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A Novel and Open-Source Illumination Correction
for Hyperspectral Digital Outcrop Models
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Abstract— The widespread application of drones and associ-
ated miniaturization of imaging sensors has led to an explosion
of remote sensing applications with very high spatial and spectral
resolutions. The 3-D ultrahigh-resolution digital outcrop models
created using drones and oblique imagery from ground-based
sensors are now commonly used in the academic and industrial
sectors, while the generation of spatially accurate models has been
greatly facilitated by the development of computer vision tools,
such as structure from motion, and the correction of spectral
attributes to achieve material reflectance measurements remains
challenging. Following the development of a topographical cor-
rection toolbox (mephysto), we now propose a series of new
tools that can leverage the detailed geometry captured by digital
outcrop models to correct for illumination effects caused by
oblique viewing angles and the interaction of light with complex
3-D surfaces. This open-source code is integrated into hylite,
a python toolbox for the full 3-D processing and fusion of digital
outcrop models with hyperspectral imaging data. We validate
the performance of our novel method using a case study at an
open-pit mine in Tharsis, Spain, and demonstrate the importance
of accurate illumination corrections for quantitative spectral
analyses. Significantly, we show that commonly applied spectral
analysis techniques can yield erroneous results for data corrected
using current state-of-the-art approaches. Our proposed method
ameliorates many of the issues with these established approaches.

Index Terms— Digital outcrop models, geology, hyperspectral
imaging, illumination correction.

I. INTRODUCTION

D IGITAL outcrop models are now widely used in the
geosciences, as they allow detailed, quantitative, and

objective analyses of complex outcrops [1]–[3]. They greatly
improve the characterization of outcrop geometry and struc-
ture, allowing accurate mapping of, e.g., fractures (e.g.,
[4], [5]), faults (e.g., [2]), lithology (e.g., [6]), sedimen-
tary architecture, and (for some minerals) mineralogy (e.g.,
[7], [8]). These datasets, thus, have widespread applications
in geohazard management, geotechnical engineering, oil and
gas, and the minerals industry [1], [9], [10].

In addition to geometry, digital outcrop models capture
color information, from which variations in lithology and
composition can be inferred. Recently, this spectrally limited
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information is being supplemented with detailed hyperspec-
tral attributes captured using imaging spectrometers, such
that individual data points can contain hundreds of spectral
bands [7], [11]–[13]. These “hyperclouds” allow the applica-
tion of advanced remote sensing algorithms to infer outcrop
mineralogy and discriminate between lithologies that may
appear similar in the visible part of the spectrum [14], [15].

However, spectral artifacts caused by unevenly illuminated
topography (e.g., shading and shadowing) need to be corrected
before automated mapping approaches can be accurately
applied. Hyperspectral cameras need significantly more light
than conventional trichromatic (RGB) frame sensors, so they
perform best under well-lit (sunny) conditions, especially in
longer wavelength regions, such as the shortwave infrared
(SWIR). Thus, unlike for, e.g., photogrammetric surveys (for
which overcast conditions are ideal), optimal light conditions
for hyperspectral data acquisition will generally also cause
significant topographic effects.

A variety of methods have been developed to correct these
topographic effects in satellite data, but these are challeng-
ing to transfer to digital outcrop models due to their high
resolution, complex geometry, and often oblique viewing
angle [12]. Particular challenges include steep faces (cliffs),
curved outcrops (e.g., open-pit mines), and datasets in which
indirect illumination from the sky (skylight) is significant
(see Fig. 1).

Physics-based approaches developed for satellite or airborne
datasets include the topographic correction as part of a larger
atmospheric correction model [16]–[19], while simpler tech-
niques (e.g., c-factor and minnaert; cf. [12]) use statistical
methods to correct topographic effects independently of any
atmospheric influence.

Unlike satellite applications, sensor-to-target distances tend
to be small for digital outcrop models, reducing the
atmospheric correction to a comparatively simple adjustment
for downwelling light composition. This light is normally char-
acterized using one or more calibration panels located in fully
illuminated parts of the scene. At-sensor radiance measured for
these panels is compared with their known reflectance spectra
to derive an empirical line correction (ELC; [20], [21]).

This ELC will be accurate if the illumination is con-
stant throughout a scene and calibration panels are correctly
oriented. However, geometric complexities normally cause
shading effects due to: 1) variations in the incidence angle of
direct sunlight; 2) specular effects (particularly for smooth or
polished areas); 3) self-shadowing when a surface is oriented
at >90◦ from the incident light; and 4) projected shadows
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Fig. 1. Conceptual model showing the illumination components in a
geometrically complex scene. Shading and shadow effects cause the imaging
spectrometer to measure various mixtures of reflected sun and skylight at
different locations. These effects are often further complicated by nonnadir
viewing directions (as shown).

caused when prominent objects block direct light across the
scene.

Shaded areas are rarely completely dark, however, as they
are lit by diffuse skylight and reflections from adjacent
surfaces. The downwelling light is, thus, a combination of
direct illumination from the sun, diffuse skylight, and multiple
reflections at any point in a scene. Sunlight is dominant in
well-illuminated regions, including calibration panels, while
skylight dominates in shaded or shadowed areas.

In the following, we build on the work of [12] to explore
challenges associated with topographic correction for digi-
tal outcrop models and propose a new joint method that:
1) integrates calibration panel data and information from
shadowed areas to separate skylight and sunlight spectra and
2) uses high-resolution geometric data to derive a per-band and
per-pixel combined topographic and atmospheric correction.
We validate this approach using a digital model of an open-
pit mine in the Iberian Pyrite Belt for which hyperspectral
data were acquired under both sunny (strong topographic
effects) and overcast (minimal topographic effects) conditions.
By comparing the two scenes, topographic influence can be
independently quantified and used as a baseline to evaluate
different correction algorithms.

II. METHODS

State-of-the-art algorithms used for correcting digital out-
crop data have been reviewed recently by Jakob et al. [12].
These methods all consider only a single light source and,
in essence, transform atmospherically corrected per-pixel
reflectance r0 to a topographically corrected value rc based on
some function of the cosine of the angle between the surface
normal vector n at each pixel and the (downward-pointing)
solar illumination vector s.

Formulas for calculating incidence angle from slope and
aspect angles can be found in the literature, but, because digital
outcrop models store surface normals as an upward-pointing
set of cartesian vectors ni , we find it convenient to work with
the cosine of this angle, the dot-product of s and ni . This
value (α) represents the portion of incident light that would
be reflected if we assume the outcrop is a Lambertian reflector
illuminated by a single light source

α = max(0,−ni · s). (1)

However, in reality, neither of these assumptions holds: the
roughness of geological outcrops makes them non-Lambertian
reflectors, and downwelling skylight (as well as complex
illumination effects caused by light reflected off adjacent
objects) means that the measured radiance is a function of
multiple light sources, each with distinct irradiance spectra.
Research on non-Lambertian reflectors is abundant, allowing
us to replace the Lambertian definition of α (1) with, for
example, an Oren–Nayar model for diffuse reflection from
rough surfaces [22]. This simulates reflection off microfacets
oriented with standard deviation σ given the incident light
orientation (θi , φi ) and viewing angle (θr , φr ) to derive an
adjusted α value

α = cos θi · (A + B · max[0, cos(φi − φr )] · sin ω · tan β) (2)

where

A = 1 − 0.5
σ 2

σ 2 + 0.33

B = 0.45
σ 2

σ 2 + 0.09
ω = max[θi, θr ]
β = min[θi , θr ]. (3)

When roughness (σ ) is zero, then this reduces to (1). We use
this Oren–Nayar model here as it is a simple approximation
for most rock types [23], but a more complex bidirectional
reflectance distribution function (BRDF) could easily be sub-
stituted if necessary.

The influence of other light sources, especially downwelling
skylight, remains a challenge to incorporate into correction
algorithms. The skylight received by a point can be mod-
eled using the sky-view factor a, which ranges from 0 to
1 and represents the proportion of skylight relative to a
horizontal plane. It can be calculated using a variety of
methods [24]–[26], including the portion de ciel visible (PCV)
plugin in CloudCompare [27].

Following [28], skylight can be incorporated into a two-light
source (sunlight + skylight) model for the relation between
material reflectance (R) and measured radiance (r)

rλ = (α · Iλ + a · Sλ)Rλ (4)

where Iλ and Sλ are the intensities of incident sunlight and
downwelling skylight at wavelength λ, Rλ is the material
reflectance at this same wavelength, and rλ is the reflected
radiance. It is straightforward to calculate α and a from
the high-resolution geometry captured in a digital outcrop
model (cf. Section III-B), allowing (4). to be used as a joint
topographic and atmospheric correction if the incident sunlight
and diffuse skylight spectra can be estimated or measured.

Assuming that calibration panel orientation is known, either
from measurements in the field or based on its projected
geometry in the hyperspectral image and known camera orien-
tation, then it is possible to relate these two light sources with
measured target radiance by substituting the relevant values
into (4)

rpanel
λ = (αpanel · Iλ + apanel · Sλ)Rpanel

λ (5)
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and rearranging to derive

αpanel · Iλ + apanel · Sλ = rpanel
λ

Rpanel
λ

. (6)

A. Correction With Known Skylight

If the downwelling skylight radiance (Sλ) is known, ideally
by including a completely shaded calibration panel or by
assuming relatively uniform sky color and sampling sky-pixels
visible in the hyperspectral imagery, then the incident sunlight
spectra (Iλ) can be directly calculated

Iλ = 1

αpanel

�
rpanel
λ

Rpanel
λ

− apanel · Sλ

�
(7)

and the joint atmospheric-topographic correction applied by
rearranging (4) to calculate per-pixel reflectance

Rλ = rλ

(α · Iλ + a · Sλ)
. (8)

B. Correction With Estimated Skylight

For scenes containing abundant shadows, the skylight spec-
tra can be estimated statistically by assuming that the median
reflectance of areas affected by shadows is equal to the overall
median reflectance. This assumption is rather limiting but
generally holds if shadows are evenly distributed across a
scene. Using square brackets to denote the median operator
and Rshade to denote the shaded subset of pixel reflectance
(R), we can express this core assumption as

[Rλ] ≈ �Rshade
λ

�
. (9)

Shade pixels can be identified using outcrop geometry to:
1) map self-shadowed regions with normal-vectors pointing
away from the sun and 2) identify projective shadows using
one of the various published geometric or spectral methods
(see [29] for a review). By rearranging (4), the general
relationship between measured radiance r and reflectance R
becomes

Rλ = a · Sλ

rλ
+ α · Iλ

rλ
(10)

which, for the set of completely shaded pixels where α = 0,
simplifies to

Rshade
λ = a · Sλ

rshade
λ

. (11)

Based on the assumption of equal median reflectance (9),
we can, thus, derive�

a · Sλ

rshade
λ

�
=
�

a · Sλ

rλ
+ α · Iλ

rλ

�
. (12)

Removing constants from the median operator gives the
following relationship between the incident light spectra and
diffuse skylight spectra:

Sλ

�
a

rshade
λ

�
= Sλ

�
a
rλ

�
+ Iλ

�
α

rλ

�
(13)

∴ Iλ = Sλ

⎛
⎝



a
rshade
λ

�
−



a
rλ

�



α
rλ

�
⎞
⎠ = Sλ · δ. (14)

The term in brackets, which we have replaced with δ in the
following equations for clarity, is essentially the normalized
reduction in the median radiance of shaded pixels relative to
the whole population. It consists entirely of known values,
so it can be directly calculated based on the scene geometry
and measured hyperspectral radiance data.

Adding additional constraints on the incident light intensity
from the calibration panel (7), we can solve for Sλ and Iλ

Iλ = Sλ · δ = 1

αpanel

�
rpanel
λ

Rpanel
λ

− apanel · Sλ

�
(15)

∴ Sλ = rpanel
λ

Rpanel
λ

· 1

apanel + δ · αpanel
(16)

∴ Iλ = rpanel
λ

Rpanel
λ · αpanel

�
1 − apanel

apanel + δ · αpanel

�
. (17)

These estimated intensities can then be used in (8) to
derive corrected reflectance data. Note that zeros (pixels with
radiance below detection limit) should be removed from the
dataset to avoid infinite values when calculating δ (14).

C. Postprocessing Steps

Regardless of the method used, overcorrections or under-
corrections can be caused by geometric errors in the digi-
tal outcrop model and misalignments between this and the
hyperspectral image. This tends to cause erroneously reflective
stripes along with sharp geometric features, such as corners.
These areas usually represent a very small fraction of the total
dataset, so they can be easily removed by outlier detection
methods. The simplest of these is to remove the most/least
reflective pixels using a percentile clip: a 1%–99% clip was
applied to all the results presented in Section III.

III. VALIDATION STUDY

To validate our novel joint illumination correction method
and compare it to the existing state-of-the-art approaches
reviewed by Jakob et al. [12], we present results from a case
study using data from Sierra Bullones (SB), an open-pit mine
in the Tharsis mining district, southern Spain. This area is
of particular interest as it is geologically and geometrically
complex, ideal to demonstrate the importance of accurate
corrections for spectral mapping.

With original sulfide reserves of 133 million tons, Thar-
sis is considered one of the most important mines in the
Iberian Pyrite Belt and can be traced back to Chalcolithic
and Roman times. In the SB open pit, both underground
and opencast mining was conducted between 1866 and the
1990s [30], [31], and there is ongoing exploration work
nearby. The main mineral commodity was pyrite, but the
stockwork and gossan also contain As–Co–S, tellurides, and
gold [31]. The massive sulfide ores form multiple thin but
laterally extensive lenses embedded within a shale-dominated
volcanic-sedimentary complex [31]. The mineralized sequence
crops out discontinuously for more than 25 km along with
the core of a regional E-W-trending antiform and can be
subdivided into four south-dipping, thrust-bounded tectonic



5511612 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

TABLE I

ACQUISITION PARAMETERS FOR THE TWO HYPERSPECTRAL SCENES USED FOR THIS STUDY

Fig. 2. True-color composites of hyperspectral radiance measured under (a) sunny conditions and (b) overcast conditions. Blue circles in (a) were used
to characterize skylight for Fig. 5(a). Note that the scenes were captured from different imaging locations. The white rectangle shows the region that was
projected (based on scene geometry and imaging locations) onto the cloudy scene (black rectangle) to allow pixelwise comparison in the following figures.
This rectangle is 280 m across and 200–350 m from the viewing location. The Spectralon R90 calibration panels can be seen in (a) lower right and (b) lower
left of each image.

units, comprising, from south to north: 1) slates and sand-
stones of the parautochthonous Phyllite-Quartzite (PQ) Group;
2) massive sulfides and slates; 3) slate and basalt with bodies
of hydrothermal breccias; and 4) rhyodacite sills intruding
slates. Both the shales and the felsic volcanic rocks adjacent
to each ore body are affected by pervasive hydrothermal
alteration, which manifests as ankeritization, sericitization, and
silicification. The stockwork, located stratigraphically below
the massive sulfides, is associated with the chloritic alteration.

Hyperspectral data covering the eastern side of the SB
pit were acquired on two different days (see Fig. 2)—once
in the afternoon during clear conditions, and once under
bright but overcast conditions (see Table I). While overcast
lighting is not ideal, requiring longer exposures and resulting
in significantly more noise in the SWIR, it causes minimal
topographic effects. Hence, the visible near-infrared (VNIR)
part of this dataset provides an important baseline that is

almost free of topographic effects. We compare this baseline
with corrected results from the sunny scene to evaluate the
effectiveness of different topographic corrections.

Both scans were acquired using a tripod-mounted Asia
FENIX (Specim, Oulu, Finland) hyperspectral pushbroom
scanner. This camera has a wavelength range of 380–2500 nm
at a spectral resolution of 3.5 nm in the VNIR and 12 nm in
the SWIR. Its vertical field of view is 32.3◦ (over 384 pixels),
and it has a maximum horizontal scanning angle of 130◦.
In this study, the camera was operated using a spectral binning
model of 4/1 (for the VNIR/SWIR, respectively), resulting
in 450 bands. Raw images were converted to radiance by sub-
tracting dark-reference measurements and applying a sensor-
specific correction to convert digital numbers to radiance.
Finally, the signal-to-noise ratio for each scene was boosted
by averaging the three individual scans captured sequentially
during each acquisition.
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Fig. 3. True-color composites of reflectance estimates derived using ELC from (a) overcast scene, which contains limited topographic effects, and (b) sunny
scene, which contains significant topographic effects. The two can be compared to estimate this topographic effect (c), which, in this case, accounts for about
half (55%) of the total variance in the sunny scene.

Two hundred and twenty-two geotagged ground images
were also captured using a Nikon D850 (sensor size
of 35.9 mm × 24.0 mm, with a pixel count of 7360 × 4912)
and a Zeiss Milvus 2/35 ZF.2 lens, to construct a 3-cm
resolution point cloud of the open pit using the structure from
motion (SfM) workflow implemented in Agisoft Metashape
v1.6. The resulting point cloud with relative positioning was
subsequently georeferenced using a publicly available 2 m
LiDAR dataset (PNOA-LiDAR, Instituto Geográfico Nacional,
http://pnoa.ign.es) using the iterative closest point (ICP) algo-
rithm integrated into CloudCompare v. 2.9.

The hyperspectral data were backprojected onto the pho-
togrammetric point cloud using hylite [15]. hylite matches
keypoints between each image and the point cloud using
scale invariant feature transform (SIFT) [32] and then solves
the Perspective-n-Point (PnP) problem using Open-CV [33]
to accurately extract camera position and viewing direction.
Points in the cloud were then projected onto each image to
identify pixel correspondence, and the two datasets are aligned
by projecting spectra from the sunny dataset onto the same
pixel grid as the overcast dataset (see Fig. 2).

Finally, calibration spectra were extracted by averaging
pixels for each image with a Spectralon R90 reference panel

(made from a standardized polytetrafluoroethylene (PTFE)
material with a stable reflectivity of 90% across the spectral
range of interest) that was placed in the scene during each
acquisition. The panels’ orientations were estimated using
hylite, based on their projected 2-D shape and known (square)
geometry, and the associated sky view factor calculated by
assuming the panel was relatively unoccluded and evaluating

apanel = npanel · s. (18)

A. Atmospheric (Only) Correction

It is standard practice with outcrop hyperspectral data to
convert radiance to reflectance using an empirical line calibra-
tion (ELC; [20]). This uses calibration panel spectra to correct
for the spectral composition of downwelling sunlight, which
is (incorrectly) assumed to be distributed uniformly across the
scene.

An ELC was applied to each of the scenes (see Fig. 3) to
provide a reference with which to evaluate our novel correction
algorithm. The difference between the independent reflectance
estimates derived from the sunny and overcast scenes gives a
useful approximation of the topographic effect that we aim
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Fig. 4. (a) Types of illumination, with pixels classified as shade pixels if their normal points away from the light source and shadow pixels if they are oriented
toward it but occluded (see text for details). (b) Lambertian shading highlights the geometric detail captured by the digital outcrop model but overestimates
the topographic effect. Hence, we used (c) Oren–Nayar model. Finally, per-point sky view factors calculated using CloudCompare are shown in (d).

to correct [see Fig. 3(c)]. This topographic effect accounts
for 55% of the variance in the sunny scene, highlighting the
need for accurate correction approaches.

B. Joint Illumination Correction

Geometric data from the 3-D photogrammetric point cloud,
including surface normal vectors, viewing direction, and sky
view factors estimated using the PCV plugin [27], were
projected onto the coregistered hyperspectral images using

hylite. The position of the Sun was calculated using the astral
python package [34] based on acquisition time and location
(see Table I) for each acquisition.

The sunny scene was divided into three illumination
classes: illuminated (sun), cast-shadow, and self-shadow [see
Fig. 4(a)]. Pixels with normal vectors directed away from
downwelling sunlight were considered to be self-shadowed.
Cast-shadows were identified by averaging reflectance
between 400 and 450 nm, dividing by the average from 550 to
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Fig. 5. Sunlight (yellow) and skylight (blue) spectra estimated by (a) sampling sky pixels and (b) using the estimation method proposed in Section II-B.
The two spectra estimates are almost identical. The shaded area in (a) shows the 5th–95th percentile range of the sampled pixels.

Fig. 6. Reflectance estimates derived by (a) correcting radiance measurements using standard procedures, including (b) only atmospheric correction (ELC),
(c) c-factor correction, (d) minnaert correction, and (e) joint method proposed in this work. Reflectance estimates derived from (f) overcast scene, which has
negligible topographic effects, were used to calculate residuals for each correction method. An iron index was also calculated, highlighting that inadequate
topographic correction can cause significant errors in derivative products, such as band ratios. All RGB composites are visualized using a constant reflectance
range of 0–0.6, while the iron indices are clipped from 1.0 to 1.25.

600 nm, and then applying a threshold such that values > 1.25
(and not already in the self-shadow class) were labeled as
cast-shadow (cf. [29]).

Lambertian (1) and Oren–Nayar (2) reflection models were
evaluated using the projected point normals, viewing direc-
tion, and Sun orientation [see Fig. 4(b) and (c)]. A large
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Fig. 7. Plots of reference (cloudy) reflectance versus results from the sunny dataset after applying (a) no topographic correction, and using (b) cosine,
(c) percent, (d) c-factor, (e) minnaert, and (f) our joint correction method. The results highlight that: 1) there is a strong wavelength dependence in the
correction results and 2) our joint correction method is closest to the reference data.

roughness (σ = 40◦) was used in the Oren–Nayar model
because the material in the scene is mostly coarse rubble or
blocky, exfoliating rock formation. Comparing these results
with Fig. 3(c), it is immediately evident that the Lambertian
model overestimates the topographic effect, as has already
been established [12]. Hence, the Oren–Nayar model was used
for the rest of the correction steps.

The overcast scene was assumed to contain no direct sun-
light, allowing the skylight spectra to be directly estimated
from the calibration panel, and a joint illumination correction
was applied using (8) to give baseline reflectance estimates.
This correction is essentially equivalent to the ELC results [see
Fig. 3(a)] but accounting for small illumination differences
caused by variations in sky view factor.

Skylight spectra for the sunny scene were estimated using
two independent methods: averaging the spectra of sky pixels
in the original image [see Fig. 2(a)] and applying the estima-
tion technique outlined in Section II-B. The results are almost
identical (see Fig. 5), suggesting that (16) can be applied
to real data with the inherent assumptions. This estimated
skylight spectrum [see Fig. 5(b)] was used in (8) to derive
corrected reflectance estimates.

Fig. 6 presents these corrected results, alongside those from
uncorrected [see Fig. 6(a)], atmospherically corrected only
[see Fig. 6(b)], and atmospheric (ELC) followed by state-of-
the-art topographic corrections [see Fig. 6(c) and (d)]. Results
from our joint illumination correction [see Fig. 6(e)] match
the overcast reference [see Fig. 6(f)] best (see Table II).

TABLE II

ERROR ESTIMATES DERIVED BY COMPARING STATE-OF-THE-ART
CORRECTION METHODS (SEE [12]) WITH THE REFLECTANCE

BASELINE CAPTURED UNDER OVERCAST CONDITIONS.
THESE SHOW THE MARKED IMPROVEMENT ACHIEVED

BY OUR JOINT CORRECTION METHOD. INDEED, FOR

THIS CASE, THE OTHER CORRECTION METHODS

INCREASED ERROR RELATIVE TO A DATASET WITH

NO TOPOGRAPHIC CORRECTION APPLIED (ELC ONLY)
DUE TO SYSTEMATIC OVERCORRECTION THAT

IS CAUSED ERRONEOUSLY HIGH

REFLECTANCE ESTIMATES

Indeed, the other evaluated topographic correction algorithms
(cosine, percent, c-factor, and minnaert) all produce larger
errors compared to an atmospheric-only ELC.

To highlight the spectral variations caused by the vari-
ous corrections, an iron index (750/890 nm) was calculated.
Although wavelength-independent topographic effects cancel
out in this band-ratio, it is sensitive to changes in spectra slope
and other distortions. The uncorrected datasets [see Fig. 6(a)
and (b)] show systematic overestimation of iron content in
shaded or shadowed regions, mostly notable on the right side
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Fig. 8. Spectral angles between reference spectra and those derived using
(a) ELC, (b) c-factor, (c) minnaert, and (d) our joint correction algorithm.
Spectral angles are invariant to changes in bulk reflectance, so quantify
differences in spectra shape.

of the scene. Topographic correction using the c-factor and
minnaert methods gave results that also differ significantly
from the reference dataset in these shadowed regions [see
Fig. 6(c) and (d)]. Our joint correction gives results that closely
match the reference [see Fig. 6(e)].

Plotting reference (cloudy) reflectance against corrected
reflectance further highlights the spectral differences that result
after applying different correction algorithms (see Fig. 7).
Significantly, these differences are clearly wavelength depen-
dent, with lower wavelengths generally falling below the unity
line and higher wavelengths above it. This systematic spectral
distortion was summarized by computing the spectral angle
between each pixels’ corrected reflectance spectra and the
associated cloudy reference reflectance spectra (see Fig. 8).
Our joint illumination correction produces results that most
closely match the reference spectra (see Fig. 7) and show the
least spectral distortion (see Fig. 8), though significant room
for improvement remains.

Finally, the influence of these spectral differences on classi-
fication was explored using the spectral angle mapper (SAM)
algorithm [35]. SAM has become widely applied by the remote
sensing community (e.g., [36]–[38]) and, like the iron indices
presented in Fig. 6, is insensitive to overall pixel brightness
and so is generally assumed to be robust to topographic
effects. The algorithm works by calculating the angles between
pixel spectra (represented as a set of vectors) and reference
spectra for each material. Reference spectra [see Fig. 9(a)]
were calculated by choosing four 10 × 10 pixel squares for
each lithology exposed at SB (volcanics, phyllite, massive
sulphide, and gossan) [see Fig. 9(b)] and calculating their
median spectra based on data from the reference (overcast)

image. The resulting classification [see Fig. 9(b)] was com-
pared with results derived from topographically corrected data
[see Fig. 9(c)–(f)]. While these classifications may not be
geologically accurate (they have not been validated as ground-
truth data are not available), they clearly demonstrate that
the different correction methods influence classification results
(see Table III), and thus, the SAM classifier is more sensitive
to topographic effects than that has previously been assumed.

The classification without topographic correction [ELC
only; see Fig. 9(c)] incorrectly labeled shadowed pixels as
massive sulfide and only partially mapped the exposed ore
body. Cosine and percent corrections do not alter spectra
shape, so gave equivalent results (overall accuracy = 61%).
Surprisingly, the c-factor [see Fig. 9(d)] and minnaert [see
Fig. 9(e)] corrections degraded classification accuracy even
further (to 55%) relative to the overcast dataset, and both meth-
ods completely failed to correctly identify massive sulfide.
Classification results after our joint-correction method most
closely matched the reference (68%) and correctly mapped
the massive sulfide body.

IV. DISCUSSION

The results of the SB case study emphasize the need
for appropriate illumination correction when using hyper-
spectral data to map surfaces with high spatial resolution
devices. State-of-the-art corrections for satellite data (e.g.,
ATCOR; [19]) cannot be applied to the complex geometries
and oblique viewing angles typical for digital outcrop models,
so practitioners tend to either ignore topographic effects or to
apply statistical corrections using e.g., the c-factor or minnaert
algorithms (cf. [12]). Sophisticated codes, such as ATCOR, are
proprietary, expensive, and not adapted.

Our results highlight the existence of significant errors when
topographic effects are ignored. A naive interpretation of the
iron index presented in Fig. 6 would incorrectly identify
abundant iron oxides in shadowed regions of the SB pit.
Similarly, the classification without topographic correction
was 40% different from the reference classification, incorrectly
labeling pixels in both well illuminated and shaded regions. C-
factor and minnaert corrections did not improve classification
accuracy (indeed, they degraded it by another 5%–10%).
We suggest that this is because the standard corrections applied
to convert radiance to reflectance (e.g., ELC) and established
topographic corrections, such as c-factor and minnaert, do not
properly account for the difference in illumination spectra
between shaded and fully illuminated regions.

Despite its relative simplicity, the joint correction method
that we propose successfully corrects these illumination dif-
ferences by modeling the mixture of skylight and sunlight at
each point in the scene. Ideally, downwelling skylight can be
measured directly using a completely shaded calibration panel
although our results show that the estimation method described
in Section III-B can provide a reasonable approximation (e.g.,
for legacy data). The iron index calculated using this method
closely matches the reference dataset (see Fig. 6), and the
results could be further improved by better modeling the
distribution of, e.g., partially shaded pixels in the penumbra
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Fig. 9. Lithological classifications of the SB open pit using (a) SAM and reference spectra defined by calculating the median spectra of manually selected
regions (black squares) in (b) reference dataset. Classification results from the sunny scene corrected using (c)–(f) various methods show significant variability,
again emphasizing the importance of appropriate topographic correction. The classification from (f) our joint correction method best matches the reference
classification (cf. Table III), which was calculated using the overcast dataset.

TABLE III

ESTIMATES OF THE CLASSIFICATION ERROR CAUSED BY

TOPOGRAPHIC EFFECTS, CALCULATED BY COMPARING THE
REFERENCE SCENE CLASSIFICATION WITH EQUIVALENT ONES

DERIVED USING TOPOGRAPHICALLY CORRECTED DATA. RESULTS

FOR ELC ONLY, COSINE, AND PERCENT CORRECTIONS ARE

IDENTICAL AS THESE CORRECTIONS DO NOT INFLUENCE
SPECTRA SHAPE, SO ARE INDISTINGUISHABLE USING SAM.

C-FACTOR AND MINNAERT CORRECTIONS SIGNIFICANTLY

DEGRADED CLASSIFICATION ACCURACY, WHILE OUR
JOINT APPROACH IMPROVED IT BY ALMOST 10%

RELATIVE TO NO TOPOGRAPHIC CORRECTION

of cast shadows. Similarly, the classification results after joint
correction showed a close match to the reference dataset,
except in deeply shadowed regions where signal-to-noise ratios
are presumably very low.

The error estimates presented in Tables II and III also
highlight the improved performance of our correction method.
While these must be treated cautiously, given uncertainties
regarding the reference reflectances and associated classifica-
tion from the cloudy dataset, they do highlight the tendency
of established methods to overcorrect incidence angle effects.
We suggest that this is caused by systematic underestimation
of the reflected light fraction and associated overestimation of
material reflectance. This could be explained by their failure to
account for reflected skylight, and the resulting positive bias is
evident in the residual histograms shown in Fig. 6. It has been
well established that the cosine correction overcorrects illumi-
nation differences [12], [39], [40]; however, to the best of our

knowledge, this is the first time that a similar overcorrection
has been demonstrated for the other approaches.

The estimated topographic effect shown in Fig. 3, which
accounts for 55% of the variance in the uncorrected dataset,
also suggests that more complex shading models are needed
if we are to achieve accurate topographic corrections. The
pit-face on the right-hand side of the scene [see Fig. 3(c)],
which is almost perpendicular to both the viewing direction
and illumination direction, appears to be more reflective
than predicted by a Lambertian or Oren–Nayar model (see
Fig. 4), presumably due to specular reflection. Adjacency
effects caused by reflections from nearby outcrops and water
filling the bottom of the open pit may also be important
though, without a complex global illumination model, these
are difficult to characterize.

The computer graphics community has developed a variety
of global illumination models [41] that could be adapted
for topographic correction, providing an interesting avenue
for future research. The methods described in Section II for
characterizing downwelling sun and skylight radiance spectra
could be used to provide the necessary input for these and
potentially lead to significantly better corrections (cf. Fig. 7).
Empirical adjustments, such as the c-factor correction, could
also be included to fit global illumination models to observed
radiance, as could statistical methods for estimating path
radiance (e.g., [42]).

In the meantime, the SB case study demonstrates that
our proposed method provides a robust, practical correction
that delivers usable results. A recent study [15] successfully
employed the joint correction method presented here to map
lithology and alteration minerals in an open-pit mine and
emphasized the importance of this correction to achieving
accurate results. A rapidly growing amount of hyperspectral
data is becoming available to geoscientists, but the range of
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sensors, acquisition conditions, and ground sampling distances
(from laboratory to satellite) require accurate corrections [12]
if data are to be quantitatively compared and synthesized.

To facilitate the use of our topographic correction method
by the outcrop sensing community, we have added it (along
with appropriate documentation and usage instructions) to the
open-source hylite toolbox, a python package for correcting
and analyzing hyperspectral datasets [15]. We suggest that the
characterization of downwelling skylight using a completely
shaded calibration panel is worthwhile and should become
standard practice. Multiexposure high dynamic range tech-
niques could also be employed to maximize signal-to-noise
ratios across the whole scene when illumination contrasts are
large.

V. CONCLUSION

In conclusion, outcrop geometry causes important illumi-
nation differences that, if uncorrected, hinder the identifi-
cation and mapping of outcrop mineralogy. By separating
downwelling sun and skylight spectra and modeling their
contribution to each pixel’s illumination, our novel and open-
source correction method achieves substantially better results
than established ones. Absolute reflectance values are closer
to reference measurements, and spectral distortions caused by
different mixtures of sun and skylight are corrected for. Hence,
we hope that it is a valuable tool for the outcrop remote
sensing community. These corrections are fundamental for any
proximal hyperspectral acquisition, especially those performed
by drones.
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