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Estimation of the Hourly Aerosol Optical Depth
From GOCI Geostationary Satellite Data: Deep

Neural Network, Machine Learning,
and Physical Models

Jong-Min Yeom , Seungtaek Jeong , Jong-Sung Ha, Kwon-Ho Lee , Chang-Suk Lee , and Seonyoung Park

Abstract— In this study, a new deep learning method was
developed to estimate the spatiotemporal properties of the hourly
aerosol optical depth (AOD) because existing physical models
are limited in their abilities to separate the reflectance between
aerosols and the underlying surface over land, accurately and
effectively. By incorporating geostationary ocean color imagery
(GOCI), multispectral bands were applied to train data-driven
models to estimate the high-spatiotemporal-resolution AOD over
Northeast Asia. Physical model and traditional machine learn-
ing (ML) models (the random forest (RF) and support vector
regression (SVR) models) were compared with the deep neural
network (DNN) model to evaluate its accuracy, implementing
hold-out validation and k-fold cross-validation approaches. In the
statistical results of the hold-out validation, the DNN model
showed the higher accuracy (root mean square error (RMSE) =
0.112, mean bias error (MBE) = 0.007, and correlation coefficient
(R) = 0.863) relative to the traditional SVR (RMSE = 0.123,
MBE = −0.010, and R = 0.833) and RF (RMSE = 0.125,
MBE = 0.004, and R = 0.825) models. The DNN model also
exhibited the best performance for most statistical metrics among
the traditional SVR, RF, and selected physical models (except for
the correlation coefficients and index of agreement) in the spatial
and temporal cross-validation analyses. Although the DNN model
was trained using the match-up dataset between the top of
atmosphere (TOA) reflectance from GOCI multispectral bands
and AErosol RObotic NETwork measurements, it showed high
spatial and temporal generalization performance owing to its
deeper and more complicated network structure. Hourly GOCI
AOD data obtained using a deep learning approach with high
accuracy are expected to be useful for the quantification of
aerosol contents and monitoring of diurnal variations in the AOD.

Index Terms— Aerosol optical depth (AOD), deep neural
network (DNN), geostationary ocean color imagery (GOCI)
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I. INTRODUCTION

THE aerosol optical depth (AOD) has been one of the
major atmospheric parameters used in climate change

and air pollution research. Atmospheric aerosols influence the
climate system directly by scattering or absorbing incident
solar radiation on Earth [1]–[3] and indirectly by altering
cloud microphysical properties and their lifetimes [4]–[7].
Uncertainty in aerosol radiative forcing is a major challenge in
climate studies [8]. In addition to climate change, atmospheric
aerosols have significant effects on human health; a rapid
increase in the particulate matter (PM) mass concentration in
a short period is associated with hospital admissions due to
respiratory problems [9], [10]. Aerosols have inhomogeneous
spatial and temporal distributions as a consequence of their
short lifetimes. Therefore, accurately determining the loading
and properties of aerosols is important for understanding their
direct and indirect effects on the climate system and public
health.

Aerosols can be monitored by estimating their optical
properties from the AErosol RObotic NETwork (AERONET)
using ground-based sun photometers [11] or using airborne
and satellite instrumentation [12], [13]. The main advantage
of AERONET is to secure the accuracy of aerosol optical
properties (AOPs) and loadings using upward spectral chan-
nels of ground-based sun photometers with high temporal
resolution. However, AERONET stations are too sparse to
monitor the spatial characteristics of AOPs because the spa-
tiotemporal variations and optical properties of atmospheric
aerosols are unpredictable and complicated, and it is difficult
to cover large spatial domains only using ground-based mea-
surements. Therefore, satellites are considered as alternatives
to monitor the spatiotemporal variations in AOPs over large
areas. Several methods of estimating AOD over land and
ocean have been developed using polar orbits, such as the
Moderate Resolution Imaging Spectroradiometer [14]–[18],
Sea-viewing Wide Field-of view Sensor [19]–[21], Medium
Resolution Imaging Spectrometer (MERIS) [22], and geo-
stationary satellites, such as the Geostationary Operational
Environmental Satellite [23], [24], Multifunctional Transport
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SATellites [25], Spinning Enhanced Visible and Infra-Red
Imager [26]–[28], and Geostationary Ocean Color Imagery
(GOCI) [29]–[31]. Although these satellites are effective in
estimating spatiotemporal variations in the AOD with the
state-of-the-art sensors, satellite-based AOD products still
have uncertainties owing to cloud masking, aerosol model
assumptions, and surface reflectance. A key problem with
using satellite images to retrieve aerosol properties is the
difficulty of effectively separating and explicitly describing
the contributions of reflectance from the underlying surface
and backscattering from semi-transparent aerosol particles to
the signal observed by the satellite-based instrument at the
top of the atmosphere (TOA) [32]–[34]. Estimating the AOPs
from satellite data and calculating them separately are difficult
because optical satellites in orbit inevitably observe mixed
spectral signals for both the atmosphere and land surface [35].
Therefore, we must develop new approaches to improve the
accuracy of the AOD using satellite data to evaluate air
pollution exposure for climate change and epidemiological
studies, as well as for public health concerns.

Data-driven machine learning (ML) models show outstand-
ing accuracy in the retrieval and prediction of the AOD and
PM [36]–[39]. They are also useful for predictions in nonlinear
system modeling and control [37], [40], [41]. ML models do
not require information on the physical processes related to
the radiative dynamics of aerosols, but they require complex
mathematical equations for the atmosphere [42], [43].

Several ML approaches, such as artificial neural networks
(ANNs), support vector regression (SVR), and the random
forest (RF) method, have effectively predicted the AOD or
other geophysical products [44]–[50]. Although these models
have performed well, they have shown limitations in some
studies. ANN models produce less accurate atmospheric fore-
casts than the existing ML models [51] under severe weather
conditions [52]. Although SVR exhibits low sensitivity to high
dimensionality and is unlikely to suffer from data dimension-
ality [53], it has difficulty with complicated nonlinearities in
the atmosphere when using big data. The RF model tends
to be overfitted closer to the mean value when there are
an insufficient number of extreme samples because it was
developed based on the lowest prediction error [54]. Therefore,
a feasibility study of the improved data-driven approaches is
required because rendering the ML models as more complex
networks would be effective to reflect the nonlinear and
complicated aerosol scattering or absorption processes in the
atmosphere [36], [55]. Recently, based on the development
of high-performance computing, deep learning approaches
have been considering major breakthroughs in solving the
challenges in geophysical research [35], [51], [56]–[60].

In this study, we retrieved the hourly AOD data using
GOCI incorporated with a deep neural network (DNN) over
Northeast Asia. For the first time, the DNN method was
applied to estimate the spatiotemporal variations in the AOD
over Northeast Asia using geostationary satellite data because
the DNN architectures of data-driven models with more than
three layers provide better approximations of nonlinear func-
tions than traditional and shallow neural networks [61]–[64].
Data-driven models can produce more accurate and higher

Fig. 1. (a) GOCI RGB composite image acquired on April 20, 2018.
(b) Locations of the AERONET sites used as reference data for GOCI AOD
retrieval from the data-driven models. Groups separated by color were used
for fivefold cross-validation.

order values if they have more diverse and complex network
structures, such as human brain neurons. The advantage of
using GOCI imagery for the retrieval of the AOD over land is
that it equips shortwave visible channels from blue (>413 nm)
to near-infrared (NIR; <670 nm) wavelengths because the
spectral surface reflectance is relatively low in the shortwave
visible spectral region, decreasing its contribution to TOA
reflectance. Therefore, an increase or decrease in the variability
due to aerosol reflectance can be detected using GOCI sensors
owing to the relatively low intensity of the land surface
reflectance in shortwave blue channels.

II. DATA AND STUDY AREA

The GOCI sensor onboard the Communication, Ocean, and
Meteorological Satellite (COMS) launched in June 2010 is
the first geostationary ocean color sensor in the world [65],
[66]. COMS is equipped with six visible multispectral bands
centered at 412, 443, 490, 555, 660, and 680 nm, and two NIR
bands at 745 and 865 nm. Fig. 1(a) shows a full disk RGB
image acquired on April 20, 2018, with 2500 km × 2500 km
spatial coverage, centered at 36◦ N, 130◦ E [66]. This image
covers Northeast China, the Korean Peninsula, and Japan,
passing over the East Asia domain eight times a day (hourly
observations from 00 to 07UTC), with a 500-m spatial reso-
lution. The GOCI satellite, with high spatiotemporal-spectral
resolution, is effective for operational air quality monitoring
and forecasting because it incorporates data assimilation over
Northeast Asia as a near real-time system. The study period
was from 2016 to 2018, and the TOA reflectance of GOCI
was used as the main input parameter when training the
network model, incorporating solar angles, since the upward
reflectance at the TOA included not only atmospheric optical
properties, including aerosol data, but also land surface data
for Lambertian uniform targets [20], [31]. In this study,
ground measurements from AERONET stations were used as
reference data for the AOD to train and validate the data-
driven models. Fig. 1(b) shows the locations of 33 AERONET
sites (https://aeronet.gsfc.nasa.gov/) and five groups randomly
selected for spatial cross-validation. AERONET is a globally
distributed network of Cimel Sun photometers that provide
multiwavelength AOD measurements with a low uncertainty
of <0.02 [11], [67]. In this study, quality-assured level 2.0
AERONET inversion data [68] were used to evaluate the
GOCI AOD values derived from each method. As the Cimel
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Sun photometer does not measure radiance at a wavelength
of 550 nm, the AOD at 550 nm (τ550) was calculated using
a log-linear interpolation with two nearest wavelengths (i.e.,
500 and 675 nm) as follows:

τ550 = τ500 ×
(

675

500

)−α

(1)

where τ500 and τ675 are the AODs at wavelengths of 500 and
675 nm, respectively; τ550 is the AOD at the reference wave-
length of 550 nm; and α is the Ångström parameter.

III. METHODS

A. Physical Model-Based AOD Retrieval

The GOCI AOD derived from the physical model-based
aerosol retrieval method was compared with that of the DNN
model. The physical model-based method uses the dark target
approach [14], [15], separation techniques [20], [69], and
spectral shape matching [70], [71]. In this method, the aerosol
reflectance, ρaero(λ, θs , θv, φ), from the GOCI multispectral
bands can be determined by subtracting the Rayleigh path
reflectance, ρRay(λ, z), and surface reflectance, ρSurf , from the
TOA reflectance, ρTOA(λ, θs, θv , φ), for given geometrical illu-
mination and observation conditions. The following equation
was introduced to determine the aerosol reflectance [20], [31]:

ρaero(λ, θs , θv, φ) = ρTOA(λ, θs , θv, φ) − ρRay(λ, z)

− T1(λ, μs)T2(λ, μv ) · ρSurf

1 − ρSurf · ρHem(λ)
(2)

where μs = cosθs and μv = cosθv are the cosine sun
zenith angle and cosine viewing zenith angle, respectively;
T1(λ, μs) and T2(λ, μv ) are the total atmospheric transmit-
tances, including both direct and diffuse transmissions at each
of the wavelengths (λ) for the solar and viewing zenith angles,
respectively; and ρHem(λ) is the hemispheric atmospheric
reflectance. In (2), the parameterizations of total transmissions
and the hemispheric atmospheric reflectance are given in von
Hoyningen-Huene et al. [72] and Kokhanovsky et al. [73].

To directly determine the theoretical relationship between
the multispectral radiances from GOCI and corresponding
AOD, the contributions of the Rayleigh path reflectance and
surface reflectance can be considered to acquire measure-
ments of the aerosol reflectance from the TOA reflectance
in GOCI observations. In (2), the height-dependent Rayleigh
path reflectance [ρRay(λ, z)] can be determined with spectral
Rayleigh cross sections and a phase function with respect
to the atmospheric pressure, p(z), at elevation z (km) [74].
The estimation of the surface reflectance (ρSurf ) is an
ill-posed problem because radiometric interference between
atmospheric aerosols and surfaces exists simultaneously.
In this study, the GOCI L1b reflectance at 412 nm was
used initially to separate the surface reflectance from the
TOA reflectance because the surface reflectance at 412 nm is
relatively low compared with that of the other GOCI spectral
bands, and the influence of the hemispheric reflectance is
less effective. As a reference, the initial surface reflectance
was estimated based on the 6S radiative transfer model by
considering the transmission of the atmospheric gases O3,

NO2, and H2O from Ozone Monitoring Instrument (OMI) and
National Centers for Environmental Prediction (NCEP) data,
without using information of aerosol particles. According to
[75], the simplified method based on the 6S radiative trans-
fer model was capable of accurately estimating the spectral
surface reflectance, although not incorporating information
on aerosol particles and atmospheric gases in terms of real
applications.

Although the blue band of GOCI is effective for apply-
ing separation techniques, estimating the background sur-
face reflectance with minimal contamination from clouds and
aerosols using only a single image remains difficult. Therefore,
the minimum surface reflectance with a blue band for a
long period was adopted to determine the background surface
reflectance under clear sky conditions, assuming that there was
at least one clear sky day during the composite period [29],
[30], [33], [76]. Furthermore, the minimum surface reflectance
was determined when all 10 × 10 pixel blocks were clear
pixels to increase the accuracy of finding the clearest homo-
geneous area. After estimating the initial aerosol reflectance
(ρSat

aero) of GOCI blue band 1 (412 nm), the spectral AOD
of GOCI was theoretically determined by selecting an ade-
quate set of lookup tables (LUTs) describing the relationship
between the aerosol reflectance and AOD at 550 nm (τ550). The
LUTs were precomputed using clustered aerosol models from
selected AERONET sun photometer measurements over the
study area using the Santa Barbara discrete ordinance radiative
transfer atmospheric radiative transfer (SBDART) model [31],
[77]. The AOPs for τ550, spectral aerosol extinction, single
scattering albedo, and asymmetry parameters from six aerosol
models were used to run the SBDART model to determine
the AOD as a function of the aerosol reflectance from GOCI.
Finally, spectral shape matching was applied to identify the
best matching AOD by comparing it with the precalculated
LUTs. To select the optimal aerosol model, the root mean
square deviation (RMSD) between the multispectral aerosol
reflectance from the GOCI (ρm

aero) and LUTs (ρc
aero(λi )) at a

given sun and sensor geometric condition was estimated as
follows:

RMSD = 1

n

n∑
i=1

(
ρm

aero(λi ) − ρc
aero(λi )

ρm
aero(λi )

)
(3)

where n is the number of selected wavelengths of GOCI
from one to six bands for the AOD over the land surface.
The superscripts m and c are the measured and theoretically
calculated values, respectively. Spectral shape matching was
used at selected bands of 412, 443, 490, 555, 660, and
680 nm to minimize interference by gas absorption and surface
reflectance. Until the minimum value of the RMSD satisfied
the threshold, the processes mentioned above were repeated
to determine the optimal relationship between τ550 and ρaero,
and the result was used as the final product of the GOCI
AOD (τ550). In this report, we briefly describe the physical
model for aerosol retrieval to focus on the assessment of the
AOD retrieval using a new deep learning model. Detailed
descriptions of the physical model for AOD retrieval, including
parameters for the total atmospheric transmittance and hemi-
spheric reflectance, are provided in [31], [71]–[73], and [78].
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Fig. 2. Schematic of the network structures describing the DNN with a
ReLU activation function.

Cloud screening of the GOCI imagery was performed to
locate clear sky pixels using a series of threshold tests and a
spatial uniformity test [79]. Although inhomogeneous cloud
detection degrades the spatial resolution of the final AOD
products from 0.5 km × 0.5 km to 5 km × 5 km resolution,
it should be applied to improve the accuracy of cloud detection
for GOCI satellites without IR channels. Lastly, as the final
products for the AOD from the physical model have a resolu-
tion of 5 × 5 km after the cloud mask, with a suitable pixel
selection of minimum surface reflectance, the same spatial
resolution condition was tested in the AOD calculation when
using the data-driven models for comparative analysis.

B. Data-Driven Models: DNN, SVR, and RF

The network structure of a DNN consists of one input layer
with a number of input parameters, multiple hidden layers
with a number of nodes, and an output layer (Fig. 2). The
input layer is used as one layer with ten input nodes: the
TOA reflectance from eight spectral bands in GOCI and two
solar zenith and azimuth angles. For reference, the 500-m
spatial resolution of the GOCI spectral bands was aggregated
to a 5 × 5 km2 resolution, which was input into the data-driven
models after cloud masking and inhomogeneous tests. The
output node of the DNN was 1, which was a reference
variable of the AOD (τ550) value from the AERONET mea-
surements. However, the number of hidden layers and nodes
changed according to the relationship between the input and
output parameters and network structures. In this study, a
trial-and-error method was adopted to determine the optimal
number of DNN structures [80]. The hidden layer structure
under various conditions was tested, and the DNN model
with the highest accuracy was determined based on forward
and backward propagation. This approach was used because
simply complicating or using a deeper network structure does
not proportionally increase the retrieval accuracy of the target
variable [51]. For the reference, normalization using input and
output parameter standardization was adopted to avoid model
dependence on different orders of magnitude for each input

and output value while training or optimizing the data-driven
models. The standard deviations of each input and output were
calculated for the training dataset and applied to the validation
and test datasets.

In addition, the activation function of each node was used
with a rectified linear unit (ReLU) because it is a nonsaturating
nonlinearity function with fast convergence of the stochastic
gradient descent [81], [82]. To reduce the overfitting of the
training data, L1 and L2 regularization was applied to the
DNN model because L1 regularization sets some weights
close to zero to reduce the complexity, and L2 regularization
attempts to keep the overall weight close to zero [83]. After
the analysis of the DNN network structure, five hidden layers,
including 512, 512, 256, 256, and 64 hidden nodes for each
layer with L1 regularization and batch normalization, showed
the highest accuracy for the DNN model and were finally
used to estimate the GOCI-based AOD values. Keras, which
is a Python deep learning library, was adopted to estimate the
GOCI-based AOD, and Bayesian optimization from the Keras
Tuner was used to determine the best hyperparameters for the
model.

The RF approach is an ensemble algorithm that employs
classification and regression trees (CARTs) [84]. The RF
model has been used to monitor and predict various
atmospheric variables [51], [85]–[87]. The RF generates a
multitude of decision trees (1000 trees in this study), and
independent trees predict an unknown pixel by aggregating
(through averaging or majority voting) the results of the
trees [84]. There are two randomization processes in the RF
model that are random selections of a subset of the training
samples and variables. These processes alleviate the limitations
of CARTs, such as the overfitting problem. The R software
with the RF package (version 0.10.1, default parameter setting)
was implemented to develop and apply the RF model.

SVR is a regression version of the support vector
machine (SVM) that aims to find an optimal hyperplane
to fit the data and predict an unknown pixel. SVR/SVM
performs well in modeling small samples and has been widely
used in remote sensing [54], [85], [88]–[90]. SVR generally
transforms training data from the original feature space into
a higher dimension to find an optimum hyperplane [91].
Employing kernel functions, such as linear, polynomial, and
Gaussian functions, to separate data effectively is crucial [54].
In this study, SVR was implemented in MATLAB 2018a
through the fitrsvm function (https://mathworks.com/help/
stats/fitrsvm.html) with the Gaussian kernel function, auto-
matic kernel scaling approach, and “Standardize” module.
Although many researchers have used the grid search method
to determine the parameters, we employed an automatic kernel
scaling approach to select the appropriate parameters based on
a heuristic procedure due to the time-consuming nature of the
grid search method [92].

C. Performance Metrics of Data-Driven Models
In this study, the performance of each model was evaluated

in terms of accuracy, bias, and error using the follow-
ing selected statistical equations: the root mean square
error (RMSE), normalized RMSE, mean bias error (MBE),
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normalized MBE, index of agreement (IOA), and expected
error (EE). The spatial distributions of the AOD retrievals from
the four models were compared, and the sensitivity of the error
was analyzed. The RMSE, nRMSE, MBE, and nMBE were
calculated as follows:

RMSE =
√√√√1

n

n∑
1

(AODm − AODo)
2 (4)

nRMSE = RMSE/

n∑
1

AODo (5)

MBE = 1

n

n∑
1

(AODm − AODo) (6)

nMBE = nMBE/

n∑
1

AODo and (7)

IOA = 1 −
n∑
1

(AODm − AODo)
2

/

n∑
1

(|AODo − ¯AODo| + |AODm − ¯AODo|)2 (8)

�AOD = ±(intercept) ± (slope)AODm (9)

where AODm and AODo are the modeled and observed values
of AOD at 550 nm, respectively, and ¯AODo and �AOD of
EE are the average observed value of the AOD with a sample
size of n, and the AOD difference between AODm and AODo,
respectively.

In this study, we evaluated the performances of DNN, SVR,
and RF models using two validation approaches: hold-out vali-
dation and k-fold cross-validation. For the hold-out validation,
we separated the total match-up datasets between the input
parameters for the spectral bands and output parameters of the
in situ AOD into three parts: training data (60%), validation
data (20%), and test data (20%), based on the same criteria
as the DNN, SVR, and RF models. For the k-fold cross-
validation, each data-driven model was validated using the
“leave a year out” (threefold cross-validation from 2016 to
2018) and “leave one station out” (fivefold cross-validation for
five groups) cross-validation methods to evaluate the temporal
and spatial robustness of the models. For the temporal cross-
validation, the complete dataset was partitioned into three
equal parts for each year (2016, 2017, and 2018). For the
spatial cross-validation, 33 stations were randomly grouped
into five equal parts (Fig. 1). For both the hold-out validation
and the fivefold cross-validation, only the training dataset was
used to train each data-driven model, while the validation
dataset was used to reduce the overfitting problems associ-
ated with data-driven models during training. The remaining
test dataset was used to evaluate the performance of each
data-driven model for temporal and spatial generalizations of
AOD retrieval.

IV. RESULTS AND DISCUSSION

A. Hold-Out Validation of AOD Products From Each Model

Fig. 3 shows the validation results calculated only using the
test dataset in a hold-out validation approach. Most match-up

Fig. 3. Density scatterplots of the correlation between the AERONET AOD
and satellite imagery-based AOD retrieval models for the (a) SVR, (b) RF,
(c) DNN, and (d) physical models.

points in the SVR, RF, and DNN lie on or near the cen-
tered one-to-one reference line, indicating that the data-driven
models better matched the AERONET data than the physical
model. The AOD results in the data-driven models sufficiently
captured the range of the AERONET AOD with a slope of ∼1.
The DNN model showed the highest statistical agreement
(RMSE = 0.112 and correlation coefficient (R) = 0.863)
with the reference AERONET measurements [Fig. 3(c)]. The
R, RMSE, MBE, IOA, and EE values were mostly improved
in the DNN model. In the physical model, the AOD results
showed a good linear relationship, similar to that in the ML
models, but the patterns in the scatterplots dispersed for the
high AOD value domain. This quantitatively indicated that the
slope value (0.16) of the EE from the physical model was
higher than those of the ML models.

According to a recent study on GOCI AOD retrieval [30],
the statistical values (RMSE = 0.137 and R = 0.848) of
the physical model indicated a lower accuracy than those
(RMSE = 0.16 and R = 0.91) of GOCI Yonsei aerosol
retrieval version 2. The difference between the accuracy of
the statistical results in Choi et al. [30] and the DNN model
in Fig. 3 is significant because traditional physical models
still have limitations in separating the reflectance between
the aerosols and land surface using the minimum reflectance
technique.

B. Temporal and Spatial Cross-Validation of the AOD
The generalization of the suggested models should be eval-

uated for a reliable estimation of the AOD. Cross-validation
has been used to analyze the new data for the AOD that was
not included in the training data to identify problems with the
data-driven models, such as overfitting [51], [93], as mentioned
in Section III.

Table I (temporal cross-validation) and Table II (spa-
tial cross-validation) summarize the statistical results of the
cross-validations by year and by station and for each model,
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TABLE I

STATISTICAL RESULTS FOR THREEFOLD CROSS-VALIDATION (YEAR)

TABLE II

STATISTICAL RESULTS FOR FIVEFOLD CROSS-VALIDATION (STATION)

respectively. The cross-validation results exhibited a lower
performance than the hold-out validation results (Fig. 3). The
data-driven models showed a higher performance than the
physical model, excluding the IOA and R, with an increase
of ∼0.2 in the slope and a decrease of 0.012–0.016 (∼0.056)
in the RMSE (nRMSE) (Table I). Comparison of the cross-
validation results (Tables I and II) between hold-out results
(Fig. 3) would mean that that the data-driven models per-
formed poorer than the physical model in terms of the R
and IOA owing to the overfitting problem caused by the use
of point data as references. The DNN model showed the
best performance for most statistical metrics (R = 0.833,
RMSE = 0.118, MBE = 0.002, and IOA = 0.904) compared
with the traditional ML models (Table II). In a previous study
producing GOCI-based AOD using RF, the correlation with
the AERONET AOD yielded R values of 0.61–0.73, with
RMSE values of 0.16–0.27 for the “leave one station out”
cross-validation results [38], which are less accurate than the
results of this study.

In this study, we also compared the time series of the
AODs from each physical model, DNN, RF, and SVR,
with ground AERONET measurements to evaluate how well
the models captured the abnormal increase or decrease in
the AODs for the test dataset in 2016 (Fig. 4). Three
ground stations from the Beijing Chinese Academy of Mete-
orological Sciences (Beijing-CAMS), Hokkaido University,
and the KORea-US Air Quality (KORUS) field experiment,
Songchon, were selected because they showed the high-
est standard deviations for the sites in China, Japan, and
South Korea in 2016, respectively. The simulated overall
temporal variations in the AOPs from the data-driven mod-
els matched the AERONET measurements relatively well.
However, the physical model overestimated the AOD trends,
especially for heavy loads. The DNN was the most accurate
model (RMSE (MBE) = 0.162 (−0.003), 0.155 (−0.021), and
0.211 (−0.036) at Beijing-CAMS, Hokkaido University, and

Fig. 4. Comparisons of time series of the AODs from each physical model
(dark blue line), DNN (dark green line), RF (dark yellow line), and SVR
(black line) with ground-based AERONET measurements (dark red line)
for the test dataset in 2016. Three ground stations at (a) Beijing-CAMS,
(b) Hokkaido_University, and (c) KORUS_Songchon were selected because
they represent the largest standard deviation in the 2016 data at each site.
At the Hokkaido_University site, the match-up dataset began from late
March due to late snow melting at high latitudes. In case (c), the field
campaign period for the Distributed Regional Aerosol Gridded Observation
Networks KORUS campaign was from March 31, 2016 to July 1, 2016.

KORUS, respectively) among the traditional ML models, but
less accurate than the physical model at the Hokkaido Uni-
versity and KORUS sites. Thus, the data-driven models were
more accurate than the physical model, but the generalization
performance of the ML models remained limited because they
used AERONET point data as a reference.

C. Visual Evaluation of AOD Retrievals From Physical and
Data-Driven Models

In this study, we compared each data-driven model with
the physical model to evaluate their performance visually and
to estimate the spatial distribution of the AODs for selected
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Fig. 5. (a) RGB composite image and estimated AOD maps for the GOCI
full disk area from the (b) physical, (c) DNN, (d) RF, (e) SVR models, and
(f) corresponding AERONET stations at 02:00 UTC on April 20, 2018. The
red circle represents the area with a notable difference in the AOD spatial
pattern in the ocean.

cases in the 2018 test dataset. Fig. 5(c)–(f) compares the spatial
distributions of the AODs with different intensities obtained
using the data-driven models to the corresponding results from
the physical model, AERONET stations, and RGB composite
image at 02 UTC on April 20, 2018 (Fig. 5). In the DNN
model, the spatial pattern of the AOD was well described
for clear sky conditions compared with those obtained using
the physical model, AERONET stations, and RGB composite
image (Fig. 5). The spatial shape of the AOD in the DNN
over the ocean in Fig. 5(c) (red circle) matched the results
of the physical model and RGB composite image. The RF
and SVR results exhibited a spatial pattern similar to that of
the DNN results, but with slightly underestimated intensities
in the AOD values. When comparing with AOD values from
AERONET stations, as shown in Fig. 5(f), the DNN values
were more similar to the ground measurements than the RF
and SVR values.

In Fig. 6(c)–(f), all of the data-driven models show similar
spatial patterns for the AODs, but higher values in the DNN
model. Each data-driven model revealed heavy AOPs around
thin clouds over land according to visual inspection, despite
different intensities in Fig. 6(c)–(e). In the red circle area of
Fig. 6(c), they more clearly represent significant differences in

Fig. 6. (a) Composite RGB image and estimated AOD maps for the GOCI
full disk area from the (b) physical, (c) DNN, (d) RF, (e) SVR models, and
(f) corresponding AERONET stations at 02:00 UTC on April 28, 2018. The
red circle represents the area with a significant difference in the AOD spatial
pattern over heavy AOD regions over land.

the spatial AOD pattern, particularly in heavy AOD regions.
Although the physical model showed higher values than the
data-driven models [Fig. 6(b)], as well as corresponding sta-
tistical results in Fig. 3(d), the spatial patterns of the AOD
were more detailed than the RGB composite image from
GOCI. This difference existed because the physical model
used additional input parameters based on physical theories
[70], [71]. In this study, we only used multispectral bands
from the GOCI to determine the possibility that the proposed
DNN model appropriately simulates the hourly AODs and
reveals reliable and competitive statistical results (Fig. 3 and
Tables I and II).

Finally, although the GOCI has the advantage of short
visible bands to separate aerosols from the surface due to
their low reflectance (blue band at 413 nm), the performance
of the cloud mask over the land surface remains a concern
because of the absence of the GOCI in the IR channel
[Figs. 5(b) and 6(b)]. In future studies, the application of
cloud detection algorithms to data-driven models should also
be considered for more effective AOD estimation.

V. DISCUSSION

In this study, we evaluated the performance of a DNN
model to estimate the AOD by incorporating data from a high
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temporal resolution geostationary satellite over Northeast Asia
from 2016 to 2018. Although the results of the DNN were
more consistent with the ground-based AOD data than those
of the existing LUT-based physical models, DNNs have some
advantages and disadvantages when estimating AOPs using
multispectral satellite images from GOCI.

DNNs can simply and directly estimate complicated spa-
tiotemporal AODs using ground measurements and satellite
data only, without the need to understand the complicated
physical processes of the AOPs. This is an advantage, but also
represents the main limitation of DNNs. Unlike the physical
model, DNNs do not need ancillary data, such as the back-
ground surface reflectance based on the minimum reflectance
technique, a climatological database, and AERONET mea-
surements for clustering aerosol models. However, the simple
approach of data-driven models may hinder the analysis of
AOP radiometric processes based on physical theories because
DNNs not only simulate output variables as black boxes [94],
but also neglect additional input parameters (i.e., NO2, O3,
water vapor, air temperature, digital elevation model, addi-
tional chlorophyll, wind speed, and direction in the case of
the ocean) in their simple approach.

For example, the radiometric characteristics of hygroscopic
aerosols can change (e.g., size and chemical components),
especially in places where sulfate particles are abundant [95],
[96]. This hygroscopic growth effect is neither considered in
DNNs nor in ML methods because it is difficult to capture the
hysteresis effect of aerosols without training the complicated
AOPs processes at the current stage. To sum up, although
data-driven models are effective in determining the nonlinear
relationship between input and output, physical models should
be given priority in case of the inherent AOP analysis.

Another disadvantage of DNNs is that they require large
datasets to train network models for generalization perfor-
mance. Thus, it is difficult to apply DNNs until a sufficient
number of training datasets can be obtained, especially dur-
ing the early operation of a satellite after launch. To over-
come this limitation, transfer learning [97] can be used to
solve the problems associated with insufficient data samples.
Wei et al. [98] applied domain-based transfer learning to
overcome data scarcity in new, yet related, target domains
using knowledge from a domain with a large set of source
data. For heterogeneous satellite images, data-based transfer
learning was used to solve different dataset specifications
at spatiotemporal-spectral resolutions [99]–[101]. However,
transfer learning still has limitations compared with exist-
ing supervised learning methods, indicating that it can only
partially improve the model performance. Therefore, further
research is required to solve the data scarcity problem.
In addition, a limited number of AERONET stations are one
of the disadvantages of data-driven models with respect to
the spatial generalization performance, since the AERONET
stations [shown in Fig. 1(b)] are few and do not cover various
land cover classes or environmental characteristics [102].
Although we performed fivefold cross-validation to evaluate
the spatial performance of data-driven models and obtained
reliable statistical results, further assessments of data-driven
models should be conducted by extending the study area to

TABLE III

COMPUTATION TIME REQUIRED FOR EACH DATA-DRIVEN MODEL TO
ESTIMATE A SINGLE IMAGE OF THE AOD USING INPUT PARAMETERS

FROM THE GOCI MULTISPECTRAL BANDS

contain more AERONET stations or by adopting additional
input parameters from physical models to enhance the spatial
generalization performance of data-driven models in future
studies.

Similar to the limitations of the existing physical models
[29], [30], the cloud mask in the GOCI satellite is one of
the main problems that must be addressed in the DNN model
to acquire reliable environmental monitoring because residual
clouds are considered as contaminated data when training net-
work models to estimate the target AOD properties of the land
surface. Although GOCI multispectral bands are useful owing
to their relatively low surface reflectance contribution, the
absence of IR channels in GOCI increases cloud mask errors
in the AOP estimation [35]. Thus, input data contaminated by
clouds can be used to train or validate the weight vectors of
the network models, reducing the accuracy and generalization
of the AOD retrieval. Therefore, improvements to the cloud
mask should be prioritized to ensure the accuracy of the GOCI
AOD in future studies.

The Korea Aerospace Research Institute (KARI) estimates
the real-time AOD of the GOCI satellite to calculate the sur-
face reflectance of KOrea Multi-Purpose SATellites 3 and 3A.
The main advantage of the DNN model is the shorter cal-
culation time for AOD retrieval in real-time applications.
According to Choi et al. [30], the physical model is the most
limited in near-real-time processing of the AOD because of
the high computation load of the spatiotemporal-spectral data
from geostationary satellites. The minimum reflectance in (2)
is excessively time-consuming when applied to near-real-
time systems because the composite of the atmospherically
corrected reflectance for each month and hour should be
processed over all land areas of Northeast Asia. Table III
presents the computation time for each model to estimate
a single GOCI image for the AOD. In the physical model,
the estimation required 20 min per image, indicating that
the model needs a long computation time to process the
AOD data retrieved by geostationary satellites. The DNN
model had the highest calculation speed for AOD estimation
using the input parameters of the GOCI multispectral bands;
the computation times for RF, SVR, and DNN were 80, 9,
and 8 s, respectively. Although the DNN model required an
extended period to optimize the network weights using the
match-up dataset, the time necessary to calculate the output
parameter was shorter than the training process once learning
was completed [35]. However, it needs to be considered
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that data-driven models are effective in determining the non-
linear relationship between input and output. For reference,
the computation time of each data-driven model in Table III
was measured using trained and optimized networks for each
model. The computation efficiency of each model will vary
according to the program code and platform, even for the same
model.

Furthermore, the limitations of the generalization
performance of data-driven models are demonstrated by
the cross-validation results because point data from ground
measurements were used as reference values in the models.
Nevertheless, there is still room for improvement with respect
to data-driven models, i.e., it should be determined how to train
them by applying spatial AOD-related variables. A possible
solution is that spatial information from the physical
model would be considered to enhance the generalization
performance of data-driven models. Yuan et al. [94] stated
that a combined physical–deep learning model not only boosts
model accuracy, but also improves the physical understating
in environmental remote sensing. Therefore, future research
should consider combining DNNs and physical models
to estimate target variables effectively according to user
purposes.

VI. CONCLUSION

In this study, the AOD over land was estimated using
traditional ML models and most advanced DNN method
incorporating high temporal-spectral-resolution images from
GOCI geostationary satellites. The data-driven models showed
more accurate results than the compared models for the AOD,
especially for land areas, overcoming the main limitations
in aerosol retrieval using the existing LUT-based physical
models because physical models cannot effectively separate
the reflectance between the atmosphere and the land surface
using geostationary satellite data. By incorporating the high-
temporal-resolution GOCI satellite data, hourly AOD products
were estimated using the data-driven models over Northeast
Asia. In both the hold-out validation and cross-validation
analyses, the SVR, RF, and DNN showed better performance
than the proposed physical model, as well as the methods
reported in recent GOCI AOD studies. In the hold-out valida-
tion, the DNN model produced the highest RMSE, MBE, and
R values of 0.112, 0.007, and 0.873, respectively, compared
with the traditional SVR (RMSE = 0.123, MBE = −0.010,
and R = 0.833) and RF (RMSE = 0.125, MBE = 0.004,
and R = 0.825). In the cross-validation analysis, although the
DNN model showed a lower accuracy than the physical model
based on the statistical IOA and R values because of the use of
point data as references, it achieved the best performance for
most statistical metrics and the highest spatial and temporal
generalization performance among the traditional ML models.
These findings indicate that deep and complicated neuron
structures allow for an accurate simulation of the spatiotempo-
ral distribution of the AOD using limited multispectral GOCI
satellite data only. Unlike traditional ML models that have
already been fully developed, deep learning has still room for
improvement and shows significant potential for applications
in environmental science and the interpretation of AOPs.
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