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Abstract—Spectral unmixing is an important task in
hyperspectral image processing for separating the mixed spectral
data pertaining to various materials observed aiming at analyzing
the material components in observed pixels. Recently, nonlinear
spectral unmixing has received particular attention in hyper-
spectral image processing, as there are many situations in which
the linear mixture model may not be appropriate and could be
advantageously replaced by a nonlinear one. Existing nonlinear
unmixing approaches are often based on specific assumptions on
the nonlinearity and can be less effective when used for scenes
with unknown nonlinearity. This article presents an unsupervised
nonlinear spectral unmixing method that addresses a general
model that consists of a linear mixture part and an additive
nonlinear mixture part. The structure of a deep autoencoder
network, which has a clear physical interpretation, is specifically
designed to achieve this purpose. Moreover, a convolutional
neural network (CNN) is used to capture the spectral-spatial
priors from hyperspectral data. Extensive experiments with
synthetic and real data illustrate the generality and effectiveness
of this scheme compared with state-of-the-art methods.

Index Terms—3-D-convolutional neural network (CNN),
autoencoder network, hyperspectral imaging, nonlinear spectral
unmixing.

I. INTRODUCTION

YPERSPECTRAL imaging is a continuously growing
field of study that has received considerable attention
over the past decade. Hyperspectral data provide high spectral
resolution over a wide spectral range that typically extends
from the infrared spectrum through the visible spectrum.
This rich spectral information facilitates the discrimination of
different materials in the observed scene. As a result, hyper-
spectral imaging has been widely adopted for a wide range of
applications, such as land use analysis, pollution monitoring,
wide-area reconnaissance, and field surveillance [2].
However, the spectral content of individual pixels in hyper-
spectral images often represent a mixture of several materials
from the imaged scene due to multiple factors, such as the low
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spatial resolution of hyperspectral imaging devices, the diver-
sity of materials in the imaged scene, and multiple reflections
of photons from several objects. Therefore, separating spectra
of individual pixels into a set of spectral signatures (endmem-
bers), and determining the fraction abundances associated with
each endmember is an essential task required for analyzing
remotely sensed data. This process is denoted as spectral
unmixing or mixed pixel decomposition [3]. Spectral unmixing
methods have been developed for this purpose based on both
linear and nonlinear mixture models.

Among the presently available spectral mixture models,
the linear mixture model (LMM) is the most widely used.
In LMM, the incident light is assumed to be reflected by each
component present in the scene only once prior to collection
by the camera sensor, and the observed spectrum is thus a
linear combination of the endmembers [3]. Many conventional
unmixing methods based on LMM have been proposed. In [4],
the total variation regularization is imposed to add spatial
information of the hyperspectral image and [5] considered the
endmember variability problem. While the LMM is simple
and physically interpretable, numerous complex conditions
arise where the incoming light may undergo complex inter-
actions among the individual materials in the scene, resulting
in higher-order photon interactions that introduce nonlin-
ear effects in the mixed spectra. Consequently, the analysis
of data collected under these conditions requires nonlinear
unmixing (NAE) methods [6]. A considerable number of
studies have recently focused on addressing NAE problems.
For example, bilinear models [7] have been developed to
address conditions of second-order scattering interactions that
may occur on complex vegetated surfaces, by adding extra
bilinear interaction terms to the linearly composited spectrum.
Such models include the Fan model [8] and the generalized
bilinear model (GBM) [9]. The polynomial post-nonlinear
mixture model (PNMM) applies a polynomial function to the
linearly mixed data to approximate the nonlinearity of photon
interactions occurring in an imaged scene [10]. A bidirec-
tional reflectance model has been developed to describe the
photon interactions of intimately mixed particles based on
the fundamental principles of radiative transfer theory. This
model is generally referred to as the intimate mixture model
or Hapke model [11]. The multimixture pixel (MMP) model
further extended the intimate mixture model by integrating it
with the LMM model [12]. The above cases have been gen-
eralized by considering a linear-mixture/nonlinear-fluctuation
(K-Hype) model, where the nonlinear fluctuation was
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Fig. 1. Difference between 2-D CNN and 3-D CNN. 2-D CNN captures
the spectral-spatial information, respectively, whereas 3-D CNN captures the
spectral and spatial information simultaneously.

described by a function defined in a reproducing kernel
Hilbert space (RKHS) [13]. Further extensions of this model
have also been proposed with spatial regularization [14] and
neighborhood-dependent contributions [15]. The multilinear
mixing model (MLM) considers an infinite number of photon
interactions by introducing a probability of photon undergoing
further interactions [16]. The work [17] uses a graph-based
model to describe the multiple photon interactions. However,
most of the above models rely heavily on specific assumptions
regarding the inherent nonlinearity of the spectral unmix-
ing, and they are therefore not well suited to scenes with
unknown nonlinearity characteristics. In addition, while the
K-Hype model based on the RKHS presented above and other
kernel-based algorithms provide flexible nonlinear modeling,
the selection of appropriate kernels and kernel parameters has
been demonstrated to be a nontrivial issue that restricts the
application of these approaches. Finally, all of these algorithms
assume that the endmembers are known prior, and therefore
focus strictly on evaluating the abundance fractions.

In recent years, deep learning has demonstrated its
superior performance in addressing various nonlinear
problems compared to classical methods. Researchers have
also investigated the use of deep neural networks (DNNi)
in hyperspectral image analysis. Particular attention has
been focused on the hyperspectral image classification
problem [18]-[21]. However, despite the recognized potential
of neural networks for solving inverse problems, only
a handful of studies have applied neural networks for
addressing the spectral unmixing problem. Among these,
classifier models have been applied to spectral unmixing [22],
[23], but this approach requires a training set with known
abundance ground-truths or endmembers, which must often
be generated by theoretical models. In addition, autoencoder
networks have also been applied to the blind spectral unmixing
problem. An autoencoder is a network that learns to compress
an input into a shortcode which can be uncompressed into
something that is close to the original input. Internally, it has a
hidden layer that describes that short dimensional code used to
represent the input data for reconstructing the output data. This
is ideally suited for conducting spectral unmixing because this
process can also be considered as finding a low dimensional
representation (abundance fractions) of hyperspectral data. For
example, approaches employing autoencoder networks have
exhibited good performance in determining both endmembers
and abundance fractions [24]-[31]. Recently, some convolu-
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TABLE I

COMPARISON OF THE PROPOSED METHOD AND OTHER EXISTING
AUTOENCODER-BASED UNMIXING ALGORITHMS

Reference Supervised/unsupervised | Linear/nonlinear | DNN/CNN
number

[23] supervised nonlinear 3D-CNN
[24] unsupervised linear DNN
[25] unsupervised linear DNN
[26] unsupervised linear DNN
[27] unsupervised linear DNN
[28] unsupervised linear DNN
[29] unsupervised linear DNN
[30] unsupervised linear DNN
[32] unsupervised linear 2D-CNN
[33] supervised linear 3D-CNN
[34] unsupervised (pogzzgsﬁil.ear) DNN

Proposed unsupervised addmvg gen'eral 3D-CNN

nonlinearity

tional neural network (CNN)-based frameworks are also used
for spectral unmixing task due to their ability of extracting
spatial structures from hyperspectral images [32], [33].

However, these approaches are specifically designed to pre-
process the input data or address the linear unmixing problem,
and therefore fail to make use of the superior potential of
neural networks for addressing nonlinear problems, while lin-
ear unmixing is readily addressed using classical methods. The
work [34] considered a post-nonlinear spectral mixture, where
the post-nonlinearity was modeled by the decoder part of the
autoencoder. In there, pretraining and learning rate adjustment
techniques were required to ensure the effectiveness of the
decoder, and the nonlinear model represented by the decoder
was not sufficiently general to cover multiple nonlinear cases.
However, this work processes pixels independently and ignores
the spatial information of hyperspectral image.

Our work addresses the drawbacks in previous works by
reexamining the nonlinear mixture models and restrictions
of existing unmixing schemes. A 3-D-CNN is utilized to
jointly learn the spectral-spatial structures. The superiority
of 3-D-CNN is shown in Fig. 1. Accordingly, this article
presents a new CNN-based autoencoder network structure for
blind nonlinear spectral unmixing. The difference between the
proposed method and related works are highlighted in Table I.
The highlights of this work are summarized as follows.

1) A general spectral mixture model that consists of a
linear mixture component and an additive nonlinear
mixture component is proposed. The significance of
an endmember in the nonlinear mixture component is
weighted according to its associated abundance fraction.
A DNN is proposed to represent this nonlinear part and
generalizes the existing related models.

The form of the inherent nonlinearity of our nonlinear
mixture component is learned from the data itself, rather
than relying on an assumed form. The structure of
the decoder is designed with particular care so that
the nonlinear interactions are imposed on endmembers
weighted by abundances, which has a clear physical
interpretation and covers several existing artificial mod-
els. Endmembers and abundance fractions are extracted
from the outputs and weights of the particular layers of

2)
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TABLE 1I
RELATING TYPICAL NONLINEAR MODELS WITH THE GENERIC FORM (8) (NOISE VECTOR n IS OMITTED FOR SAVING SPACE)

Model expression Form of ¥ Note
Bilinear model x=Ma+>F, Zf:i_‘_l aim; ®ajm; | =31 Z?:H_l a;im; ©® ajm; | © denotes the element-wise product
Post-nonlinear model x = Ma + Ma ® Ma ¥ = Ma ® Ma Note Ma =mja; +---+ mpgapr

K-Hype model x; = m;a + p(my,)

7 is in a RKHS with kernel &
B; are coefficients to be determined

(W) = Y2, Bi k(my,, my,)
a is ignored in ¥

Multilinear mixing model | x = Ma + pMa(Ma — 1)/(1 — pMa)

¥ = pMa(Ma — 1)/(1 — pMa) p is the probability of interactions

the network. Extra regularizations are also imposed to
enhance the unmixing performance.

Our encoder is a 3-D-CNN-based architecture. 3-D con-
volutional filters are used to capture the spectral-spatial
structures of neighbor pixels simultaneously. Unlike
other NAE methods which mainly rely on spectral infor-
mation in the processing, our proposed method jointly
analyzes spectral-spatial priors of a hyperspectral image.

3)

The remainder of this article is organized as follows:
Section II presents the formulation of the nonlinear mixture
model. Section III presents the design of the proposed autoen-
coder scheme for unmixing. Section IV validates the pro-
posed method with experiments using synthetic and real data.
Section V concludes the work and provides the perspective of
the future work.

II. PROBLEM FORMULATION

Notation: Normal font x and X denote scalars. Boldface
small letters x denote vectors. All vectors are column vectors.
Boldface capital letters X denote matrices. Considering an
observed pixel data x € R? with B denoting the number of
spectral bands, and M = [my, ..., mg] denotes the (B x R)
endmember matrix with endmembers m;, R represents the
number of endmembers. a = [ay, az,...,ag]" is the abun-
dance vector associated with a pixel. The operator blkdiagf- - - }
forms a matrix of size BR x R using vectors {y;}X, € R®
such that

yi 0z 0p
0z y2 0p

blkdiag{y, y2, ..., ¥z} = } e RBRXR (1)
0z 0p YR

with 0p denoting all zero vectors of length B. Considering
using such a matrix Y = blkdiag{y, y2, ..., Yg} as the weight
matrix of a layer of a DNN, regular matrix product maps the
input h = [Ay,...,hg]" to the output of the form

.
Yh = [hyy|, hay;, ..., heYg] - )

The usefulness of such an operation will be clear when we
relate (23) and (26) to (9).

The operator col{y;,...,yn} stacks its vector arguments
{y:}!_, on the top of each other to generate a connected vector
given by

yi

COI{YI,no,YN}=[le,...,y;]T: (3)

YN

We first consider the LMM where each observed pixel
is assumed to be a linear combination of the endmembers
weighted by their associated abundances

x=Ma—+n “4)

where a denotes the corresponding abundance vector, and
n € R? is an additive noise vector. As the abundances
represent relative fractions of each material, they are required
to satisfy the abundance nonnegative constraint (ANC), (5),
and abundance sum-to-one constraint (ASC), (6), that are

Vi:a; >0 %)
R
Sa=1 ©)

In this work, we consider the following general mixing
mechanism:

x=Ma+¥YM,a)+n @)

which consists of a linear mixture of endmembers M with
abundance fractions a, and a nonlinear fluctuation ¥ that
defines the interactions of M parameterized by a. Several
existing typical nonlinear models are summarized in Table II.
We revised the mixture model defined in (7) to provide a more
tractable form as follows:

x = Ma + ¥Y(aymy, amy, ...,agmg) +n

= Ma + ¥ (Mdiag(a)) + n (8)

where ¥ represents the nonlinear interaction between the
endmembers M weighted by associated abundance a. It is clear
that (8) is a general model that yields the models defined in
Table IT under different choices of ¥. We refer to this model
as a gerenalized linear-mixture/nonlinear-fluctuation model.
This form suggests that the nonlinear interactions of material
signatures are in proportion to the abundance fractions of each
material. This is reasonable, because, for instance, a material
with a negligible abundance will have limited contribution to
either the linear component, or the nonlinear component of x.
Several existing nonlinear models can be considered as specific
cases of (8) under different definitions of . Typical nonlinear
mixing models and the relations between these algorithms and
(8) are summarized in Table II. With the exception of K-Hype,
these algorithms are designed manually to capture the assumed
nonlinearities. The linear-mixture/nonlinear-fluctuation model
used by the K-Hype algorithm is relatively more general, and
has some similarities with (8). However, in addition to the
nontrivial issue associated with the selections of kernels and
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kernel parameters discussed above, this model suffers from the
use of a nonlinear fluctuation function that is independent of
the abundance fractions. Hence, the endmembers contribute
equivalently to the nonlinear component of the observed
spectrum.

The present model clearly addresses this restriction by
explicitly including the abundance fractions of the endmem-
bers. In addition, the restriction associated with the selections
of kernels and kernel parameters is addressed in the proposed
approach by not assigning ¥ in (8) with any specific form.
Instead, we devise a method to learn it from the data itself via
an autoencoder network.

In order to facilitate to present the structure of the autoen-
coder network, we write (7) in the following equivalent form:

x=7TMpa)+¥Y(Mpa)+n )

where

RBRXR

M) = blkdiag{m, mo, ..., mg} € (10)

and 7 : RBR 1 RZ is a step-wise summation operator,
i.e., for a given vector y € RBR

R R T
T(y) = <Zy3x(i1)+1,--~,Zy3x(i1)+3> - 3D
i=1 i=1

With the above notation, we have

Mpa = coliaymy, aomy, . .., agmg} (12)

and

7 (Mpa) = Ma. (13)

Then the linear component and the nonlinear component
share the same input Mpa. Our previous study on the above
model can be found in [1].

III. PROPOSED APPROACH

In this section, we present a thorough presentation of the
proposed method that solves the NAE problem using deep
autoencoder networks.

A. General Structure

The structure of an autoencoder network consists of two
parts, namely an encoder and a decoder. Encoder fg com-
presses the input x into a low dimensional representation
h € RR, that is

h = fe(x)

with fr : REX! — RE*! Recall that B represents the number
of bands and R denotes the number of endmembers. Note that
R is assumed priorly known in our work, and it is estimated
by using HySime [35] method. As the hyperspectral data is
assumed to be low rank, we suppose R < B in our work.
Decoder fp uncompresses the hidden representation vector h
to reconstruct the original input data, that is

X = fp(h)

(14)

5)
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with fp : RR*! — RB*! The network trains the parameters
and representations by minimizing the average reconstruction
error (RE) between the input x and its reconstructed counter-
part X; = fp(fe(x;)) given by

N
. 1 . 2
L(x,X) = N;HXi_XiH (16)
where N is the number of pixels. With the output of the
encoder h € R, in this work the decoder is designed to
reconstruct the input x with the following specific structure:

£=T(VYh) + oV h) (17)

where V() are weights of the first layer of the decoder, as to
be defined in (22), @ is the nonlinear function constructed
by the nonlinear part of our decoder, and it is expected that
after the learning process, ® mimics the generative model V.
Comparing this structure to (9), the decoder mimics the output
in accordance to this model. Therefore, after the network
parameters are learned with data, blind unmixing of the same
input data can be conducted by

Abundance estimation : h = a (18)

Endmember extraction : V" = 1\7ID. (19)

In order to utilize the spectral-spatial priors and achieve
better unmixing performance, we divide the hyperspectral cube
into N overlapping 3-D-patches with the size of n x n x B,
where n denotes the spatial window size. The central pixel
is regarded as the target pixel to be decomposed. Then
these patches are entered into our unmixing framework. Both
encoder and decoder can either be shallow or deep, but
generally, it is believed that deep networks possess a superior
modeling capability. The schema of the proposed autoencoder
network is illustrated in Fig. 2(a) in order that readers can
better understand the proposed structure. We elaborate the
design of encoder and decoder in Sections III-B and III-C.

B. Encoder

In this work, a 3-D-CNN-based network is designed as
the encoder with a specific structure presented in the left
part of Fig. 2(a) (marked with pink color). First, we use two
3-D convolutional layers (Conv) with the spatial size of 3-D
convolutional kernels set to 3 x 3 to fully capture the spectral-
spatial features, and the spatial size of each patch is decreased
from n x n to 1 x 1. Then three 3-D convolutional layers with
kernel size of 1 x 1 x 8, 1 x 1 x 8 and 1 x 1 x 6 are utilized
to further capture the spectral-spatial features. The number
of kernels of the 3-D convolutional layers gradually narrows
down, and the number of kernels of the last layer is R with
the output feature dimension R x 1. No specific constraints
are imposed on the encoder in order to fully use the capacity
of the network and reduce the information loss. Instead of
using pooling layers to reduce the size of features, we use
the stride strategy to compress the data, Except for the last
hidden layer, other layers adopt the same activation functions
¢, such as Sigmoid, rectified linear unit (ReLU), and Leaky
ReLU (LReLU). We have conducted extensive experiments to
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(a) Diagram of the proposed scheme. (b) Detail structure of the decoder. As presented in Section III-C, h is the output of the utility layer ((20)),

VD are the weights of the first-layer of the decoder, and Vi, denotes the weights of the nonlinear part of the decoder. (c) Size of layers.

validate the enhanced performance of LReLU. Hence, LReLU
is preferred in this work.

The nonnegativity and sum-to-one constraints imposed on
abundance vector a should be carefully addressed. In order to
meet the ANC, the work [27] uses a threshold to enforce the
vector to be nonnegative, and the work [29] uses a nonnegative
autoencoder to guarantee the ANC over the whole network.
The former strategy deactivates a large number of nodes in
the network, and the capability of network is thus not fully
utilized. The latter strategy imposes strong constraints on the
network and makes it difficult to design the network. For
the ASC, the works [27] and [29] add a regularization to
encourage the ASC, and [25] uses a normalization operator
on a. In this work, we address the ANC and ASC using
the strategy proposed in our previous work [34]. Absolute
value rectification is used to enforce h, the output of the
encoder network (abundance estimation), to be nonnegative.
The negative values in h thus becomes a positive value, and
nonnegative values remain unchanged. Then this nonnegative
vector is normalized by sum of its entries to satisfy sum-to-
one, namely

b=l 20)

Z,’:1 |h1|

where h; is the ith element of the abundance vector h. The
optimal points x* = y* such that y* = argmin, ,— f(|x])
and x* = argmin,>o f(x). Thus, the absolute value can be
used in the network to ensure the nonnegativity of parameters.
The sum-to-one constraint can also be satisfied by using the
layer defined by (20) with the same reason. We found from
extensive experiments that using absolute value provides better
results than using ReLU and SoftMax in this part.

C. Decoder

The decoder is designed to reconstruct the input with a
linear structure and a parallel nonlinear structure. The specific

setting of this structure is shown in Fig. 2(b). Recalling the
operators and symbols defined in (9) to (13) and the decoder
structure given by (17), the first layer of the decoder is then
designed by

o) =vWhn (1)

where V(I is defined as weights of the first layer of the
decoder. Endmember extracted by linear algorithms, like the
vertex component analysis (VCA) algorithm can be used to
initialize the learning process of V(. V() is constrained with
the following form:

VO = bikdiag{v{", ..., vi'}. (22)
Consequently, the product V(Vh equals to
VOh = col{hv{", ..., hgvy (23)

Vectors {h,~v,§1)}iR:1 are generated as estimates of the end-
members weighted by the associated abundances. The output
o of this layer is used as the input of 7(-) so that 7 (o")
generates the linear component of the spectrum, and 0! is
also used as the input of the nonlinear component defined
by a fully connected (FC) network without bias weights.
This nonlinear component of the decoder is designed to
represent the nonlinear interactions among the endmembers
weighted by the associated abundances. Studies show that a
neural network with two hidden layers can represent arbitrary
nonlinear relation among the input [36]. In our scheme, we use
two hidden FC layers to learn the nonlinear relation among
the endmembers, since very high-order photon interactions,
though may exist, are usually weak in practice. To avoid over-
fitting, a parameter norm penalty is added to the weights of
the nonlinear component. We shall elaborate on this parameter
penalty in the next subsection. This network thus learns the
nonlinearity from the data and models all nonlinear inter-

actions among {hivfi)}le. Finally, the outputs of these two
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parallel structures are added to reconstruct the estimate X by

X = fp(h) (24)
= ﬁlin + ﬁnlin (25)
=T (o) + ® (o). (26)

The energy of component Xy, allows to indicate where the
nonlinear effects spatially appear, which can be useful in many
applications.

D. Objective Function

Several components are considered to formulate the objec-
tive function of the proposed autoencoder. The mean-square
error between the input and reconstructed data is employed
for the data fitting

1 N
Jana(W) = L&, %) = = > o (fe(xi) = xil%. @7)
i=1

Blind unmixing problem with both endmember and abun-
dance unknown can be a difficult inverse problem. Regulariza-
tion is often imposed to condition the problem with reasonable
prior information. In this work, we first consider the regularity
of the nonlinear function ¥, as proposed in [13]. Thus the
{>-norm of the weights of the nonlinear part of the decoder
(denoted by Vyin) given by

Jree(Vatin) = [[Vintin |1 (28)

is used as the regularization to drive the weights to decay
and avoid over-fitting. Furthermore, a first-order total variation
norm (TV-norm) regularization given by

R B-1

Jaun (V) = 373 7|[),, — [

i=1 j=1

(29)

is imposed on {v{"}X . Because {v\"}X  are the estimates

of the endmembers, such a regularization encourages the
smoothness of the endmembers and reduces the estimation
noise. Finally, the objective function is formulated by

J(W) = Jgaa(W) + 4 Jreg (Vatin) + Y Jsmth(V(l)) (30)

where positive parameters 4 and y control the strengths of the
two regularization terms.

IV. EXPERIMENTS

In this section, the proposed unmixing scheme was imple-
mented and its performance was compared with several typical
state-of-the-art unmixing methods, using synthetic data and
real airborne image data. Note that the general network struc-
ture and number of layers are the same for all experiments.

The performance of abundance estimation was measured by
the root mean square error (RMSE) defined by

1 N
RMSE = ﬁ;”ai_ﬁinz (3D

where N represents the number of pixels, a; and 4; denote the
true and estimated abundance vectors of the ith pixel.
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The accuracy of the endmember estimation was evaluated
using the spectral angle distance (SAD) and the spectral
information divergence (SID) given by

mT

SAD = cos™! (7nl>
lm||lm]

PN Pj
SID(m/m) =3, p, log (f)_J)

J

(32)

where m represents an endmember and m represents its
estimate, p = (m/1"m) is the probability distribution vector
of each endmember, and p = (1h/1 ).

The following typical algorithms were compared:

1) The endmember extraction with VCA and abun-
dance estimation with K-Hype [13]: VCA is a
classic geometric method used for endmember extrac-
tion. The K-Hype algorithm considers the linear-
mixture/nonlinear-fluctuation model and approximates
the nonlinearity by the kernel trick.

The endmember extraction with VCA and
abundance estimation with multilinear model
(MLM) [16]: MLM is based on a Markov chain
interpretation of the reflection process of a single light
ray. A probability parameter is used to describe the
possibility of interacting with the next material.

The endmember extraction with N-finder (N-FINDR)
[37] and abundance estimation with nonlinear
unmixing by variable splitting and augmented
Lagrangian (NUSAL) [38]: N-FINDR is a classic
method that is used to extract endmember. NUSAL is
a kernel-based method for NAE by variable splitting
and augmented Lagrangian. The method also assumes

2)

3)
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0

Fig. 5. Abundance maps of the data with the PNMM mixture under SNR = 20 dB. From left to right columns: ground-truth, estimated results of VCA-K-Hype,
VCA-MLM, N-FINDR-NUSAL, rNMF, NAE and the proposed method, respectively. From top to bottom: different endmembers.
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Tllustration of extracted four endmembers from the data with the linear model mixture under SNR = 10 dB. Red curves represent the ground-truth.

The yellow and blue curves represent the extracted endmembers with y = 0 and y = 0.1, respectively. Proper regularization increases the smoothness of the

estimated endmembers.
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Fig. 7. RMSE as a function of the regularization parameters for the proposed
method.

a linear mixing model corrupted by an additive term
whose expression can be adapted to account for multiple
scattering nonlinearities.

The robust nonnegative matrix factorization
(rNMF) [39]: rNMF is an NMF-based nonlinear
method that determines the endmembers and abundances

4)

simultaneously via a block-coordinate descent algorithm
that involves majorization-minimization updates.

A deep autoencoder network for NAE [34]: NAE
is a novel scheme for blind nonlinear unmixing based
on a deep autoencoder network that addresses the post-

nonlinear mixture problem.
Note that the linear endmember extraction algorithms were

used for the first three methods that are focused on the abun-
dance estimation. These geometrical algorithms still provide
sufficiently good results when the nonlinearity degree in data
is moderate, as they are able to extract vertices from distorted
data clouds [40]. Our experiments will also confirm their
performance. All unsupervised nonlinear unmixing methods,
namely rNMF, NAE and our proposed method, are initialized
by the same VCA results.

5)

A. Experiments With Synthetic Data

1) Data Description: The synthetic data were generated
with the LMM and two nonlinear models. The endmembers
used to generate the data were extracted from the U.S. Geo-
logical Survey (USGS) digital spectral library. These spectra
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TABLE IIT
ABUNDANCE RMSE COMPARISON OF THE SYNTHETIC DATA

SNR=10dB SNR=20dB SNR=30dB
linear | bilinear | PNMM | linear | bilinear | PNMM | linear | bilinear | PNMM
VCA-K-Hype 0.0876 | 0.0897 0.0761 | 0.0493 | 0.0797 0.0443 | 0.0419 | 0.0517 0.0378
VCA-MLM 0.0792 | 0.0851 0.0734 | 0.0350 | 0.0539 | 0.0378 | 0.0289 | 0.0451 0.0296
N-FINDR-NUSAL | 0.1181 | 0.1354 | 0.1094 | 0.0412 | 0.0797 0.1084 | 0.0300 | 0.0507 0.1064
rNMF 0.1698 | 0.1573 0.1589 | 0.0669 | 0.0641 0.0681 | 0.0556 | 0.0603 0.0586
NAE 0.0791 | 0.0783 0.0676 | 0.0529 | 0.0642 | 0.0423 | 0.0388 | 0.0632 | 0.0318
Proposed method 0.0547 | 0.0690 | 0.0504 | 0.0313 | 0.0456 | 0.0284 | 0.0219 | 0.0398 | 0.0221
Boldface numbers denote the lowest RMSEs.
TABLE IV
ENDMEMBER SAD COMPARISON OF THE SYNTHETIC DATA
SNR=10dB SNR=20dB SNR=30dB
linear bilinear | PNMM linear | bilinear | PNMM | linear | bilinear | PNMM
VCA-K-Hype/MLM | 3.8528 43132 5.0008 | 0.8501 | 3.2297 54322 | 0.1758 | 3.1177 5.3712
N-FINDR-NUSAL 19.1240 | 19.6878 | 18.8068 | 6.5615 | 6.7955 7.8875 | 1.8875 | 2.2535 5.8264
NMF 4.0501 4.3968 6.8123 | 3.1724 | 4.5322 | 6.2772 | 3.0019 | 2.6911 5.2633
NAE 3.8898 4.5667 5.1826 1.1031 | 3.4624 | 5.6240 | 0.5974 | 3.4668 5.5974
Proposed method 3.6393 4.2688 5.0218 | 0.8497 | 3.1142 | 5.0416 | 0.1719 | 3.0457 | 5.2680
Boldface numbers denote the lowest SADs.
TABLE V
ENDMEMBER SID COMPARISON OF THE SYNTHETIC DATA
SNR=10dB SNR=20dB SNR=30dB
linear | bilinear | PNMM | linear | bilinear | PNMM | linear | bilinear | PNMM
VCA-K-Hype/MLM | 0.0096 | 0.0155 | 0.0127 | 0.0013 | 0.0116 0.0164 | 0.0003 | 0.0112 | 0.0158
N-FINDR-NUSAL | 0.2181 | 0.2222 | 0.2437 | 0.0388 | 0.0377 0.0572 | 0.0032 | 0.0149 0.0192
rNMF 0.0156 | 0.0157 0.0512 | 0.0063 | 0.0238 0.0333 | 0.0040 | 0.0140 | 0.0190
NAE 0.0104 | 0.0166 | 0.0136 | 0.0020 | 0.0165 0.0187 | 0.0002 | 0.0161 0.0171
Proposed method 0.0086 | 0.0156 | 0.0131 | 0.0013 | 0.0107 0.0157 | 0.0002 | 0.0101 0.0154

Boldface numbers denote the lowest SIDs.

consist of 224 contiguous bands. The LMM is given by (4).
The bilinear mixture model

R—1 R
x=Ma+) > aaj(mom))+n (33)
i=1 j=i+l
and the post-nonlinear mixing model (PNMM)
x=Ma+Ma®Ma-+n (34)

were used as the two nonlinear models. In this experiment,
four pure material spectra (R 4) were considered and
the abundance fractions were generated from Hyperspectral
Imagery Synthesis (HYDRA) toolbox. A total number of
256 x 256 pixels were generated to evaluate the performance.
Zero-mean Gaussian noise was added with the signal-to-noise
ratio (SNR) set to 10, 20, and 30 dB, respectively. Our
proposed scheme was implemented using PyTorch and Torch.
We used Adam optimizer to train the network. Adam is a
simple and computationally efficient algorithm for gradient-
based optimization of stochastic objective functions. The spe-
cific parameters are given in the following subsections.

2) Results: Our proposed method is an unsupervised
method and not based on training and test data, the unmixing
results are obtained by using all data as input. Rules of manual
inspection guide most choices of parameters. The learning rate
was set to 1 x 1073, The batch size was set to 256 in this

experiment. Fig. 3 shows the performance of our proposed
with respect to learning rate and batch size with bilinear
model SNR = 30 dB. Note that a larger batch size leads to
more accurate descent directions but increases the possibility
of reaching a local optimum, while a small batch size may
result in difficulties in convergence. The number of training
epochs was set to 200. The spatial window size n was set to 5.
By using a grid search strategy, we manually set the parameter
2 to 1 x 107!, and the smoothing regularization parameter y
to 1 x 1073, Fig. 4 shows the convergence curves during the
learning process with the data under SNR = 20 dB.

Tables III-V report the RMSE, SAD and SID results of
the compared methods under different models and SNR set-
tings. It is clear that our proposed method achieves the best
abundance estimation performance, and sufficiently good end-
member estimation performance with both linear and nonlinear
models. Note that when the mixtures are affected by moderate
nonlinearities, geometrical endmember extraction algorithms
based on linear model can still provide sufficiently good
results for nonlinear mixtures, in particular when constraints
on simplex volumes are imposed [40]. Among compared algo-
rithms, MLM is an NAE method with a specific assumption
on the nonlinearity. Both K-Hype and NUSAL are kernel-
based methods, and the selection of the kernel and its para-
meters notably affect their performance. The proposed method
builds a model by learning the nonlinearity from the observed
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Laboratory-created data for unmixing performance evaluation (RGB images). (a)—(c) Pure quartz sand with a diameter of 0.3 mm of three colors.

They serve as pure materials for providing endmembers. (d) and (e) Mixtures of sand with spatial patterns. Square regions of 60-by-60 pixels in the center

of each subfigures are clipped out and used in experiments.
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Fig. 9.
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0

Abundance maps of the first mixture of the laboratory-created data. From left to right columns: ground-truth, estimated results of VCA-K-Hype,

VCA-MLM, N-FINDR-NUSAL, rNMF, NAE, and the proposed method, respectively. From top to bottom: abundance maps of red quartz sand, green quartz

sand and blue quartz sand, respectively.

data, and therefore the issue of the kernel selection is then
avoided. Compared to the state-of-the-art unsupervised NAE
methods, namely rNMF and NAE with the same initialization,
our proposed method almost always improves the abundance
estimation accuracy. Moreover, benefiting from the fact that
the low-dimensional vector generated from encoder maintains
the main information and gets rid of redundant information and
noise, the proposed method is robust to noise. Fig. 5 presents
the abundance maps of our method and compared algorithms.
In order to understand the effect of the smoothing regular-
ization, we show in Fig. 6 the extracted endmembers with y
set to 0 and 1 x 107! in the linear case with SNR = 10 dB.
Removing this regularization (y = 0) leads to noisy estimated
endmember curves. The usefulness of this smoothing effect is
clearly illustrated. Fig. 7 shows the sensitivity of the proposed
method with the regularization parameters A and y with the
synthetic data of the bilinear model under SNR = 30 dB.
It can be seen the method exhibits satisfactory RMSE within
a reasonable range around the optimal parameter values.

B. Experiments With Laboratory-Created Data

In order to perform quantitative evaluation of unmixing
performance with real data, we designed several experimen-
tal scenes with known ground-truth in our laboratory. Our
data were collected by the GaiaField and GaiaSorter systems
in our laboratory. Our GaiaField (Sichuan Dualix Spectral
Image Technology Co. Ltd., GaiaField-V10) is a push-broom
imaging spectrometer with HyperSpectral Image Asia (HSIA)-
OL50 lens, covering the visible and near infrared (NIR)
wavelengths ranging from 400 to 1000 nm, with a spectral

resolution up to 0.58 nm. GaiaSorter sets an environment that
isolates external lights and is endowed with a conveyer to
move samples for the push-broom imaging.

Two nonuniform mixtures of colored quartz sand with
spatial patterns were used. The experimental settings were
strictly controlled so that pure material spectral signatures
and material compositions were known. The data consist
of 256 spectral bands. Different colors of quartz sands
with uniform size were used as pure materials shown
in Fig. 8(a)—(c). The mixtures are shown in Fig. 8(d) and (e).
To calculate the ground truth, the aligned high-resolution
RGB images of these scenes were captured and linked to
hyperspectral pixels using the spatial resolution ratio, and
then the percentage of each colored sand in a low-resolution
hyperspectral pixel could be analyzed with the help of the
associated RGB image. In our experiments, a subimage of 60-
by-60 was clipped out from the center of each subfigure. More
details can be seen in [41].

In this set of experiments, the learning rate was also set
to 1 x 1073, and the Adam optimizer was used to train
the network. The batch size of this experiment was set to
100 and the number of training epochs was set to 200. The
parameter A was set to 1 x 107*, and y was setto 1 x 1075,
Figs. 9 and 10 illustrate the estimated abundance maps of these
algorithms. The ground-truth abundance maps are shown in the
first columns of Figs. 9 and 10. The abundance maps estimated
using the compared algorithms and our proposed method
are shown alongside. The proposed algorithm results have
sharper abundance maps, and the general spatial patterns of
the estimated maps are more consistent with the ground-truth.



5509415 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022
TABLE VI
RMSE, SAD AND SID COMPARISON OF UNMIXING RESULTS OF THE LABORATORY-CREATED DATA
VCA-K-Hype | VCA-MLM | N-FINDR-NUSAL | rNMF NAE Proposed
RMSE Mixture 1 0.1957 0.2050 0.2029 0.2315 0.2035 0.1879
Mixture 2 0.1764 0.2198 0.1946 0.2212 0.1797 0.1721
SAD Mixture 1 10.7889 — 9.2097 19.8765 | 10.7815 9.2958
Mixture 2 9.3823 — 12.2489 15.5301 | 9.3736 9.3094
SID Mixture 1 0.0995 — 0.0325 0.2128 0.0994 0.0935
Mixture 2 0.0326 — 0.0568 0.1233 0.0325 0.0325
Boldface numbers denote the lowest results.
Ground-truth VCA-K-Hype VCA-MLM N-FINDR-NUSAL NAE Proposed
w i s B . 1
K = L e
End #1 0.5
: 0
1
0
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Fig. 10. Abundance maps of the second mixture of the laboratory-created data. From left to right columns: ground-truth, estimated results of VCA-K-Hype,
VCA-MLM, N-FINDR-NUSAL, rNMF, NAE, and the proposed method, respectively. From top to bottom: abundance maps of red quartz sand, green quartz

sand and blue quartz sand, respectively.
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Extracted endmembers from the Jasper Ridge data by the proposed

The quantitative RMSE, SAD and SID results are compared in
Table VI. We observe that the proposed algorithm achieves the
lowest RMSEs and sufficiently good endmember estimation
performance. These unmixing results with labeled real data
highlight the superior performance of the proposed method.

C. Experiments With Real Airborne Data

Two real airborne images, namely, Jasper Ridge dataset
and Urban dataset, were used to validate the proposed
scheme.

1) Jasper Ridge: It is an image of Jasper Ridge Biological
Preserve, which was recorded by Analytical Imaging and

Geophysics (AIG) in 1999. There are 512 x 614 pixels in
it. We use a subimage with 100 x 100 pixels in our work.
The first pixel corresponds to the pixel (105, 269) in the
original image, which is also used in many other works
[31], [33]. Each pixel was recorded at 224 channels ranging
from 380 to 2500 nm with spectral resolution up to 9.46 nm.
After removing the channels affected by water vapor and
the atmospheric environment, 198 channels were kept. The
number of endmembers was set to 4, including tree, water,
soil, and road.

The learning rate was set to 1 x 1073 for this dataset. The
batch size used in this experiment was set to 256, and the
number of training epochs was set to 200. The parameter
) was set to 1 x 1073, and y was set to 1 x 107° in this
experiment. Fig. 11 illustrates the extracted endmembers by
the proposed algorithm. Fig. 12 illustrates the estimated
abundance maps of the four endmembers obtained by these
algorithms. We observe that the proposed algorithm provides
a shaper and clearer map of different materials. Fig. 13 shows
the energy of the nonlinear components estimated by these
algorithms. These maps demonstrate that nonlinear compo-
nents are active at the boundary or transition parts of different
regions, e.g., at the water shore. The proposed algorithm
provides a clear map of nonlinear components with several
particular locations emphasized.

Note that this real data is extensively used in hyperspectral
unmixing, however, no ground-truth information is available
for a quantitative performance evaluation of abundance. Thus,
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Fig. 12.  Estimated abundance maps of Jasper Ridge data. From left to right: VCA-K-Hype, VCA-MLM, N-FINDR-NUSAL, rNMF, NAE and the proposed

method. From top to bottom: tree, water, soil and road, respectively.
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Fig. 14. Maps of RE of the Jasper Ridge data. From left to right: VCA-K-Hype, VCA-MLM, N-FINDR-NUSAL, rNMF, NAE, and the proposed method,

respectively.

the RE defined by

N
1 -
RE= |~ 2:]: I%; — Xil2 (35)

is used for a quantitative comparison, though RE may not be
proportional to the abundance estimation accuracy. The RE
results of different algorithms are reported in Table VII, and
the RE maps are illustrated in Fig. 14. We observe that our
method leads to the lowest RE in the mean sense and the
spatial distribution.

2) Urban: It was captured by the Hyperspectral Digital
Imagery Collection Experiment (HYDICE) in October 1995.
Its location is an urban area at Copperas Cove, TX, U. It has
307 x 307 pixels, with each pixel covering 2 x 2 m? area.

All the pixels were used to evaluate the unmixing perfor-
mance. The data consist of 210 spectral bands ranging from
400 to 2500 nm with spectral resolution up to 10 nm.
After removing channels [1-4, 76, 87, 101-111, 136-153,
198-210] affected by dense water vapor and the atmosphere,
162 channels remained. Five prominent endmembers exist in
this data, namely, asphalt, grass, tree, roof, and dirt.

In this experiment, the same network, learning rate, and
optimizer were used to conduct the unmixing study. The batch
size was set to 200, with the number of epoch set to 200. The
parameter /1 was set to 1 x 107* and y was set to 1 x 1075.
The estimated abundance maps of five endmembers are shown
in Fig. 15. These figures clearly indicate that our proposed
method provides a smoother and clearer map. Fig. 16 shows
the energy of the nonlinear components estimated by these
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Fig. 15. Estimated abundance maps of Urban data. From left to right: VCA-K-Hype, VCA-MLM, N-FINDR-NUSAL, rNMF, NAE and the proposed method.

From top to bottom: asphalt, grass, tree, roof, and dirt.
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proposed method.
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Fig. 17.

algorithms. These maps demonstrate that nonlinear compo-
nents are active at vegetated regions and boundary or transition
parts of different regions. The proposed algorithm provides a
clearer map of nonlinear components. The RE results achieved
by different algorithms are reported in Table VIII, and the RE
maps are shown in Fig. 17. We observed that our method leads
to the lowest RE. Fig. 18 shows the extracted endmembers by
the proposed method.

D. Effect of Using the Training Strategy

The proposed method is based on the autoencoder structure
without requiring separate training datasets. The estimated

rNMF Proposed
0.3
0.2
0.1
0

Energy of the nonlinear components of the Urban data. From left to right: VCA-K-Hype, VCA-MLM, N-FINDR-NUSAL, rNMF, NAE, and the

rNMF Proposed

. . . . . .‘02

RE maps of the Urban data. From left to right: VCA-K-Hype, VCA-MLM, N-FINDR-NUSAL, rNMF, NAE, and the proposed method.

parameters are given once the network is learned with the data
reconstruction process. However, it is possible to only use a
part of the data to learn the autoencoder and then apply the
learned encoder to estimate the abundances for the rest data.
This strategy may further reduce the complexity of the method.
To validate this strategy, experiments with real data were
conducted. We randomly selected 20% data to train the model,
and then the whole image was fed into the trained model
to obtain the unmixing results. Fig. 19 shows the estimated
abundance maps. These results are similar to the abundance
maps of our proposed method in Figs. 12 and 15. These results
show that our model is stable and the training strategy can be
useful for spectral unmixing.
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TABLE VII
RE COMPARISON OF THE JASPER RIDGE DATA

Algorithm  VCA-K-Hype VCA-MLM N-FINDR-NUSAL NMF NAE  Proposed
RE 0.0131 0.0138 0.0132 0.0135 0.0154 0.0118
Boldface numbers denote the lowest RE value.
TABLE VIII
RE COMPARISON OF THE URBAN DATA
Algorithm  VCA-K-Hype VCA-MLM N-FINDR-NUSAL NMF NAE  Proposed
RE 0.0144 0.0139 0.0123 0.0176  0.0211 0.0116

Boldface numbers denote the lowest RE value.
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Fig. 19. Abundance maps of using a model trained with 20% data. (a) Maps
of Jasper Ridge data, from left to right: tree, water, soil, and road. (b) Maps
of Urban data, from left to right: asphalt, grass, tree, roof, and dirt.

TABLE IX

TIME CONSUMING OF DIFFERENT IMAGES (RESPECTIVELY,
USING FULL DATA AND TRAINING STRATEGY)

Synthetic ~ Laboratory-  Jasper
ydata created da{a Ricg)ge Urban
time with full data(s) 851 182 246 675
training time(s) 326 74 112 254
test time(s) 71 15 21 38
total time with training(s) 397 89 133 292

E. Execution Time

In this section, we conduct experiments to evaluate the
execution time of our proposed method. Note that all these
experiments are carried out on the same hardware sources
(Intel Xeon E5-2650 v3 and an NVIDIA Tesla k80). Time

consuming of synthetic data, laboratory-created data, Jasper
Ridge dataset, and Urban dataset are shown in the first
row of Table IX. We can see that the running time of the
proposed framework mainly depends on the size of the image.
Moreover, the second and third rows show the computing time
with the training strategy where 20% data were selected for
constructing the autoencoder. We observe that compared to
learn the autoencoder with full data, this strategy reduces the
computation time since that inferring (test) process requires
much less time.

V. CONCLUSION

This article presented an unsupervised nonlinear spectral
unmixing method based on a CNN autoencoder network.
The proposed approach benefits from the 3-D-CNN-based
networks jointly capture the spectral-spatial information of
the hyperspectral image. Our framework applied a general
mixture model consisting of a linear mixture component and
an additive nonlinear mixture component, which can utilize
the universal modeling ability of deep neural networks to learn
the inherent nonlinearity of the nonlinear mixture component
from the data itself. We compared our proposed method with
four state-of-the-art NAE methods with both synthetic and
real data, especially the laboratory-created data with known
ground truth. Experiment results demonstrated the superior
performance of our proposed method, results with different
SNRs validate that our proposed method is robust to noise, and
various kinds of nonlinearity data confirm the generalization
ability of our deep framework. Moreover, our proposed method
showed better RMSE results compared with other compared
methods, indicating that our method can extract more accurate
abundance maps. It also achieved good endmember extraction
results. Future work will integrate nonlocal information of the
image into the autoencoder network to further enhance its
performance.
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