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Abstract— Mixed pixels are a ubiquitous problem in remote
sensing images. Spectral unmixing has been used widely for
mixed pixel analysis. However, up to now, most spectral unmixing
methods require endmembers and cannot consider fully intr-
aclass spectral variation. The recently proposed spatiotemporal
spectral unmixing (STSU) method copes with the aforementioned
problems through exploitation of the available temporal informa-
tion. However, this method requires coarse-to-fine spatial image
pairs both before and after the prediction time and is, thus, not
suitable for important real-time applications (i.e., where the fine
spatial resolution data after the prediction time are unknown).
In this article, we proposed a real-time STSU (RSTSU) method
for real-time monitoring. RSTSU requires only a single coarse-
to-fine spatial resolution image pair before, and temporally
closest to, the prediction time, coupled with the coarse image
at the prediction time, to extract samples automatically to
train a learning model. By fully incorporating the multiscale
spatiotemporal information, the RSTSU method inherits the
key advantages of STSU; it does not need endmembers and
can account for intraclass spectral variation. More importantly,
RSTSU is suitable for real-time analysis and, thus, facilitates the
timely monitoring of land cover changes. The effectiveness of the
method was validated by experiments on four Moderate Res-
olution Imaging Spectroradiometer (MODIS) datasets. RSTSU
utilizes and enriches the theory underpinning the advanced
STSU method and enhances greatly the applicability of spectral
unmixing for time-series data.

Index Terms— Machine learning, real time, spatiotemporal
spectral unmixing (STSU), spectral unmixing.

I. INTRODUCTION

THE mixed pixel problem has been recognized as a
long-standing issue in remotely sensed images [1]. This

type of pixel contains multiple land cover classes and its
remotely sensed spectrum is a combination of the spec-
tra of the constituent land cover classes. Conventional hard
classification [2]–[4] allocates directly each mixed pixel to
a single class, and the geometric precision of land cover
mapping is, thus, greatly affected. Spectral unmixing has
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been developed for coping with the mixed pixel problem,
which estimates the proportions of all land cover classes in
the pixel [5]. Different from traditional hard classification,
spectral unmixing can extract subpixel level information in
land cover mapping [6]–[9] and provide more detailed land
cover information for interpretation. Consequently, spectral
unmixing has attracted increasing attention.

Researchers have developed a series of spectral unmixing
models to solve the mixed pixel problem, which can be
categorized into linear and nonlinear models [10]–[12].
Among the linear models, the linear spectral mixture
model (LSMM) has been applied widely due to its clear
physical meaning [13], [14]. Nonlinear models can be
advantageous, but there is always a risk of collinearity,
and the fitting tends to be more complicated. As a result,
the prediction error of nonlinear models can be larger than
that of linear models in some cases. Therefore, the choice
of the mixture model depends mainly on the degree of
nonlinearity of the relationship between spectral reflectance
and cover proportion for each land cover class in the pixel.

Both the linear and nonlinear approaches require endmem-
bers (represented by the pure spectra of each land cover
class) to construct the corresponding mathematical model.
Both supervised and unsupervised approaches are available
for endmember estimation. The unsupervised methods need to
estimate the representative spectra of each land cover, and the
commonly used methods include N-FINDR [15], pixel purity
index [16], iterative error analysis [17], and vertex component
analysis [18]. The supervised methods obtain endmembers
through visual interpretation of the images or referring to
known spectral libraries.

LSMM methods consider each mixed pixel as a linear
combination of the endmembers, and the task is essentially
to predict the linear coefficients. Most LSMM-based methods
assume that the spectrum of each land cover class can be
represented by a single fixed endmember. However, the sit-
uation exists widely in remote sensing images whereby the
same pure land cover class can produce different spectra [19],
that is, intraclass spectral variation is prominent. Thus, it is not
sufficient to use a single endmember to represent the spectrum
of each land cover class. Indeed, intraclass spectral variation is
the main obstacle increasing the accuracy of spectral unmix-
ing. To overcome intraclass spectral variation, researchers
have proposed several multiple endmember-based methods,
in which multiple endmembers are used to represent the
spectra of each land cover class. Multiple endmember-based

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5188-0939
https://orcid.org/0000-0002-1045-3797
https://orcid.org/0000-0002-5489-6880


5404816 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

methods include the multiple endmember spectral mixture
analysis method [20], endmember bundles method [21], and
Monte Carlo method [22]. They can address the problem of
intraclass spectral variation to a certain extent, but often need
a large number of endmembers exemplars.

It is always a great challenge to extract a large number
of endmembers, especially for regions with great heterogene-
ity, where a large number of mixed pixels exist. In recent
years, with the development of machine learning, support
vector machines (SVM) [23], [24], neural networks [25]–[29],
and many other learning-based methods have been applied
widely to spectral unmixing. These learning-based methods
have the advantage of not requiring pure endmembers, rather
fitting the relation between the proportions of the mixed
pixels and the corresponding spectra by training the learning
model using pixels with known proportions (i.e., training
samples). For example, Immitzer et al. [30] proposed to use
the 2-m WorldView-2 data to aid the spectral unmixing of
30-m Landsat data. More specifically, a classified WorldView-
2 land cover map was degraded to 30 m to simulate coarse
proportions in the corresponding subregion within an entire
Landsat region. The 30-m known proportions were integrated
with the spectra of the Landsat data to construct training
samples for machine learning. Although these methods do not
depend on pure endmembers, they do require a large number
of pixels with known proportions to construct the training
samples, which can be a great challenge in practice.

Most existing spectral unmixing models were developed
based on single time data, and there is limited research on
spectral unmixing of time-series data. Moreover, the few spec-
tral unmixing methods for handling time-series data cannot
monitor dynamic changes in land cover, and the use of tem-
poral information is limited [31]–[34]. Thus, the potentially
valuable information in the temporal domain is generally
always not fully explored. To cope with the aforementioned
problems of intraclass spectral variation and the inability to
obtain (a larger number of) endmembers, Wang et al. [35]
proposed a spatiotemporal spectral unmixing (STSU) model to
fully exploit the inherent spatial and temporal information in
time-series data. The advanced model extends spectral unmix-
ing from the traditional spatial domain to the spatiotemporal
domain and fully utilizes the multiscale spatiotemporal infor-
mation. Specifically, STSU utilizes temporally neighboring
fine spatial resolution images to detect land cover changes and
extracts the known coarse class proportions of unchanged pix-
els to construct training samples for machine learning. Differ-
ent from the conventional LSMM, the STSU model can extract
training samples at the prediction time to construct a learning
model, which is free of the need for endmembers and fully
considers the intraclass spectral variation. However, this model
requires fine spatial resolution images both before and after
the predicted data for construction of training samples. Thus,
STSU is suitable for spectral unmixing of historical time-series
data, rather than near real-time data (i.e., where the fine spatial
resolution data after the prediction time are unknown). For
clarity, we refer to this type of data as “real time” in this article.

In practical applications, it is necessary to interpret real-time
remote sensing images, such as to quickly identify and monitor

dynamic changes in land cover. As acknowledged widely, there
are rapid changes in the global coverage of vegetation. For
example, there exists large-scale human-made logging in the
Amazon, Brazil, where the coverage of forest is changing
every day. In such rapidly changing areas, monitoring based
on real-time data is especially important. Thus, it is of great
theoretical significance and application value to develop STSU
methods that are suitable for real-time data and can monitor
land cover changes in a timely fashion. Actually, the spectral
unmixing of real-time data and historical data is quite different
in theory, technique, and application.

Based on the requirement of timely monitoring, this article
proposes a real-time STSU (RSTSU) method for spectral
unmixing of real-time remote sensing images in an opera-
tional context. Moderate Resolution Imaging Spectroradiome-
ter (MODIS) data were considered in this article. Due to the
coarse spatial resolution of MODIS data, it is usually a great
challenge to obtain pure endmembers or information on class
proportions for supervised training. We used the temporally
closest (before the prediction time) MODIS data (the Landsat
data at the same time are also known) for change detection
and then extracted the spectral information and proportions of
the unchanged MODIS pixels to construct training samples,
where the coarse proportions were obtained by upscaling the
classified Landsat map. The unchanged pixels represent the
type of pixels in which the land cover distributions are
the same across time, but the spectra can be different due
to vegetation phenology and changes in conditions of data
acquisition. Note that the spatial resolution of Landsat data is
30 m, much finer than 500 m of MODIS data. Thus, the former
can provide an important reference for proportion at the spatial
resolution of 500 m (the 30-m classified land cover map of
Landsat data can be upscaled to 500 m to produce the coarse
proportion at the corresponding time). However, the temporal
resolution of Landsat is 16 days, much coarser than daily
of MODIS data. Thus, Landsat data are temporally sparse,
and we need to perform spectral unmixing of MODIS data
to produce real-time proportion images based on the daily
temporal resolution of MODIS images.

For model training, this article exploits an effective machine
learning method (i.e., least squares SVM (LSSVM) [36]) to
make full use of the limited MODIS training samples to
construct an effective learning model and to produce reliable
proportion predictions of the MODIS data. The contributions
of this article are summarized as follows.

1) RSTSU is proposed for spectral unmixing of real-time
MODIS images. Different from STSU, RSTSU is under-
taken with only one MODIS-Landsat image pair before
the real-time MODIS data, which extends STSU for
handling real-time images and enhances its applicability
for spectral unmixing. Interpretation of real-time images
is crucial for dynamic monitoring of land cover changes
(e.g., inundation, fire, and many other emergent inci-
dents). The RSTSU method has great potential for wide-
spread applications that cannot be achieved by STSU.

2) The RSTSU method is undertaken based on change
detection and machine learning. It does not require
endmember extraction and can take intraclass spectral



WANG et al.: RSTSU OF MODIS IMAGES 5404816

variation into account. Meanwhile, the RSTSU method
also takes advantage of multiscale spatiotemporal
information to increase the accuracy of spectral
unmixing. RSTSU is a simple and practical solution
that will be understood conveniently by practitioners so
that it will be potentially used widely.

3) The RSTSU method was applied to monitor fraction
vegetation cover (FVC) [34]–[36], which is an important
variable in analysis of global change. RSTSU provides
a practical solution to obtain real-time FVC data at
large scale, which cannot be realized by STSU.

The remainder of this article is divided into four
parts. Section II introduces the principles of the pro-
posed RSTSU method in detail, including the methods of
extracting unchanged MODIS pixels (i.e., training samples)
and predicting the proportion of changed pixels based on
LSSVM. In Section III, experimental results for four datasets
are provided to demonstrate the applicability of the new
approach. Meanwhile, RSTSU is compared with two bench-
mark methods. Section IV further discusses the proposed
approach, followed by a conclusion in Section V.

II. METHODS

A. Overview of the RSTSU Method

Assume that we are predicting the proportion of MODIS
data at Tn, and the MODIS and Landsat data at the previ-
ous time Tm are known. The whole process of RSTSU is
divided into two stages. In the first stage, change detection
is performed based on the spectral difference between the
MODIS data at Tm and Tn and the unchanged MODIS pix-
els (the land cover distributions within these pixels are the
same across time, but the spectra can be different due to
vegetation phenology and changes in sunlight and atmospheric
conditions) are extracted, whose proportions can be obtained
through degradation of the classified Landsat data at Tm . The
proportions coupled with the corresponding observed spectra
are used to construct training samples for training the learning
model at Tn . The second stage predicts the proportions of all
the remaining MODIS pixels (i.e., identified as changed pixels)
at Tn based on the trained learning model. The flowchart is
shown in Fig. 1.

B. Spectral Differences Between the MODIS Images

In the first stage, we quantified the changes to the MODIS
spectra from Tm to Tn , thus providing a basis for extracting the
unchanged MODIS pixels subsequently. The spectral change
in the MODIS data is calculated as follows:

�M(Tm→n, y) = M(Tn, y) − M(Tm, y)

=

⎡
⎢⎢⎢⎢⎣

M1(Tn, y)
· · ·

Mb(Tn, y)
· · ·

MB (Tn, y)

⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣

M1(Tm, y)
· · ·

Mb(Tm, y)
· · ·

MB (Tm, y)

⎤
⎥⎥⎥⎥⎦ (1)

where y is the spatial location of the MODIS pixel to be
labeled (i.e., whether changed or unchanged), �M(Tm→n, y)

Fig. 1. Methodology of RSTSU.

is the spectral difference of the MODIS pixel at y from Tm to
Tn, and M(Tn, y) and M(Tm, y) are the spectra for the MODIS
pixel at y spatially, but at Tn and Tm temporally. Mb(Tn, y)
and Mb(Tm, y) are the spectral values at y in the bth band
(b = 1, 2, . . . , B , where B is the number of bands) at Tn and
Tm , respectively.

Furthermore, we calculated the modulus �M of the spectral
change �M(Tm→n, y)

�M = ‖�M(Tm→n, y)‖. (2)

The larger the value of �M , the larger the likelihood that
the land cover has changed. On the contrary, the smaller the
value of �M , the smaller the likelihood of land cover changes,
that is, the pixel is more likely to be an unchanged pixel.

C. Extraction of Unchanged MODIS Pixels (Training
Samples)

Given the modulus �M of the MODIS spectral change from
Tm to Tn , the whole modulus image can be classified into
two classes by image segmentation [40]–[42], in which pixels
with smaller modulus values are determined as unchanged
pixels and the rest as changed pixels. In this article, we used
the classic OTSU algorithm for segmentation and to extract
unchanged pixels as training samples for machine learning.
More precisely, OTSU is a well-established algorithm for
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image binarization, which can automatically select a threshold
to effectively divide the original image into foreground and
background. Moreover, the basis of the threshold determi-
nation in the OTSU algorithm is to maximize the variance
between the foreground and background parts. For the mod-
ulus image, pixels with values smaller than the threshold are
determined as unchanged pixels, while the other pixels are
determined as changed pixels.

For an extracted unchanged MODIS pixel, the spatial loca-
tion is recorded as x, and the location of a changed pixel is
recorded as x′. For an unchanged pixel, the proportion of each
land cover class at Tn is equal to that at Tm , that is,

P(Tn, x) = P(Tm, x) (3)

where P is a vector composed of the proportions of all land
cover classes and P(Tn, x) and P(Tm, x) are the proportions of
the unchanged pixel x at Tn and Tm , respectively. P(Tm, x) can
be obtained based on the Landsat data at the corresponding
time. Specifically, the Landsat data at Tm are classified first,
and the classification map of each land cover class is then
upscaled to the MODIS spatial resolution to produce the
coarse proportion at Tm . The details are shown in Fig. 1.
Therefore, according to (3), the proportion of the unchanged
pixel at Tn, that is, P(Tn, x), can be predicted, which can
be further combined with the corresponding MODIS spectra
M(Tn, x) to construct training samples at Tn . Based on the
training samples, the relationship between the proportion and
the MODIS spectra can be fit by a learning machine.

D. Proportion Prediction of Changed MODIS Pixels

SVM is an advantageous learning machine for
cases involving a small number of samples and
nonlinear and high-dimensional pattern recognition
problems [24], [43]–[44]. Among various SVM versions,
LSSVM turns the inequality constraints in SVM into equality
constraints, which facilitates the calculation [36], [45].
Therefore, LSSVM was selected as the machine learning
model in this article. After the training process, the proportions
of the changed MODIS pixels at Tn are predicted as

P̂(Tn, x′) =
n∑

i=1

α∗
i K (M(Tn, x), M(Tn, x′)) + b∗ (4)

where α∗
i and b∗ are the Lagrange operator and the clas-

sification threshold in the LSSVM model, respectively, and
both are obtained through the training process. P̂(Tn, x′) is the
proportion prediction of the changed pixel at x′, and M(Tn, x)
and M(Tn, x′) are the MODIS spectra of the unchanged pixel x
and changed pixel x′ at Tn , respectively. K is a kernel function.
Finally, combining with the predictions based on (3), we can
obtain the proportion predictions of all MODIS pixels at Tn.

III. EXPERIMENTS

A. Datasets and Experimental Setup

In the experiments, we used the MODIS and Landsat data
of four regions. The first two regions (denoted as Regions
1 and 2) are both located in Daxing, Beijing, China. The

Algorithm RSTSU
Inputs:
1) M(Tn, y): the spectra of MODIS pixel at y spatially and
Tn temporally.
2) M(Tm, y): the spectra of MODIS pixel at y spatially and
Tm temporally.
3) P(Tm, y): the proportions of MODIS pixel at y spatially
and Tm temporally.
Output:
P̂(Tn, x′) : the proportion prediction for the changed pixel at
x′ spatially and Tn temporally.
Steps:
1) Calculate the spectral difference between two MODIS
pixels M(Tn, y) and M(Tm, y) by Eq. (1), and then obtain
the modulus �M through Eq. (2).
2) The OTSU algorithm is performed on the image com-
posed of �M for all pixels to extract unchanged pixels
(training samples). The spatial location of unchanged pixel
is recorded as x, and the proportion P(Tn, x) can be acquired
by Eq. (3).
3) The LSSVM model is trained to fit the relationship
between the spectra of extract unchanged MODIS pixel
M(Tn, x) and the corresponding proportion P(Tn, x).
4) The trained LSSVM model is used to predict the propor-
tions of changed pixels (i.e., P̂(Tn, x′)) by Eq. (4).

used datasets were provided by Li et al. [46]. The latter two
regions are Zibo, Shandong, China (denoted as Region 3), and
Lichuan, Jiangxi, China (denoted as Region 4). For each of
the four regions, two 480-m MODIS images at different time
points and 30-m Landsat images at the corresponding time
points were acquired, as shown in Fig. 2. All the Landsat
and MODIS data contain six bands (blue, green, red, near-
infrared response (NIR), SWIR1, and SWIR2). Due to the
coarse spatial resolution and regular global coverage, MODIS
images have been widely used for monitoring of typical
land cover classes of interest at the global scale, as can
be observed from the popular MODIS products of snow,
impervious surface (urban), vegetation, water, and so on. For
the four regions, the vegetation (e.g., crops and forest) is the
main land cover class. By spectral unmixing of the MODIS
images, the FVC [37]–[39] can be predicted, which is a crucial
variable in analysis of global change. Therefore, we divided
the main land cover classes into vegetation and nonvegetation
(i.e., urban) in the four regions.

The same processing was carried out for the Landsat data of
the four regions. First, K -means-based unsupervised classifica-
tion (coupled with visual interpretation and Google map infor-
mation) was implemented for the two Landsat images, pro-
ducing two 30-m classification maps covering vegetation and
nonvegetation classes, which leads to satisfactory classification
accuracy (e.g., with an overall accuracy of above 0.90 for
Region 3) and ensure the reliability of the experimental setup.
Then, the 30-m classification maps were degraded to 480-m
MODIS spatial resolution. Specifically, each 16 × 16 Landsat
pixels were aggregated to a MODIS pixel by averaging the
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Fig. 2. MODIS and Landsat images of the four regions (NIR–red–green as RGB channels).

256 pixel values. Admittedly, the relation between MODIS
and Landsat data cannot be perfectly characterized by the
average process. However, uncertainty in other models also
exists and the average model has been the most widely used
choice up to now. Moreover, for each region and each method,
we used the same degradation method for Landsat images
at both known and prediction times, that is, for training and
predicting samples as well as each spectral unmixing method,
the uncertainty caused by this issue is the same, which can
be eliminated in the method comparison. Fig. 3 shows the
classification images and vegetation proportion images for the
four regions.

The data in Region 1 were acquired on September 4 and
October 6, 2014. The spatial sizes of the MODIS and Landsat
images are 60 × 60 pixels and 960 × 960 pixels, respectively.

The used MODIS dataset was derived from the MOD02HKM
product, which was atmospherically corrected by the Quick
Atmospheric Correction algorithm [46]. For Region 2, the data
were acquired on March 15 and April 16, 2015. The
image sizes of MODIS and Landsat data are 80 × 80 and
1280 × 1280 pixels, respectively. The used MODIS prod-
uct and preprocessing are the same as for Region 1. The
data in Region 3 were acquired on March 25 and May 12,
2001. The corresponding MODIS (from the MOD09GA prod-
uct) and Landsat images have spatial sizes of 62 × 62 and
992 × 992 pixels, respectively. The data in Region 4 were
acquired on October 21 and December 24, 2001, includ-
ing two MODIS data with 63 × 63 pixels (from the
MOD09GA product) and Landsat data with 1008 × 1008
pixels.
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Fig. 3. 30-m Landsat classified images and 480-m vegetation proportion images of the four regions.

For each region, spectral unmixing was performed on
the MODIS data at the later time, which is also used the
MODIS and Landsat data at the former time. Simultaneously,
the 480-m proportion data produced from the Landsat data
at the latter time were used as the reference for accuracy
evaluation. Note that normally, the MODIS-Landsat image pair
temporally closest to the prediction time needs to be used, and
the time interval varies for each of the four regions.

B. Evaluation Indices

In this article, we used correlation coefficient (CC), mean
absolute error (MAE), and root-mean-square error (RMSE) to

evaluate the accuracy of spectral unmixing

CC =
∑n

i=1 (Xi − X̄)(Yi − Ȳ )√∑n
i=1 (Xi − X̄)2

∑n
i=1 (Yi − Ȳ )2

(5)

RMSE =
√

1

n

∑n

i=1
(Xi − Yi )2 (6)

MAE = 1

n

n∑
i=1

|Xi − Yi | (7)

where Xi is the prediction, Yi is the reference, X̄ and Ȳ are
the mean values of prediction and reference, respectively, and
n is the total number of samples.
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Fig. 4. Modulus images of the MODIS difference data for the four regions. (a) Region 1. (b) Region 2. (c) Region 3. (d) Region 4.

Fig. 5. Segmentation results of OTSU (black and white represent the unchanged and changed pixels, respectively). (a) Region 1. (b) Region 2. (c) Region 3.
(d) Region 4.

TABLE I

NUMBER OF DETECTED UNCHANGED MODIS
PIXELS IN THE FOUR REGIONS

C. Results of Training Sample (Unchanged Pixel) Extraction

The modulus images of the MODIS difference data for the
four regions are shown in Fig. 4. Based on the modulus results,
Fig. 5 shows the unchanged pixels (i.e., training samples)
extracted by the OTSU algorithm, where black and white
represent the extracted unchanged and changed pixels, respec-
tively. Comparing Figs. 4 and 5, it can be seen that the spatial
locations of the extracted unchanged pixels in Fig. 5 corre-
spond mainly to the blue parts in the modulus images in Fig. 4.
This conforms to the basic assumption that the smaller the
difference, the less likely the land cover changes, indicating
the rationality of the OTSU method. Table I lists the number
of unchanged pixels extracted by the OTSU algorithm and the
percentage relative to all MODIS pixels. Table II shows the
accuracies of the proportions for the unchanged MODIS pixels
in Regions 1–4. For the four regions, the percentages for the
unchanged pixels are 63.47%, 41.92%, 63.35%, and 59.81%,
and the corresponding CCs are 0.7357, 0.8361, 0.9418, and
0.9230. The above results show that the unchanged pixels in
each region account for the majority of the whole image,

TABLE II

ACCURACIES OF THE PROPORTIONS FOR THE UNCHANGED

MODIS PIXELS IN REGIONS 1–4

suggesting that the proposed scheme can extract sufficient
training samples. Meanwhile, as training samples for the
subsequent machine learning, the accuracy (in terms of CC)
of the proportions for unchanged pixels is mostly above 0.8,
revealing the reliability of the training data.

For each of the four regions, we selected a number of
unchanged, pure vegetation pixels in the MODIS images at
the two times based on the results in Fig. 5 and then averaged
the spectra for each time. The spectral profiles of vegetation
are shown in Fig. 6. It can be seen that the spectral profiles
between the MODIS images at two times present obvious
difference, that is, for unchanged pixels, even the land cover
distributions (i.e., vegetation proportions) at the two times are
the same, the spectra of vegetation change across time, due to
vegetation phenology and changes in atmospheric conditions
and other factors. Thus, the proposed RSTSU method can
account for the spectral variation across time for unchanged
pixels.

D. Proportion Predictions

1) Benchmark Methods: In this section, we compare the
proposed RSTSU method with two spectral unmixing methods
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Fig. 6. Spectral profiles of vegetation for Regions 1–4. (a) Region 1. (b) Region 2. (c) Region 3. (d) Region 4.

(denoted briefly as LSMM and LSSVM) to show the advan-
tages of RSTSU. The two methods are briefly described as
follows.

LSMM: From Tm to Tn , if an unchanged pixel is a pure
pixel at Tm , then the pixel is also recognized as a pure
pixel at Tn . After finding all pure pixels at Tn , the spectra
of all pure pixels of each class in the MODIS image were
averaged and treated as the spectrum of the endmember for
LSMM-based spectral unmixing. Due to the great spatial
heterogeneity in Regions 1 and 2, pure pixels rarely exist or
almost do not exist. Therefore, we assumed that if for one
pixel, the proportion of vegetation or nonvegetation is larger
than 90%, then it is regarded as sufficiently a pure pixel and the
spectra of these pixels were extracted for use in characterizing
the endmembers.

LSSVM: The spectra of all MODIS pixels at Tm and the
corresponding proportions (obtained from the degradation of
the Landsat classification map) were used to construct training
samples and to train a learning model. Based on the trained
model, we predicted the proportion of all MODIS pixels at
Tm .

2) Results: For the proposed RSTSU method, the Gaussian
radial basis was used as a kernel function in LSSVM.
In Regions 1–4, the penalty factors were 1, 1000, 10, and 1000,
respectively, and the kernel parameters were set to one for all
regions. Fig. 7 shows the vegetation proportion results of the
four regions under the three methods (LSMM, LSSVM, and
RSTSU). Comparing them with the corresponding reference
proportion, the error maps of the three methods (represented
by the absolute value of the error) were produced, as shown
in Fig. 8. We can draw the following conclusion based on the
analysis in Figs. 7 and 8.

First, the LSMM results are dominated by the clustering of
large color blocks. See, for example, the results for Regions
1 and 2. The results suggest that LSMM is inadequate for
regions with great spatial heterogeneity, as the results are the
most different from the reference. This is because the LSMM
method used a fixed endmember to describe each land cover
class (i.e., the average spectrum of each land cover class),
ignoring intraclass spectra variation.

Second, for the LSSVM method, the difference between the
result and the reference is smaller than that for LSMM because
LSSVM used multiple samples to describe the intraclass spec-
tral variation, even if they were acquired at a different time.
Due to the land cover changes and spectral differences between
the two time points, however, the training samples extracted

at the previous time, in LSSVM, cannot fully represent the
data at the predicted time, that is, the training samples contain
great uncertainty and the performance of spectral unmixing is
affected greatly. This can be observed clearly from the result
for Region 1.

Finally, the difference between the RSTSU results and the
reference is the smallest, suggesting that RSTSU is the most
accurate method among the three methods. Different from
LSSVM, the RSTSU method extracted unchanged pixels based
on the MODIS spectra at the prediction time, which are closer
to the spectra of the pixels to be unmixed in the same region.
Fig. 9 shows the scatterplots between the vegetation proportion
predictions and the reference proportions for the three methods
and the four regions. It can be seen that the results of LSMM
are scattered and sometimes lie on the coordinate axis, and
the scatterplots of LSSVM are less dispersed than those of
LSMM, but in some cases, the distribution is biased toward
a coordinate axis. In particular, in Region 1, many points in
the LSMM scatterplot are close to the x-coordinate axis and
the distribution of the LSSVM scatterplot is biased toward the
x-coordinate axis. In contrast, the result of RSTSU is more
concentrated along the y = x line, indicating that the RSTSU
result is closer to the reference.

We used three indices to evaluate quantitatively the accuracy
of the proportion predictions for the three methods, specifically
the CC, RMSE, and MAE. The results are shown in Table III.
It can be seen clearly that the CC of the RSTSU method is
obviously larger than that of LSMM and LSSVM, and the
RMSE and MAE of RSTSU are smaller, indicating that the
accuracy of RSTSU is greater than LSSVM and LSSVM.
Specifically, for Regions 1–4, the CCs of RSTSU are 0.17,
0.22, 0.11, and 0.10 larger than for LSMM and 0.12, 0.06,
0.10, and 0.06 larger than for LSSVM. The RMSEs of RSTSU
are 0.16, 0.02, 0.08, and 0.03 smaller than for LSMM for
Regions 1–4. Correspondingly, the MAEs of RSTSU are 0.03,
0.01, 0.06, and 0.006 smaller than for LSSVM.

Based on the results of the proportion maps, error maps,
scatterplots maps, and accuracy evaluation, it can be concluded
that RSTSU is consistently the most accurate method among
the three models.

3) Computational Complexity: The computational times of
the three spectral unmixing methods for Regions 1–4 are
shown in Table IV. All experiments were undertaken using
MATLAB (R2018b) based on a desktop with an Intel Core
i9-9900K CPU at 3.60 GHz. It can be seen that the computa-
tional time of RSTSU is shorter than that of LSSVM, as the



WANG et al.: RSTSU OF MODIS IMAGES 5404816

Fig. 7. Vegetation proportion maps of the three spectral unmixing methods for Regions 1–4.

number of training samples in RSTSU is smaller than that
of LSSVM. In addition, RSTSU generally requires more time
than LSMM.

E. Influence of Training Samples in RSTSU

The reliability of training samples (that is, the detected
unchanged pixels) is affected unavoidably by the change
detection process. Therefore, to examine the influence of the
uncertainty in the training samples, we used the proportion
without error (referring to the real proportion at the prediction
time) in the training samples directly. Table V shows the
accuracies of the RSTSU results with ideal training samples
for Regions 1–4. Compared with Table III, it can be seen that
there are errors in the process of selecting training samples for

RSTSU, and the predictions based on ideal training samples
are obviously more accurate than those produced using train-
ing samples with uncertainty. More precisely, the decrease in
RMSE ranges from 0.04 to 0.10.

F. Comparison Between the Choices of LSSVM and Random
Forest (RF) in RSTSU

For the proposed RSTSU method, we selected LSSVM as
the machine learning model, which can deal with the problem
involving a small number of samples. However, the learning
model in RSTSU is not limited to LSSVM, and many different
machine learning models can be slotted in. RF is a common
machine learning model, which has also been applied widely
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Fig. 8. Vegetation proportion error maps (in absolute value) of the three spectral unmixing methods for Regions 1–4.

in recent years. Thereby, we examined the choice of RF by
replacing LSSVM with it in RSTSU.

Table VI shows the accuracies of the spectral unmixing
results produced by the RF model for Regions 1–4. The
vegetation proportion maps and error maps of the RF-based
RSTSU method are shown in Fig. 10. Fig. 11 shows the
corresponding scatterplots. Compared with Table III, it can
be found that even if the machine learning model is replaced
by RF in RSTSU, the spectral unmixing results are still more
accurate than the benchmark methods. Meanwhile, it can
be seen from Figs. 10 and 11 that the spectral unmix-
ing results of the RF model are also close to those of
LSSVM-based RSTSU. Therefore, the implementation and
applicability of RSTSU is not limited to a specific learning
model.

IV. DISCUSSION

A. Comparison Between RSTSU and STSU

The RSTSU method proposed in this article performs
change detection based on MODIS data at the previous time
and the prediction time and extracts unchanged MODIS pixels
as training samples. Therefore, the RSTSU method can achieve
spectral unmixing for data acquired in real time. Different from
RSTSU, the STSU method [35] requires images both before
and after the prediction time to extract unchanged pixels.
Thus, STSU is suitable only for processing historical data.
Meanwhile, the STSU method is based on a core assump-
tion: the change of each land cover proportion in the period
covering three time points is a monotonous process, that is,
the boundary change of the land cover is a process of either
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Fig. 9. Scatterplots of vegetation proportion (prediction versus reference) for the three methods in Regions 1–4.

gradual expansion or contraction (e.g., for areas dominated
by vegetation cover, the study period cannot include middle
of season). On the contrary, the RSTSU method needs only

the auxiliary data before the prediction time and is free of the
requirement for the above assumptions. Thus, the applicability
of RSTSU is more general.
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Fig. 10. Vegetation proportion maps and error maps of the RF-based RSTSU model for Regions 1–4.

TABLE III

ACCURACIES OF THE PROPORTION PREDICTIONS FOR REGIONS 1–4
(THE VALUES IN BOLD REPRESENT THE MOST ACCURATE

RESULT IN EACH CASE)

TABLE IV

COMPUTATIONAL TIMES OF DIFFERENT MODELS FOR REGIONS 1–4

It needs to be emphasized that although RSTSU is proposed
for real-time data, it is also applicable to historical data in
theory (i.e., the case for STSU). Therefore, it is necessary
to compare the performances of the two methods under the
same conditions of processing historical data. The dataset in
Region 1 was considered as an example. Specifically, based
on the RSTSU method, we used the data on October 6, 2014,
to predict the proportion of the MODIS data on September 4,

TABLE V

ACCURACIES OF RSTSU RESULTS WITH IDEAL TRAINING

SAMPLES FOR REGIONS 1–4

TABLE VI

ACCURACIES OF THE PROPORTION PREDICTIONS OF THE RF-BASED

RSTSU MODEL FOR REGIONS 1–4

2014. Meanwhile, for STSU, both the data on October 6 and
August 19, 2014, were used for spectral unmixng of the
MODIS data on September 4, 2014. The results are shown
in Table VII. It can be seen that the CC of the STSU method
is 0.07 larger than the RSTSU method. The main reason is
that there are obvious changes in vegetation cover between
September and October, and the STSU method also uses
the data in August to define more reliably the unchanged
pixels in the data in September. Thus, the training samples
are more reliable, leading to more accurate predictions of
proportions. Therefore, STSU is still a preferable choice for
spectral unmixing of historical time-series data.

B. Change Detection Methods

In the first stage of RSTSU, we calculated the spectral
differences between the two MODIS images to provide a basis
for extracting the unchanged MODIS pixels. The operation
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Fig. 11. Scatterplots of vegetation proportion (prediction versus reference) for the RF-based RSTSU model in Regions 1–4.

TABLE VII

ACCURACIES OF RSTSU AND STSU UNDER THE SAME CONDITION

(DATA IN REGION 1 AS AN EXAMPLE)

of direct subtraction cannot eliminate the noise effect in the
original MODIS data, which leads to uncertainty in the change
detection process. A common solution to eliminate the noise
effect in change detection is to borrow the spatial informa-
tion in the neighborhood. However, the spatial resolution of
MODIS data is very coarse, and the spatial relation between
the adjacent pixels is not as obvious as that in finer spatial
resolution data such as Landsat or Sentinel-2 images. Thus,
spatial context was not considered in the spectral unmixing
process in this article. Even though, in Table II, it can be
seen that the training samples extracted using only the spec-
tral difference images are reliable, and the resultant RSTSU
predictions are more accurate than the benchmark methods.

The change detection module of the RSTSU method in
this article uses the OTSU algorithm, which is an image
binarization segmentation algorithm based on threshold esti-
mation. Since the performance of the OTSU algorithm is
robust to changes in image contrast and brightness, it is a
common choice for automatic threshold selection. However, a
limitation of this method is that the performance of segmen-
tation is compromised when the sizes of the target (cluster of
unchanged pixels as defined in this article) and the background
(cluster of changed pixels) in the image are very different
or the grayscales of the target and the background have a
large overlap. Therefore, there exists inevitable uncertainty
in the training samples extracted by the OTSU algorithm.
For example, when the land cover change between two time
points in the study region is small, the algorithm may extract
fewer unchanged pixels, and some unchanged pixels may be
incorrectly identified as changed pixels, which would poten-
tially result in fewer training samples for machine learning
and larger errors in the spectral unmixing results. Similarly,
when the land cover changes greatly, the algorithm may extract
more training samples than the actual number of unchanged
pixels, which will lead to incorrectly classifying changed

pixels as unchanged pixels and affect the final prediction
of class proportions. Therefore, to increase the accuracy of
change detection, it is necessary to consider and develop more
reliable methods for extraction of unchanged pixels, which can
consider the spectral changes caused by differences in vege-
tation phenology, sunlight, and climate. A potential strategy
is to seek supervised information, that is, to use the known
spectral information of some unchanged or changed pixels to
assist in change detection. However, how to effectively collect
supervised information from time-series data, especially in a
large land cover scenario, will be an important consideration.

C. Uncertainty in Training Samples

The RSTSU method extracts training samples for machine
learning and post-spectral unmixing. In this article, we chose
the LSSVM model for learning because LSSVM can provide
satisfactory performance based on a small number of training
samples, that is, given a limited number of known mixed
spectra (i.e., proportions of the mixed pixels are known), it can
make full use of the information of each sample and account
for intraclass spectral variation. However, the training samples
extracted by change detection (such as the OTSU algorithm in
this article) are not completely reliable, as shown in Table II
earlier. Thus, the uncertainty of the training sample will also
be propagated to the machine training process, affecting the
final predictions, as shown in Table V. For the LSSVM model,
we exploited all the unchanged pixels extracted from the
change detection step as training samples for model train-
ing. During the learning process, we did not consider the
impact of the uncertainty in the training samples. Specifically,
we assigned the same penalty factor to each training sample.
In theory, however, the reliability of each sample should not
be the same. For example, the smaller �M for an unchanged
pixel, the smaller the possibility of the corresponding land
cover change (i.e., the larger the importance of the pixel as
a training sample), and vice versa. In this regard, we can
consider weighting different training samples in the learning
model (e.g., different weights to the penalty factor in LSSVM).
The weights can be determined according to the importance
of each sample. On the other hand, not all training samples
are effective for learning, that is, some samples may affect
the training model negatively, especially when a number of
outliers exist. Thus, we should select more reliable samples for
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training. The process of selecting and weighting is expected to
reduce the influence of the uncertainty in the training samples
and further enhance the reliability of the model. The question
of how to filter valid samples and develop an effective criterion
to quantify the contribution of each sample in the learning
model requires in-depth research in future.

D. Applicability of RSTSU

Implementation of the RSTSU method is simple, mainly
including MODIS image change detection, machine learning,
and proportion prediction. Moreover, each part of RSTSU
is easy to implement, as presented in Section II. Thus,
the method can be readily coded. Meanwhile, due to the
simplicity of RSTSU, practitioners can understand RSTSU
more conveniently so that RSTSU will be potentially applied
widely. It is also general and can be applied to a large number
of situations with different numbers of data and different
scenarios. In addition, there has been very little research on
spectral unmixing of real-time data up to now. RSTSU can
handle real-time images and enhance the applicability of spec-
tral unmixing. Experimental results validate consistently that
the proposed RSTSU method can make full use of temporal
information to obtain more accurate prediction of proportions
for real-time data. Thus, the RSTSU method is a simple and
practical solution to spectral unmixing of real-time data.

E. Image Pair in RSTSU

For the proposed RSTSU method, it is important to make
full use of the temporal information for spectral unmixing.
Therefore, the MODIS-Landsat image pair was exploited as
auxiliary information to extract training samples for learning.
With respect to the number of image pairs, we used one
MODIS-Landsat image pair temporally closest to the pre-
diction time. It should be stressed that in the image pair,
the MODIS and Landsat data are acquired at the same time
(i.e., on the same day). Because of the different revisit intervals
of the two types of remote sensing images, as well as the
influence of cloud contamination, it is normally difficult to
acquire an effective image pair. Thus, we used only one
MODIS-Landsat image pair for spectral unmixing of real-time
data. Although there are multiple historical image pairs among
the long time series, the large time interval between these
image pairs and the predicted images could lead to great land
cover changes, reducing the value of the image pair. However,
if the land cover in the study region presents obvious periodical
changes in the long time series, we may consider to exploit
the use of multiple pairs, which may aid the spectral unmixing
to a certain extent.

F. Multisource Auxiliary Data

In this article, for spectral unmixing of 480-m MODIS
real-time data, the fine spatial resolution (i.e., 30 m) Landsat
time-series data were used to extract supervised information
on class proportions. In practice, however, the time interval
between effective Landsat images can be relatively long
(normally much longer than the temporal revisit frequency

of 16 days) due to cloud contamination [47]–[52]. It should
be emphasized that we used the 30-m Landsat time-series
data to produce the land cover map before the prediction time
and then obtained a 480-m proportion at the corresponding
time. Thereby, this means that our method does not have
specific requirements on the consistency of wavelengths or
spectral resolutions for the data at different spatial scales.
Thus, we can also consider the use of other effective fine
spatial resolution data. For example, Sentinel-2 is a program
operated with twin satellites, which can acquire fine spatial
resolution (i.e., 10 m) images with high quality and with a
potential revisit interval as frequent as every to five days [48].
We can analyze these fine spatial resolution data to obtain
the required land cover maps and further auxiliary proportion
information, which can be used for STSU of real-time
MODIS data. Furthermore, RSTSU is also applicable for
spectral unmixing of other data, such as Sentinel 3 images.
Therefore, the RSTSU model can be promoted in more
application scenarios and applied to spectral unmixing of
more types of multiscale remote sensing time-series data,
with the aid of various fine spatial resolution neighbors.

V. CONCLUSION

Existing spectral unmixing methods usually assume the
existence of pure endmembers or fail to account fully for
intraclass spectral variation. The very few available spectral
unmixing methods incorporating temporal information were
not designed for dynamic monitoring of land cover changes.
The recently proposed STSU method addressed the above
problems effectively, but it is suitable for spectral unmixing
of historical time-series data only. Thus, this article proposed
the RSTSU method for spectral unmixing of real-time data,
which not only extends spectral unmixing from the traditional
spatial domain to the spatiotemporal domain but also from the
processing of historical data to real-time data. The RSTSU
method uses a MODIS-Landsat pair temporally closest to
the prediction time and performs change detection based on
the MODIS data at two times to extract unchanged MODIS
pixels (i.e., training samples) for machine learning. The trained
model is applied to predict the proportion of the remaining
changed MODIS pixels. The RSTSU method does not require
endmember extraction and also takes the intraclass spectral
variation into consideration. RSTSU is a suitable method
for real-time monitoring of land cover changes. We selected
MODIS data covering four different regions for experimental
validation. The results show that the RSTSU method can pro-
duce greater accuracy than the commonly used LSMM method
and the LSSVM method using training samples extracted at
the time prior to the prediction time.
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