, Jan. 2012.

[17] M. Schwank, M. Stahli, H. Wydler, J. Leuenberger, C. Matzler, and

H. Fluhler, “Microwave L-band emission of freezing soil,” IEEE Trans.

Geosci. Remote Sens., vol. 42, no. 6, pp. 1252-1261, Jun. 2004.

K. Rautiainen et al., “L-band radiometer observations of soil processes in

boreal and subarctic environments,” IEEE Trans. Geosci. Remote Sens.,

vol. 50, no. 5, pp. 1483-1497, May 2012.

K. Rautiainen et al., “Detection of soil freezing from L-band passive

microwave observations,” Remote Sens. Environ., vol. 147, pp. 206218,

May 2014.

K. Rautiainen et al., “SMOS prototype algorithm for detecting autumn

soil freezing,” Remote Sens. Environ., vol. 180, pp. 346-360, Jul. 2016.

[21] E. Podest, K. C. McDonald, and J. S. Kimball, “Multisensor microwave
sensitivity to freeze/thaw dynamics across a complex boreal landscape,”
IEEE Trans. Geosci. Remote Sens., vol. 52, no. 11, pp. 6818-6828,
Nov. 2014.

[22] J. Du, J. S. Kimball, M. Azarderakhsh, R. S. Dunbar, M. Moghaddam,
and K. C. McDonald, “Classification of Alaska spring thaw character-
istics using satellite L-band radar remote sensing,” IEEE Trans. Geosci.
Remote Sens., vol. 53, no. 1, pp. 542-556, Jan. 2015.

[23] X. Xu, C. Derksen, S. H. Yueh, R. S. Dunbar, and A. Colliander,

“Freeze/thaw detection and validation using Aquarius’ L-band backscat-

tering data,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,

vol. 9, no. 4, pp. 1370-1381, Apr. 2016.

M. Martin-Neira, “A passive reflectometry and interferometry system

(PARIS): Application to ocean altimetry,” ESA J., vol. 17, no. 4,

pp. 331-355, 1993.

V. U. Zavorotny and A. G. Voronovich, “Scattering of GPS signals from

the ocean with wind remote sensing application,” IEEE Trans. Geosci.

Remote Sens., vol. 38, no. 2, pp. 951-964, Mar. 2000.

(11]

[13]

[14]

[18]

[19]

[20]

[24]

[25]



4302313

[26]

[27]

[28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

J. L. Garrison, A. Komjathy, V. U. Zavorotny, and S. J. Katzberg, “Wind
speed measurement using forward scattered GPS signals,” IEEE Trans.
Geosci. Remote Sens., vol. 40, no. 1, pp. 50-65, Jan. 2004.

S. T. Lowe, J. L. LaBrecque, C. Zuffada, L. J. Romans, L. E. Young,
and G. A. Hajj, “First spaceborne observation of an Earth-reflected GPS
signal,” Radio Sci., vol. 37, pp. 7-1-7-28, Jan. 2002.

S. Gleason et al., “Detection and processing of bistatically reflected GPS
signals from low Earth orbit for the purpose of ocean remote sensing,”
IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1229-1241,
Jun. 2005.

K. M. Larson, E. E. Small, E. Gutmann, A. Bilich, P. Axelrad, and
J. Braun, “Using GPS multipath to measure soil moisture fluctuations:
Initial results,” GPS Solutions, vol. 12, no. 3, pp. 173-177, Jul. 2008.

C. S. Ruf et al., “New ocean winds satellite mission to probe hurricanes
and tropical convection,” Bulleting Amer. Meteorolog. Soc., vol. 97,
pp. 385-395, Mar. 2015.

R. Shah et al., “Remote sensing of snow water equivalent using P-band
coherent reflection,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 3,
pp. 309-313, Mar. 2017.

N. Rodriguez-Alvarez et al., “Soil moisture retrieval using GNSS-R
techniques: Experimental results over a bare soil field,” IEEE Trans.
Geosci. Remote Sens., vol. 47, no. 11, pp. 3616-3624, Nov. 2009.

C. Chew, R. Shah, C. Zuffada, G. Hajj, D. Masters, and A. J. Mannucci,
“Demonstrating soil moisture remote sensing with observations from
the UK TechDemoSat-1 satellite mission,” Geophys. Res. Lett., vol. 43,
no. 7, pp. 3317-3324, 2016.

H. Carreno-Luengo, S. Lowe, C. Zuffada, S. Esterhuizen, and
S. Oveisgharan, “Spaceborne GNSS-R from the SMAP mission: First
assessment of polarimetric scatterometry over land and cryosphere,”
Remote Sens., vol. 9, no. 4, p. 362, Apr. 2017.

H. Carreno-Luengo, G. Luzi, and M. Crosetto, “Sensitivity of CyGNSS
bistatic reflectivity and SMAP microwave radiometry brightness tem-
perature to geophysical parameters over land surfaces,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 1, pp. 107-122,
Jan. 2019.

M. Kurum, M. Deshpande, A. T. Joseph, P. E. O’Neill, R. H. Lang,
and O. Eroglu, “SCoBi-Veg: A generalized bistatic scattering model of
reflectometry from vegetation for signals of opportunity applications,”
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 2, pp. 1049-1068,
Feb. 2019.

M. Morris, C. Chew, J. T. Reager, R. Shah, and C. Zuffada, “A
novel approach to monitoring wetland dynamics using CYGNSS:
Everglades case study,” Remote Sens. Environ., vol. 233, Nov. 2019,
Art. no. 111417.

C. Gerlein-Safdi and C. S. Ruf, “A CYGNSS-based algorithm for the
detection of inland waterbodies,” Geophys. Res. Lett., vol. 46, no. 21,
pp. 12065-12072, Nov. 2019.

C. Chew et al., “SMAP radar receiver measures land surface freeze/thaw
state through capture of forward-scattered L-band signals,” Remote Sens.
Environ., vol. 198, pp. 333-344, Sep. 2017.

D. Comite, L. Cenci, A. Colliander, and N. Pierdicca, “Monitoring
freeze-thaw state by means of GNSS reflectometry: An analysis of
TechDemoSat-1 data,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 13, pp. 2996-3005, 2020.

X. Wu et al., “First measurement of soil freeze/thaw cycles in the Tibetan
Plateau using CYGNSS GNSS-R data,” Remote Sens., vol. 12, no. 15,
p. 2361, Jul. 2020.

F. Fabra, “GNSS-R as a source of opportunity for remote sensing of the
cryosphere,” Ph.D. dissertation, Inst. Space Sci., Universitat Politécnica
de Catalunya, Barcelona, Spain, 2014.

E.T. Ulaby et al., Microwave Radar and Radiometric Remote Sensing.
Ann Arbor, MI, USA: Published in the United States of America by
The University of Michigan Press, 2014.

M. Hallikainen, F. Ulaby, M. Dobson, M. El-Rayes, and L.-K. Wu,
“Microwave dielectric behavior of wet soil—Part 1: Empirical models
and experimental observations,” IEEE Trans. Geosci. Remote Sens.,
vol. GE-23, no. 1, pp. 25-34, Jan. 1985.

M. Dobson, F. Ulaby, M. Hallikainen, and M. El-Rayes, “Microwave
dielectric behavior of wet soil—Part II: Dielectric mixing models,” IEEE
Trans. Geosci. Remote Sens., vol. GE-23, no. 1, pp. 35-46, Jan. 1985.
L. Zhang, J. Shi, and Z. Zhang, “The estimation of dielectric con-
stant of frozen soil-water mixture at microwave bands,” in Proc.
IEEE Int. Geosci. Remote Sens. Symp., Toulouse, France, Jul. 2003,
pp- 2903-2905.

A. P. Gorbunov, “Permafrost investigations in high-mountain regions,”
Arctic Alpine Res., vol. 10, no. 2, pp. 283-294, 1978.

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

T. Wang, C. S. Ruf, B. Block, D. S. McKague, and S. Gleason, “Design
and performance of a GPS constellation power monitor system for
improved CYGNSS LI1B calibration,” /IEEE J. Sel. Topics Appl. Earth
Observ., Remote Sens., vol. 12, no. 1, pp. 26-36, Jan. 2019.

T. Wang et al., “Dynamic calibration of GPS effective isotropic
radiated power for GNSS-reflectometry Earth remote sensing,” IEEE
Trans. Geosci. Remote Sens., early access, May 3, 2021, doi:
10.1109/TGRS.2021.3070238.

CYGNSS. (2020). CYGNSS Level 1 (L1) Data From the Ver-
sion 3.0 (v3.0) Science Data Record. Dataset. [Online]. Available:
https://podaac.jpl.nasa.gov/

ECMWE. (2020). ECMWF ERAS-Land Hourly Data. Dataset. [Online].
Available: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/
cds.e2161bac?tab=overview

Y. H. Kerr et al., “The SMOS mission: New tool for monitoring key
elements of the global water cycle,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp., Honolulu, HI, USA, Apr. 2010, pp. 666—687.

S. Dunbar, X. Xu, A. Colliander, C. Derksen, J. Kimball and Y. Kim,
Algorithm Theoretical Basis Document (ATBD) SMAP Level 3 Radiome-
ter Freeze/Thaw Data Products (L3_FT_P and L3_FT_P_E). Pasadena,
CA, USA: California Institute of Technology, Aug. 2020.

M. P. Clarizia, C. Ruf, P. Cipollini, and C. Zuffada, “First spaceborne
observation of sea surface height using GPS-reflectometry,” Geophys.
Res. Lett., vol. 43, no. 2, pp. 767-774, 2016.

A. Camps et al., “Sensitivity of GNSS-R spaceborne observations to
soil moisture and vegetation,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 9, no. 10, pp. 4730-4732, Oct. 2016.

C. C. Chew and E. E. Small, “Soil moisture sensing using spaceborne
GNSS reflections: Comparison of CYGNSS reflectivity to SMAP soil
moisture,” Geosci. Res. Lett., vol. 45, no. 9, pp. 4049-4057, 2018.

M. P. Clarizia, N. Pierdicca, F. Costantini, and N. Floury, “Analysis of
CYGNSS data for soil moisture retrieval,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 12, no. 7, pp. 2227-2235, Jul. 2019.
E. Loria, A. O’Brien, and I. J. Gupta, “Detection & separation of
coherent reflections in GNSS-R measurements using CYGNSS data,”
in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2018,
pp. 3995-3998.

Y. Wang and Y. J. Morton, “Coherent GNSS reflection signal processing
for high-precision and high-resolution spaceborne applications,” /IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 1, pp. 831-842, Jan. 2021.
E. Loria, A. O’Brien, V. Zavorotny, B. Downs, and C. Zuffada,
“Analysis of scattering characteristics from inland bodies of water
observed by CYGNSS,” Remote Sens. Environ., vol. 245, Aug. 2020,
Art. no. 111825.

A. Egido et al., “Airborne GNSS-R polarimetric measurements for
soil moisture and above-ground biomass estimation,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 5, pp. 1522-1532,
May 2014.

S. Gleason, A. O’Brien, A. Russel, M. M. Al-Khaldi, and J. T. Johnson,
“Geolocation, calibration and surface resolution of CYGNSS GNSS-R
land observations,” Remote Sens., vol. 12, no. 8, p. 1317, Apr. 2020.
A. M. Balakhder, M. M. Al-Khaldi, and J. T. Johnson, “On the coherency
of ocean and land surface specular scattering for GNSS-R and signals
of opportunity systems,” IEEE Trans. Geosci. Remote Sens., vol. 57,
no. 12, pp. 10426-10436, Dec. 2019.

M. M. Al-Khaldi, J. T. Johnson, S. Gleason, E. Loria, A. J. O’Brien,
and Y. Yi, “An algorithm for detecting coherence in cyclone global
navigation satellite system mission Level-1 delay-Doppler maps,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 5, pp. 4454-4463, May 2021.
M. M. Al-Khaldi et al., “Inland water body mapping using CYGNSS
coherence detection,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 9,
pp. 7385-7394, Sep. 2021.

M. M. Al-Khaldi, R. Shah, C. C. Chew, J. T. Johnson, and S. Gleason,
“Mapping the dynamics of the south Asian monsoon using CYGNSS’s
Level-1 signal coherency,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 14, pp. 1111-1119, 2021.

D. Comite and N. Pierdicca, “Decorrelation of the near-specular land
scattering in bistatic radar systems,” IEEE Trans. Geosci. Remote Sens.,
early access, May 5, 2021, doi: 10.1109/TGRS.2021.3072864.

N. Pierdicca, L. Guerriero, R. Giusto, M. Brogioni, and A. Egido,
“SAVERS: A simulator of GNSS reflections from bare and vege-
tated soils,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 10,
pp. 6542-6554, Oct. 2014.

D. Comite, F. Ticconi, L. Dente, L. Guerriero, and N. Pierdicca, “Bistatic
coherent scattering from rough soils with application to GNSS reflec-
tometry,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 1, pp. 612-625,
Jan. 2020.


http://dx.doi.org/10.1109/TGRS.2021.3070238
http://dx.doi.org/10.1109/TGRS.2021.3072864
http://dx.doi.org/10.1109/TGRS.2021.3072864

CARRENO-LUENGO AND RUF: RETRIEVING FREEZE/THAW SURFACE STATE FROM CYGNSS MEASUREMENTS

[70] L. Dente, L. Guerriero, D. Comite, and N. Pierdicca, “Space-borne
GNSS-R signal over a complex topography: Modeling and valida-
tion,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13,
pp. 1213-1218, 2020.

H. Carreno-Luengo, G. Luzi, and M. Crosetto, “Above-ground bio-
mass retrieval over tropical forests: A novel GNSS-R approach with
CyGNSS,” Remote Sens., vol. 12, no. 9, p. 1368, Apr. 2020.

H. Carreno-Luengo, G. Luzi, and M. Crosetto, “First evaluation of
topography on GNSS-R: An empirical study based on a digital elevation
model,” Remote Sens., vol. 11, no. 21, p. 2556, Oct. 2019.

G. Foti, C. Gommenginger, M. Unwin, P. Jales, J. Tye, and J. Rosell6,
“An assessment of non-geophysical effects in spaceborne GNSS reflec-
tometry data from the UK TechDemoSat-1 mission,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 10, no. 7, pp. 3418-3429,
Jul. 2017.

C. Hu, C. Benson, H. Park, A. Camps, L. Qiao, and C. Rizos, “Detecting
targets above the Earth’s surface using GNSS-R delay Doppler maps:
Results from TDS-1,” Remote Sens., vol. 11, no. 19, p. 2327, Oct. 2019.
S. Kraatz et al., “Evaluation of SMAP freeze/thaw retrieval accuracy
at core validation sites in the contiguous united states,” Remote Sens.,
vol. 10, no. 9, p. 1483, Sep. 2018.

K. Rautiainen, D. Comite, J. Cohen, M. Unwin, and N. Pierdicca,
“GNSS-reflected signals for permafrost monitoring,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp. (IGARSS), Jul. 2021, pp. 140-143.

M. J. Unwin et al., “An introduction to the HydroGNSS GNSS reflec-
tometry remote sensing mission,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 14, pp. 6987-6999, 2021, doi: 10.1109/
JSTARS.2021.3089550.

[71]

[72]

[73]

[74]1

[75]

[76]

(771

Hugo Carreno-Luengo (Senior Member, IEEE)
received the Ingeniero Aerondutico degree (Plan
Antiguo de Estudios, “bachelor’s + master’s”), spe-
cialization in Spacecrafts, from the Escuela Téc-
nica Superior de Ingenieros Aeronduticos (ETSIA),
Universidad Politécnica de Madrid (UPM), Madrid,
Spain, in 2010, and the Ph.D. degree (cum
laude) from the Department of Signal Theory and
Communications (TSC), Universitat Politecnica de
Catalunya (UPC), Barcelona, Spain, in 2016.

From 2009 to 2010, he performed the final degree
project at the Department of Aircrafts and Space Vehicles, UPM. In 2011,
he performed the Master of Space Science and Technology at UPC. From
2011 to 2016, he was involved in the design and development of the
first-ever Nano-Satellite for Earth Remote Sensing using GNSS-R with the
Institut d’Estudis Espacials de Catalunya (IEEC), Barcelona. From 2012 to
2015, he was the Principal Investigator (PI) of the TORMES Project and
TORMES 2.0 Project within ESA’s REXUS/BEXUS and a Co-PI in the
E-GEM FP7 Project. From 2013 to 2014, he was a Visiting Researcher
with ESA-ESTEC, DLR, Esrange Space Center. In 2016, he was invited by
the China Great Wall Industry Corporation (CGWIC) to assist the launch
campaign of the 3Cat-2 CubeSat at the Jiuquan Satellite Launch Center.
He was holding a postdoctoral position at the NASA Jet Propulsion Laboratory
(JPL), Pasadena, CA, USA, from 2016 to 2017, where he was involved
in a GNSS-Reflectometry experiment within NASA’s Soil Moisture Active
Passive (SMAP) mission. This work set the basis for the development of
the new SMAP operational mode. From 2017 to 2019, he was holding a
postdoctoral position at CTTC with the first position of the “Juan de la Cierva”
Post-Doctoral Research Program, by the Ministerio de Ciencia e Innovacion.
He worked on the development of methodologies for synergistic use of
GNSS-R and microwave radiometry toward a “federated” operation of NASA’s
Cyclone Global Navigation Satellite System (CYGNSS) and SMAP missions.
During these years, he was a Research Affiliate within NASA’s Extended
CYGNSS Science Team. Since 2019, he has been a NASA Science Mission
Directorate/CLaSP-UMich Research Scientist working directly with the PI of
NASA’s CYGNSS mission. He is developing the updated CYGNSS end-to-
end simulator and working on new freeze/thaw (F/T) retrieval algorithms.
He has participated in 11 international research projects (NASA, ESA,
and FP7), being PI in three and Co-PI in one of them. He has participated
in three national research projects (MINECO), being a PI of two of them.
Additionally, he has also participated in technology transfer activities at CTTC
and within the SESAR Project (European Union). He has reviewed the book:
“Climate Change and Extreme Events: Do We Know Enough?’ (Elsevier).

4302313

He has published 20 journal articles (15 as the first author) in international
peer-reviewed journals (Q1) and 47 international conference proceedings
including IGARSS articles (37 as the first author). He has published one book
chapter (IET) and one IEEE Standard (IEEE-SA GRSS). His research interests
include the use of GNSS-Reflectometry techniques for Earth Remote Sensing
over land surfaces from Small Satellites. His research work has attracted
615 citations, reporting an H-index of 15, and i-10 index of 19.

Dr. Carreno-Luengo is a member of the IEEE GRSS and IEEE GRSS Tech-
nical Committee on Standards for Earth Observations. He was a recipient of
the Ph.D. Fellowship by the Institut d’Estudis Espacials de Catalunya (IEEC),
two IEEE and one NASA student travel grants from 2012 to 2015, the IEEE
GRSS Award for the Best Ph.D. Thesis in Geoscience and Remote Sensing,
the Serra Hunter Programme, and the CAS’s President’s International Fellow-
ship Initiative (PIFI) in 2017, the UPC Special Award in Science in 2018, and
the MDPI Remote Sensing Postdoctoral Award in 2019. He was the Session
Chair at the 2015, 2017, 2018, 2019, and 2021 IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), the 2020 NASA CYGNSS
Science Team Meeting, and the IEEE GNSS + R 2021. Additionally, he was
also the Chair of the Town Hall Meeting at IEEE GNSS + R 2021.
He is serving as the Chair for the IEEE GRSS Working Group P4003
(Standard for Global Navigation Satellite System-Reflectometry Data and
Metadata Content). He has advised 13 final degrees and two master theses.
He has managed several students’ teams within ESA REXUS/BEXUS (ESA
Educational Office). He is a Topic Editor and a member of the Reviewer Board
of MDPI Remote Sensing. At present, he is Guest Editor of the Special Issue
on “Advanced RF Sensors and Remote Sensing Instruments” of the MDPI
Remote Sensing and Special Issue on “GNSS-R Earth Remote Sensing from
SmallSats” of the MDPI Remote Sensing. He is an Associate Editor of MDPI
Earth. He has reviewed 69 articles in high impact factor journals such as IEEE
TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING (TGRS), IEEE
JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND
REMOTE SENSING(JSTARS), IEEE GEOSCIENCE AND REMOTE SENSING
LETTERS (GRSL), MDPI Remote Sensing and Sensors, Elsevier Advances
in Space Research, and AGU Radio Science. He served on the panel review
for the NASA’s Research Opportunities in Space and Earth Science (ROSES)
GNSS Programme in 2020 (24 proposals). He has been serving as an External
Reviewer (panelist) for the European Commission and other public research
and development centers from EU members, since 2020. He has provided
51 talks to international research societies, including 13 invited presentations
(IGARSS and ESA ARSI + KEO). Some of his results have been included
in the cover page of the IEEE GRSS MAGAZINE in 2014 and the Special
Issue on CYGNSS Early on Orbit Performance of the IEEE JSTARS in 2019.
Additionally, he has the qualification of “Assistant Professor” by the Spanish
National Agency for Quality Assessment and Accreditation and of “Tenured
Track Lecturer” by the Catalan University Quality Assurance Agency. He held
a total of 45 honors and awards, and he has actively participated in numerous
outreach activities (national and international).

Christopher S. Ruf (Fellow, IEEE) received the
B.A. degree in physics from Reed College, Portland,
OR, USA, and the Ph.D. degree in electrical and
computer engineering from the University of Massa-
chusetts at Amherst, Amherst, MA, USA.

He is currently the Frederick Bartman Collegiate
Professor of Climate and Space Science with the
University of Michigan, Ann Arbor, MI, USA, and a
Principal Investigator of the NASA Cyclone Global
Navigation Satellite System mission. He was with
Intel Corporation, the NASA Jet Propulsion Lab-
oratory, Pasadena, CA, USA, and Penn State University, University Park,
PA, USA. His research interests include GNSS-R remote sensing, microwave
radiometry, atmosphere and ocean geophysical retrieval algorithm develop-
ment, and sensor technology development.

Dr. Ruf is a member of the American Geophysical Union, the American
Meteorological Society, and Commission F of the Union Radio Scientifique
Internationale. He was a recipient of the 1997 IEEE TGRS Best Paper Award,
the 1999 IEEE Resnik Technical Field Award, the 2006 IGARSS Best Paper
Award, the 2014 IEEE GRSS Outstanding Service Award, the 2017 AIAA
SmallSat Mission of the Year Award, and the 2020 University of Michigan
Distinguished Faculty Achievement Award. He is a former Editor-in-Chief of
the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING and has
served on the editorial boards for Radio Science, Journal of Atmospheric and
Oceanic Technology, and Nature Scientific Reports.


http://dx.doi.org/10.1109/JSTARS.2021.3089550
http://dx.doi.org/10.1109/JSTARS.2021.3089550

