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Abstract— Airborne hyperspectral images are used for crop
identification with a high classification accuracy because of their
high spectral resolution, spatial resolution, and signal-to-noise
ratio (SNR). However, the tradeoffs between the three core
parameters of a hyperspectral imager (SNR, spatial resolution,
and spectral resolution) should be considered for designing an
efficient imaging system. Only a few reported studies on the
analysis of the impact of SNR on identification accuracy are
available. Further, the tradeoffs and mutual interactions among
these parameters are rarely considered. In this empirical study,
our aim was to understand the relationship among the core
parameters and their effects on crop identification accuracy by
analyzing the tradeoffs and mutual interactions among these
parameters. We analyzed the hyperspectral images of a typical
plain agricultural area in Xiongan, China, acquired by the newly
developed sensor airborne multimodular imaging spectrometer
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(AMMIS). The fundamental images were transformed to form
datasets with different ranges of spectral resolution, spatial reso-
lution, and SNR using data reconstruction methods. We adopted
the classification and regression tree (CART), random forest (RF),
and k-nearest neighbor (kNN) classifiers, and observed the overall
accuracy (OA) across the degraded hyperspectral datasets. The
experimental results indicated that the OA decreased with a
decreasing SNR. As the spectral resolution became coarser,
the OA first increased, plateaued, and then decreased. However,
the OA increased with decreasing spatial resolution. This study
was performed with the goal of bridging the knowledge gap
between the back-end hyperspectral sensor designing and its
front-end applications.

Index Terms— Hyperspectral imager, parameter optimization,
system design, tradeoff.

I. INTRODUCTION

THE accurate identification of vegetation species plays
an essential role in forest management, environmen-

tal monitoring, ecosystem detection, and agricultural deci-
sions [1], [2]. The identification of forest cover types and the
spatial distribution of tree species are the basic requirements
for sustainable forest management and contribute to the study
of scientific issues related to forest ecosystem function [3]. The
accurate classification of mangrove species is a crucial part of
mangrove inventories and wetland ecological management [4].
Thematic vegetation classification is usually associated with
environmental issues, such as biodiversity, carbon storage,
and carbon flux [5]–[7]. Crop identification and classification
provide necessary information support for many agricultural
decisions and precision management [8], [9]. Hyperspectral
image data have been increasingly used in crop identification
research, owing to their spatial texture and continuous spectral
characteristics [10], [11]. In particular, the demand for airborne
hyperspectral imaging systems with high spatial and spectral
resolutions is increasing for generating accurate maps [12].

The core parameters, i.e., spatial resolution, spectral reso-
lution, and signal-to-noise ratio (SNR), of the hyperspectral
imager are the main factors that affect the crop species
identification accuracy [13], [14]. Hyperspectral images with
high spatial resolution, spectral resolution, and SNR yield high
identification accuracy. However, there are tradeoffs between
the three core parameters when designing a hyperspectral
imaging system. This implies that an increase in one parameter
will decrease the other two parameter values [15]. As evident
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from (1) and (2), the SNR of a hyperspectral imaging system
is related to many factors, such as the optical aperture (D0),
instantaneous field of view (IFOV; β), sensor integration time
(Tint), solar altitude (θ), system noise (Nnoise), wavelength
range (λ), solar spectrum irradiance [E(λ)], optical trans-
mittance [τo(λ)], atmosphere transmittance [τa(λ)], ground
surface albedo [ρ(λ)], and quantum efficiency of the detector
[η(λ)]. Because the IFOV, detector size (d), focal length ( f ),
ground sample distance (GSD), detection distance (H ), and
F-number (F#) are all related to each other, the detector size
can also affect the SNR.

SNR = D2
0β

2Tint sin θ

4hcNnoise

∫ λ2

λ1

E(λ)τo(λ)τa(λ)ρ(λ)η(λ)λdλ

β = d

f
= GSD

H
, F# = f

D0
(1)

Then,

SNR= d2Tint sin θ

4(F#)2hcNnoise

∫ λ2

λ1

E(λ)τo(λ)τa(λ)ρ(λ)η(λ)λdλ (2)

where h is the Planck’s constant and c represents the velocity
of light. Thus, to improve the SNR, a detector with a large
pixel size can be used; however, it will decrease the spatial
resolution (GSD). Another approach is to design a system
that can accept light from a wider spectral interval to increase
light collection; however, in this case, the spectral resolution
will be decreased. Balancing these tradeoffs to achieve the
best configuration of the three parameters for improving the
classification accuracy will impact the instrument design and
its actual applications. However, to the best of our knowledge,
this scientific issue has not been thoroughly analyzed and
studied because of the knowledge gap between the design of
hyperspectral imaging systems and the application of hyper-
spectral data. For example, the airborne multimodular imaging
spectrometer (AMMIS) is a recently developed hyperspectral
imaging system, which has been applied in many civilian
applications in China [16]. Initially, the requirements of var-
ious applications, such as in forestry, agriculture, geology,
and oceanography, were thoroughly studied to design the
instrument parameters. However, using the feedback obtained
from recent applications and the joint analysis performed by
professionals working in this field, it has been found that the
application of AMMIS for crop species identification can be
improved further by optimizing the parameter configurations.
One of the keys to achieve this goal is to accurately understand
the relationship between the tradeoffs of the core parameters
and the crop identification accuracy.

The relationship between the hyperspectral sensor para-
meters and the identification accuracy of crops has been
described in several reports. However, these reported stud-
ies merely focused on the spatial and spectral resolutions.
Roth et al. [17] spatially aggregated airborne visible/infrared
imaging spectrometer (AVIRIS) datasets to 20, 40, and 60 m
resolutions to study the variations in the accuracy of vegetation
species classification. They found that the best accuracy was
obtained at a spatial resolution of 40 m; however, some
finer species information may be lost at coarser resolutions.
Ghosh et al. [13] mapped tree species of a central European

forest using two airborne and one spaceborne hyperspectral
imagers across three spatial scales of 4, 8, and 30 m, respec-
tively. The experimental results showed that the overall clas-
sification accuracy of the 8-m resolution image was slightly
higher than that of the 4-m resolution image for the study
area. From similar studies [18]–[22], it can be concluded that
many factors such as target scale, application requirement,
and geographical environment affect the spatial resolution
requirement of hyperspectral imagery [7], [14], [23], [24].
Dalponte et al. [12] conducted an empirical study to under-
stand the impact of spectral resolution and classifier complex-
ity on the classification accuracy of forest areas obtained with
an airborne imaging spectrometer for different applications.
In this case, the classification accuracy was analyzed with
changing spectral resolution. Studies related to the spatial
and spectral resolutions have significantly contributed to the
identification of crop species. However, the results obtained
from these studies are not sufficient to design the most suitable
hyperspectral imaging system that can achieve the highest
identification accuracy.

The SNR has long been recognized as a critical parameter
in hyperspectral imager design; however, only a few scientists
have investigated its impact on crop species identification.
In some existing studies, it has been speculated that a higher
SNR results in higher accuracy; however, it cannot be con-
firmed owing to the unavailability of convincing quantitative
experimental demonstrations [12], [13]. To address this issue,
scientists may require professional knowledge about instru-
ment design. For example, the designers of the operational
land imager instrument reported the impact of improved
SNR on the algorithm implementation in three geoscience
applications [25]. The spatial resolution, spectral resolution,
and SNR should be considered synchronously owing to their
tradeoffs and mutual interactions in the hyperspectral imaging
system. Finer spatial resolution may be useful for identifica-
tion; however, when the spectral resolution or SNR decreases,
will the accuracy improve? Does a hyperspectral dataset
with a finer spatial resolution provides better classification
accuracy than that with a finer spectral resolution in terms
of crop identification? How can the hyperspectral imager’s
core parameters be configured to achieve the best results in
crop identification applications? To address these scientific
problems, the relationship between the core parameters of the
hyperspectral imager and the identification accuracy of crops
should be studied, and the tradeoffs among these parameters
should be considered.

The overarching aim of conducting this study was to use
crop identification as an example to investigate the influence
of spatial resolution, spectral resolution, and SNR of hyper-
spectral imagers on general classification tasks by considering
the tradeoffs and mutual interactions among these parameters.
In particular, we attempted to answer the following questions.

1) What effect does the instrument’s SNR have on crop
identification accuracy, and how to determine these
effects quantitatively?

2) Among the spatial resolution, spectral resolution, and
SNR, which is the most critical factor that affects crop
identification?
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Fig. 1. (a) AMMIS. (b) Aircraft platforms.

3) How can the current AMMIS configuration be optimized
to achieve the best performance for crop identification?
How to design an airborne hyperspectral imaging sys-
tem, especially for identifying crops in the future?

To address these questions, we analyzed hyperspectral
imagery acquired by the AMMIS over a plain agricultural
area in North China (Xiongan, Hebei Province). The main
species of the selected area are economic crops. The original
image data had spatial and spectral resolutions of 0.5 and
2.4 nm, respectively. The spatial and spectral resolutions of the
images were degraded to varying ranges using different data
reconstruction methods to form the datasets. We adopted clas-
sification and regression tree (CART), random forest (RF), and
k-nearest neighbors (kNNs) classifiers and observed the varia-
tion in the overall accuracy (OA) across different hyperspectral
datasets. The impact of the SNR was also considered synchro-
nously and quantitatively analyzed. The optimal configuration
of AMMIS for identifying the crops in the selected study
area was achieved using the relationship between the three
core parameters and the classification accuracy. An improved
understanding of the tradeoffs of core parameters is necessary
to set up an optimized processing chain while designing a
hyperspectral instrument for crop classification. The results of
this study can be used to bridge the knowledge gap between
the back-end hyperspectral sensor design and its front-end
applications.

II. INSTRUMENT AND DATASETS

A. AMMIS

The AMMIS, developed by the Shanghai Institute of Tech-
nical Physics (SITP), Chinese Academy of Science (CAS),

is the latest airborne hyperspectral imaging system used for
civilian applications. As shown in Fig. 1, the AMMIS has
three modules covering the visible near-infrared (VNIR),
shortwave infrared (SWIR), and longwave infrared (LWIR)
spectral ranges. Each module is equipped with three spectrom-
eters, and a large FOV of 40◦ was achieved using the FOV
stitching technology. Nine spectrometers were integrated into
one imaging system to ensure that the hyperspectral images
from VNIR to LWIR could be acquired. The final system was
integrated successfully to meet the precision requirement of
spectral registration by adapting the mount interface for the
PAV80 Gyro-stabilized platform [26]. Compared with other
existing airborne hyperspectral imagers, AMMIS is highly
competitive in terms of spectral range, spectral resolution,
spatial resolution, and FOV, as evident from Table I [15].
Initially, we comprehensively investigated the requirements of
various applications, such as forestry, agriculture, geology, and
oceanography, to design the instrument. Since 2016, more than
ten flight campaigns have been conducted on various aircraft
platforms (Fig. 1), and large amounts of hyperspectral image
data have been obtained.

B. Study Area and Data Collection

The dataset was collected from 3:40 pm to 4:03 pm on
October 3, 2017. The SITP and the Institute of Remote
Sensing Applications (IRSA) of CAS jointly completed a
flight campaign in Xiongan, Hebei Province, China. Xiongan
is another epoch-making national-level area delineated by the
State Council of China on April 1, 2017, after the Pudong
New Area of Shanghai and Shenzhen Special Economic Zone,
and belongs to the Baoding City, Hebei Province. The area is
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TABLE I

COMPARISON OF SOME TYPICAL AIRBORNE HYPERSPECTRAL SENSORS

mainly composed of plains and located in the mid-latitudes
with a warm monsoon continental climate. The aircraft was
flown at an altitude of 2000 m, covering an area of 1320 km2.
The study area is the Matiwan village of the Xiongan New
Area in Hebei Province, China, which has 12 types of cate-
gories containing nine economic crop species.

In this study, the hyperspectral image data of the VNIR
module of AMMIS were used, with a spatial resolution
of 0.5 m and spectral resolution of 2.4 nm. We used
the POS610 position and orientation system for obtaining
high-accuracy attitude angles to correct the distortion caused
by the residual error of the PAV80 Gyro-stabilized platform;
this also enabled high-precision geometric correction and band
registration. To complete the radiometric calibration, field cal-
ibration experiments, using some diffuse reflection boards, and
calibration in the laboratory, using an integrating sphere, were
performed. The residual stripe noise was removed using sev-
eral state-of-the-art destriping approaches [16]. The one-level
hyperspectral image data with 256 bands could be used after
performing the radiometric calibration and geometric correc-
tion. The data were acquired in cloud-free weather to ensure
that the hyperspectral image data were less affected by clouds
and the atmosphere. To obtain accurate information about the
categories in the study area, the IRSA performed simultane-
ously ground investigations as well. A total of 57 sample areas
were investigated, 39 field photos were taken, and data on
12 types of categories were obtained, as shown in Table II.
Fig. 2 shows the RGB image acquired by AMMIS and the
manually labeled land cover map of the study area.

III. METHODOLOGY

A. Evaluation and Testing of SNR

The SNR is one of the major factors that influences the
performance of remote-sensing instruments and is therefore
crucial for remote-sensing data applications [27], [28]. It can
be evaluated using the design values of the instrument parame-
ters before developing the instrument and tested through auxil-
iary equipment after the instrument is developed. As indicated

TABLE II

SAMPLE SIZE OF DIFFERENT LAND REGIONS IN XIONGAN NEW AREA

by (1) and (2), the performance of the hyperspectral imager
can be evaluated using suitable SNR calculation models,
before developing the instrument [15], [29], [30]. Laboratory-
based [31] and dark current [32] methods are always used
to test the SNR after the designers develop the instrument.
In these methods, the SNR testing is performed using some
unique and uniform devices, such as integrating spheres and
diffuse reflection boards. Generally, a hyperspectral imager
takes multiframe images of a uniform object (i.e., the inte-
grating sphere or diffuse reflection board). Finally, the ratio of
the average value of the response digital numbers (DNs) values
for the multiframe images to the standard deviation is used as
the SNR. Fig. 3 shows the result of SNR testing of the VNIR
sensor (of the AMMIS) tested by the SITP using some diffuse
reflection targets (Labsphere Inc., USA). The calibration data
were obtained by performing an in-flight calibration experi-
ment. Several image methods, such as the homogeneous area
method [33], local means and local standard deviations [34],
geo-statistics [35], and decorrelation [36], [37] are used by the
hyperspectral data users to evaluate the SNR.

Notably, the SNR calculated from image data can be used as
a reference value and is different from the ground truth because
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Fig. 2. Aerial hyperspectral remote-sensing image and reference land cover map of Matiwan village. (a) RGB image obtained from the AMMIS (red: 659.9 nm,
green: 561.6 nm, blue: 458.5 nm). (b) Reference land cover map of Matiwan Village.

Fig. 3. SNR test result of the VNIR sensor of AMMIS.

the objects in the image are not always uniform. As shown
in Fig. 4, we adopted the homogeneous area method to
calculate the SNRs of different hyperspectral image datasets.
In this method, a portion of the water area in the image
[Fig. 4(b)] was selected as the uniform area to calculate the
SNR. Specifically, 100 pixels in the same column direction
(scanning direction) in the water area were selected, and the
ratio between the average and the standard deviation of these

pixel DNs was used as one SNR. The SNR for other four
adjacent lines can also be calculated. To reduce the errors,
the average of five SNRs was used as the final SNR for the
one-band image. This operation was repeated for all the band
images, and the SNRs for 256 band images were obtained as
shown in Fig. 4(c).

B. Data Generation

To analyze the influence of the instrument SNR on the
identification accuracy, datasets with different SNRs must be
generated while keeping the spatial and spectral resolutions
unchanged. A state-of-the-art model was used to obtain signal-
relevant noise, and it was appropriately introduced into the
original hyperspectral data [25]. In this model, the radiance,
after adding noise (Ld), can be obtained as follows:

N(L) = L

SNR(L)
(3)

Nd (L) =
√

Ni (L)2 − N(L)2 (4)

Ld = L + Rnd(0, 1) · Nd (L) (5)

where L is the original radiance, Rnd (0, 1) is used to generate
a Gaussian random noise with a mean of 0 and a standard
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Fig. 4. SNR of the hyperspectral image. (a) Original RGB image. (b) Selected uniform area. (c) SNR of the selected area for all bands.

Fig. 5. Comparison of the SNR obtained while imaging the water area to verify whether the required level of SNR was achieved. The SNR shown in Fig. 4(c)
was used as the 100% SNR. “10 % designed” means the results of Fig. 4(c) multiplied by 10%. “Achieved” shows the results obtained (3)–(5).

deviation of 1, N(L) can be calculated from the SNR results
for L, Nd (L) is the noise that is added to the original image
data to decrease the SNR, and Ni (L) is the resulting data noise
obtained after adding noise Ld .

The SNR curves for each band are shown in Fig. 4(c),
and the noise level is calculated using (3). Then, (4) is used
for each band image, and the required image datasets with
different SNRs can be obtained using (5). In our study, the pro-
cedure for calculating SNR(L) was different from the method
described in [25], in which the SNR(L) was directly obtained
from the instrument developer. First, it is difficult for data users
to obtain the SNR results of the sensor. Second, a difference
exists between the noise level tested by the instrument and the
actual image noise. Therefore, the SNR shown in Fig. 4(c)
was used as the 100% SNR in our method. Notably, the SNR
obtained from the image was slightly different from that of the
instrument. However, this did not affect our study because our
aim was to obtain various datasets with different SNRs and
not the precise sensor SNR. Fig. 5 shows the results obtained
when the required noise was added correctly. The actual SNR
of each band was very close to the desired SNR, and the

randomness of the added noise and difference in the response
DNs of the objects (the water area is not entirely uniform)
together generated a minor difference in the results shown
in Fig. 5. Visual inspections also revealed the SNR variation
in the uniform water area images, as depicted in Fig. 6,
which shows an intuitive visual representation of the SNR
level from 100% to 10%. Datasets with different SNR levels
were generated using this method while keeping the spatial
and spectral resolutions unchanged.

1) Generation of Datasets With Different Spatial Resolu-
tions: To investigate the impact of spatial resolution on the
identification accuracy, we adopted two spatial resampling
methods to generate a range of hyperspectral datasets with
different spatial resolutions and identical spectral resolutions.
In the nearest neighbor interpolation sampling (NNIS) method,
the target pixel value was replaced by the value of the nearest
neighbor pixel [38]. Using this method allowed the original
gray value of the image to be retained, and the SNR of the
image remained almost unaltered. The other spatial resam-
pling method used was the neighbor average sampling (NAS)
method. In this method, the target pixel value was obtained
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Fig. 6. Simulated color images of the water area to represent various SNR levels.

Fig. 7. Average SNRs of all the band images for the two spatial resampling
methods.

from the average value of the neighboring pixels. This method
could remove the noise due to the average value, thus improv-
ing the SNR of the image and smoothing the scene. Using
these two resampling methods, the original image data with a
spatial resolution of 0.5 m were degraded to obtain a spatial
resolution of 5 m. To verify the influence of the two spatial
resampling methods on the SNR, the average SNRs of all the
band images were calculated, as shown in Fig. 7. Evidently,
the NNIS method had almost no effect on the SNR; however,
application of the NAS method led to an increase in the
SNR. Although the spectral resolution of the image dataset
obtained using the two resampling methods was the same,
the identification results differed owing to the difference in the
SNRs. To obtain consistent results with the degraded datasets,
corresponding reference maps with different spatial resolutions
were obtained. The original reference map was degraded using
the NNIS methods to generate reference labels for the datasets

generated by the NNIS method. For datasets generated by
the NAS method, the label with the largest proportion in the
neighboring pixels was used as the new reference label.

2) Generation of Datasets With Different Spectral Reso-
lutions: To evaluate the influence of spectral resolution on
the identification accuracy, a spectral resampling method,
called the average spectral resampling (ASR), was used to
generate a range of hyperspectral datasets with various spectral
resolutions and identical spatial resolutions. We simulated the
hyperspectral image datasets with a series of spectral resolu-
tions that averaged the adjacent spectral channels. Specifically,
we degraded the spectral resolution from 2.4 to 153.6 nm,
implying that the number of spectral channels were reduced
from 256 to 4. In this process, the pixel gray value of the
target image was obtained by averaging the pixel gray value
of the contiguous band images. The SNR of the target image
increased owing to the decrease in the noise. These results
were compared with those of another band extraction method
called the interval spectral resampling (ISR) method, which
does not affect the SNR [12]. In the ISR method, the spectral
channels were degraded from 256 to 4 by extracting the
hyperspectral image data from the original 256 bands at the
same intervals. For example, we can select the odd number of
spectral channels to compose the new dataset with 128 bands,
and select the bands of 1, 65, 129, and 196 to compose
a new four band dataset. Therefore, the pixel values and
SNR of each extracted band image were retained, and the
average SNR of all the extracted band images remained almost
unchanged. Notably, the ISR method used in this study is also
known as the method of selection of channels at the highest
spectral resolution [12]. The ISR method is mainly used to
verify the impact of SNR and compare the corresponding
results with those of the ASR method. Some hyperspectral
image band selection studies [39]–[41] were not considered in
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Fig. 8. Average SNRs of all the band images for the two spectral resampling methods.

this study. The hyperspectral image datasets, obtained using
the ISR method set, had spectral channels same as those
of the datasets obtained using the ASR method; however,
the influence on the SNR varied. To verify the impacts of
the two spectral resampling methods on the SNR, the SNRs
of the produced uniform water area datasets were calculated.
The results shown in Fig. 8 demonstrate the veracity of our
analysis. Notably, we needed to consider only the finer than
30-nm spectral resolutions because the spectral resolutions of
most of the currently used hyperspectral imagers are finer
than 30 nm.

C. Classifiers and Accuracy Assessment

To verify the consistency and universality of our results,
a lazy learner and an eager learner classification tech-
nique were selected as the representatives for performing
multiclassification in our study. The kNN classifier with excel-
lent classification performance was selected as the represen-
tative lazy learner classifier [42]. Unlike the lazy learners,
the eager learner classifiers (e.g., support vector machine
(SVM), RF, CART, etc.) often build models explicitly for
classification. Many studies have verified that the SVM and
the RF classifiers are advantageous for classification accuracy,
as compared to the other eager learner classifiers. However,
the SVM classifier has a O (n2–n3) time complexity; despite
that it uses a kernel function to avoid “dimension disaster.”

In contrast, the time complexity of the RF and CART
classifiers are both only O (n × lg(n)) [43], [44]. The compu-
tational time problem becomes significant when the number
of bands increases dramatically in the hyperspectral image
classification [44]. In addition, SVM is specifically considered
for binary classification, and a performance deviation is often
encountered when SVM is used for multiclassification. Hence,
we selected RF and CART as the representative eager learner
classifiers in this study.

The three classifiers were programed using Python 3.6 with
scikit-learn [43]. All the computations were performed on

Ubuntu 14.0 platform using a CPU with Intel Xeon e5-2620
processor and four TITAN XP graphics cards.

1) CART Eager Classifier: The CART eager classifier,
commonly used in data mining [42], [45], finds the split nodes
of the binary tree by constructing an IF impurity function [46].
The decision trees can be easily visualized, understood, and
interpreted.

The CART algorithm in “DecisionTreeClassifier” is based
on the “sklearn.tree” package [43], which requires optional
parameters. Selecting the optimal parameters is challenging
because the applied conditions, such as the environment and
data types, vary considerably [47]. The default parameters of
the classifiers in Sklearn are continuously updated according
to the recommendations of algorithm developers and require-
ments of various experiments [43]. Thus, it is generally safe
to adopt the default parameters to achieve a better perfor-
mance and have common applicability. Consequently, we used
the default parameters of the CART classifier in this study.
Notably, the GINI index was selected as the fixed default
parameter to construct the IF impurity function in our study.

2) RF Eager Classifier: The ensemble method aims to
integrate some weak learners to enhance the classifier’s per-
formance [48]. RF is a type of ensemble learning [46] that
has been widely used to classify various types of remotely
sensed data, especially hyperspectral data with high dimen-
sionality [49].

The RF algorithm is based on the “sklearn.ensemble” pack-
age, which also requires specific parameters [43]. Same as in
CART, we used the default parameters of the RF classifier
for most of the optional parameters in this study. Generally,
CART [46] is regularly applied as a weak learner classifier
in the RF ensemble method. It has been observed that the
classification performance can be influenced by ntree, which is
the most crucial hyperparameter in RF. When ntree increases
to a certain extent, the accuracy improvement is far less than
the time cost. In our study, ntree was fixed at the default value
of 100 [43]. Boosting, bagging, and bootstrapping are the main
ensemble methods used in RF. In our study, the bootstrap
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Fig. 9. Flowchart of the experimental design.

method was used owing to the complex and strong characteris-
tics of the model. In this method, the sample size subsets were
randomly extracted from the training set with replacement,
without special requirements. The RF classifier builds a tree
for each subset of forests [50].

3) kNN Lazy Classifier: The kNN classifier is one of the
top ten algorithms used in data mining [42]. It memorizes all
the training samples and performs classification when the test
sample is provided [51]. It has been extensively utilized for
hyperspectral image classification in recent years [52], [53].

The kNN algorithm in “KNeighborsClassifier” is based
on the “sklearn.neighbors” package [43]. To classify a test
sample, the distance of this test sample to the training samples
is computed according to the similarity metric, its kNNs in the
training samples are recognized, and the labels of the nearest
neighbors are used to determine the test sample label [42].
Tuning of the kNN method includes finding the optimum value
for the nearest neighbors’ number (k) and a suitable similarity
metric. It has been observed that the effects of k on OA are
more sensitive to the variations in the datasets. Therefore,
k was fixed at a default value of 11, which is the optimal
value obtained in our repeated experiments. In our study, we
commonly used the Euclidean distance as the similarity metric
to calculate the distance [54]. Any other parameter that is not
explicitly mentioned in this article were set to their default
values during the study.

IV. EXPERIMENTS AND RESULTS

We designed three experiments: 1) analysis of the impact of
SNR on the crop identification performance with unchanged
spatial and spectral resolutions; 2) study on the influence of
spatial resolution on the crop identification performance using
two spatial resampling methods; and 3) study on the effect
of spectral resolution on the crop identification performance
using two spectral resampling methods. A flowchart of the
experimental design is shown in Fig. 9.

In these three experiments, training data and test data were
obtained from each dataset to reduce the spatial autocorre-
lation and redundancy. The training data and testing data
were sampled using the “hold-out” sampling method, without
reinserting the selected samples. Meanwhile, the number of
selected testing data was fixed to half of the training data
size to maintain the ratio between the testing and training
data. Approximately 2 116 000 samples were selected as the
training data, and 1 058 000 samples were selected as the test-
ing data for experiments (i) and (iii), whereas approximately
21 160 samples were used as the training data, and 10 580 sam-
ples were selected as the testing data for experiment (ii). The
sample size in experiment (ii) was smaller than that in the
other experiments. In experiment (ii), as the spatial resolution
decreased (from 0.5 to 5 m), the number of training samples
also decreased (from 2 116 000 to 21 160). The same training
and testing sample sizes should be used to fairly compare the
datasets with different spatial resolutions. To eliminate any
uncertainty, the results were obtained by averaging the values
of the three independent tests. For assessing the accuracy of
the classification performed using hyperspectral imagery, two
parameters are commonly measured: 1) OA and 2) Kappa
coefficient [55]. OA has the advantage of being directly
interpretable as the ratio of the number of samples classified
correctly to the total number of samples and was used as our
evaluation metric in this study [56], [57]. Notably, we did
not intend to obtain a high accuracy, as the main objective of
our study was to evaluate the variations in the classification
results with different spatial resolutions, spectral resolutions,
and SNRs.

A. Analysis of the Effects of SNR on the Classification
Results

In this experiment, we mainly focused on analyzing the
effects of SNR on the classification accuracy obtained using
the CART, RF, and kNN classifiers. To perform the analysis,
we simulated datasets with different SNRs by adding Gaussian
random noise to the original hyperspectral images. Particularly,
we degraded the SNR of the datasets from 100% to 10%
in steps of 10%. The spatial resolution and spectral resolu-
tion were maintained as constants in this process, as shown
in Figs. 5 and 6. Fig. 10 shows the OA obtained using the
three classifiers for a range of SNRs. Based on these results,
we can infer that changing the SNR affects the accuracy of
the classification.

As discussed before, the classification accuracy is notably
affected by the SNR. The OA of the CART, RF, and kNN
classifiers reduced by 28.05%, 28.65%, and 24.86%, respec-
tively, as the SNR degraded from 100% to 10%. Notably,
the spatial and spectral resolutions of the dataset did not
change with the SNR variations. Hence, it was concluded that
SNR is the main factor that affects the classification accuracy.
It is worth analyzing the behaviors of the three classifiers,
in terms of OA, with decreasing SNR. The kNN classifier
yielded a higher OA than the CART and RF classifiers did for
all the SNR values. This was observed possibly because most
classes have a large number of samples, even for performing
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Fig. 10. Variation of OA with SNR for the three classifiers.

classifications in a small area. In this case, kNN will show
excellent classification accuracy, because the unknown testing
data will likely be very similar to the training data as both
come from the same fields. That is, kNN will easily identify
its highly similar kNNs with the correct label from the training
data. In our case, the OA produced by the kNN classifier
reduced by only 3.23% when the SNR varied from 100%
to 50%. In contrast, the OA produced by the RF and CART
classifiers reduced by 8.53% and 8.95%, respectively, when the
SNR varied from 100% to 50%. However, the OA achieved
by applying the kNN classifier reduced by 21.63% when the
SNR varied from 50% to 10% and that shown by the RF and
CART classifiers reduced by 20.11% and 19.1%, respectively,
under the same conditions. The results indicate that the three
classifiers showed slightly different performance with respect
to SNR variation.

B. Evaluating the Influence of Spatial Resolution on the
Classification Result

In this experiment, we analyzed the effect of spatial resolu-
tion on the classification accuracy using the NNIS and NAS
spatial resampling methods while keeping the original spectral
resolution unchanged. We particularly wanted to determine
whether: 1) the selection of hyperspectral images with a finer
spatial resolution is more effective than selecting one with
a coarser spatial resolution and 2) differences exist in the
classification results when using the datasets prepared by
the two spatial resampling methods and the reasons for the
differences. Notably, the sample size was also reduced with
the degradation of the spatial resolution. Hence, the same
training and testing sample sizes should be used for all the
image datasets to remove the impact of sample size on the
results.

Fig. 11 shows the classification accuracy versus different
spatial resolutions obtained by the three classifiers. From
the experimental results, it was noted that the hyperspectral
image with finer spatial resolution showed a lower OA than
that shown by the hyperspectral image with coarser spatial
resolution. While using the NAS method, the OA increased
with the degradation of spatial resolution. In contrast, the OA

Fig. 11. Variation of OA with spatial resolution for the two spatial resampling
methods.

obtained using the NNIS method was almost constant with
changes in the spatial resolution. Comparing with the results
shown in Fig. 7, it can be deduced that the improvement in OA
using the NAS method was mainly due to the increase in SNR
and the smoothing of the image, and the differences between
the classification results of the two resampling methods were
consistent with the variation of SNR in the image. The OA
obtained using the CART, RF, and kNN classifiers increased by
17.13%, 14.47%, and 10.12%, respectively, when the spatial
resolution was degraded from 0.5 to 5 m using the NNIS
method. This implies that the OA produced by the RF and
CART classifiers showed a more remarkable change than that
produced by the kNN classifier, owing to the SNR variations.
This result is consistent with those of experiment (i).

Additionally, the image OA obtained from the kNN clas-
sifier was marginally lower than that obtained from the RF
classifier for all the spatial resolutions. This observation is
different from the results of the first experiment. When the
sample size is insufficient (the minimum sample size for some
classes is less than 355), finding the kNNs with the same
classes as those used in the test samples is often difficult.
Thus, the classification ability of kNN is dramatically reduced.
In RF, some rules can still be found from a small number of
samples to build a model.

C. Investigating the Effects of Spectral Resolution on the
Classification Result

We analyzed the effect of spectral resolution on the clas-
sification accuracy obtained from the three classifiers while
keeping the spatial resolution unchanged. We mainly sought to
verify whether: 1) the selection of hyperspectral images with
a finer spectral resolution is more effective than selecting a
hyperspectral image with a coarser spectral resolution (fewer
spectral channels) and 2) differences exist in the classification
results when using the datasets prepared by the two spectral
resampling methods and the reasons for the difference.

Fig. 12 shows the classification results of the three classi-
fiers at different spectral resolutions. The OA obtained using
the ASR method first increased, then plateaued, and finally
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Fig. 12. Variation of OA with spectral resolution for the two spectral resampling methods.

decreased, as shown in Fig. 12. However, the OA obtained
using the ISR method showed a continuous decrease with
the degradation of the spectral resolution. As an overall
pattern, the experimental results showed that the selection of
hyperspectral images with a finer spectral resolution is more
effective than selecting a hyperspectral image with a coarser
spectral resolution. The OA produced by the CART, RF, and
kNN classifiers decreased by 12.91%, 17.6%, and 17.87%,
respectively, when the ASR method was used to degrade the
spectral resolution from 2.4 to 153.6 nm. Remarkably, the OA
produced by the CART, RF, and kNN classifiers decreased
by 19.19%, 23.69%, and 23.81%, respectively, when the ISR
method was used in the same case. This indicates that the
spectral resolution has an almost similar effect on the three
classifiers, and the OA decreases with the degradation of the
spectral resolution. Further, the results obtained using the ASR
method were different from those of the ISR method.

As shown in Fig. 12(a), the OA obtained using the ASR
method first increased and then decreased with decreasing
spectral resolution. The highest OA produced by the RF and
CART classifiers was 86.02% and 79.21%, respectively, at a
spectral resolution of 19.2 nm (32 spectral bands). Conversely,
the highest OA produced by the kNN classifier was 86.06% at
a spectral resolution of 9.6 nm (64 spectral bands). Combined
with the results shown in Fig. 8, it can be concluded that
the improvement in OA obtained using the ASR method
was mainly due to the increase in SNR and the smoothing
effect. The effect of increasing SNR was more significant
than that of the spectral resolution degradation when an image
with a finer spectral resolution was used. This resulted in
an increase in the OA. However, the OA began to decrease
when the spectral resolution was notably decreased for two
reasons. First, the effect of increasing the SNR was smaller
than that of the degradation of the spectral resolution. Second,
the amplitude of the SNR was observed to improve slowly
with increasing spectral resolution. Additionally, using the
ISR method, the image OA obtained from the kNN classifier

was slightly higher than that obtained from the RF classifier
for all the spectral resolutions. This was observed because
of the same reasons as those used to explain the results of
experiment (i). Fig. 13 shows the spectral curves with different
spectral resolutions, processed by the ASR method. These
spectral curves were similar and smoother when the spectral
resolution varied within the range of 2.4–19.2 nm. The results
processed by the ISR methods were similar to those shown
in Fig. 13.

V. DISCUSSION

A. Analysis of the Main Factors That Affect the OA and
Tradeoffs in the Hyperspectral Imaging System

As explained before, the SNR, spatial resolution, and
spectral resolution are the three essential parameters of the
hyperspectral imaging system, and there are tradeoffs and
mutual interactions among them. In this Section, the primary
and secondary factors affecting the OA are determined by
analyzing and comparing the results based on the same original
hyperspectral dataset. In addition, the relationships between
these three parameters and other system components have been
analyzed in detail based on the experimental results and our
experience in developing hyperspectral imagers over the past
30 years.

The experimental results presented in Fig. 10 clearly show
the impact of SNR on the OA. A larger SNR results in a
higher OA. Similarly, the experimental results presented in
Figs. 11 and 12 also show that a hyperspectral image data
with a higher SNR can yield better identification results.
In this study, the SNR decreased owing to the increase in
the image noise, as shown in Fig. 6. A class with large
variance and image noise usually has blurred boundaries with
others. That is, the features of many samples with blurred
boundaries used in this class are easily confused with those
used in the other classes. As we all know, the goal of most
machine learning classifiers is to learn and create simple
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Fig. 13. Spectral curves with different spectral resolutions, processed by the ASR method. The spectral resolutions are (a) 2.4 nm, (b) 4.8 nm, (c) 9.6 nm,
and (d) 19.2 nm.

and balanced decision rules from the data features. A large
number of confused features have a serious impact on the
classification performance of classifiers, and this is how the
SNR affects the classification accuracy. Thus, the SNR of a
hyperspectral imaging system has an evident influence on the
OA, and it should be increased to improve the application
of the instrument in crop identification processes. However,
(1) implies that a finer spatial or spectral resolution lead
to a decrease in the SNR. Hence, other methods should
be considered if the spatial and spectral resolutions remain
constant; for example, improving the spectral transmittance
of an optical system, increasing the detector quantum effi-
ciency, and decreasing the noise of the detector and electronic
subsystem can improve the system SNR while maintaining
constant spatial and spectral resolutions. A larger optical
aperture can increase the collection of light photons, thereby
improving the SNR. However, this will lead to an increase in
the cost. Image motion compensation technology and the use
of time delay integration-enabled detectors are other methods
that can improve the SNR. Therefore, the SNR should be
increased with the development of the optical subsystem,
detector subsystem, and electronic subsystem. For example,
the SNR of a typical airborne hyperspectral imager AVIRIS

has been increased from 150 to 2000 (AVIRIS-NG), which is
also crucial for improving the instrument performance [35],
[58]. The improvement in the SNR allowed the AVIRIS-NG
to detect methane [59].

The experimental results shown in Fig. 11 indicate that
the OA increased when the spectral resolution and SNR
remained constant. This indicates that the change in spatial
resolution from 0.5 to 5 m had obvious effect on the OA.
By comparing the curves shown in Fig. 7, it can be concluded
that the OA increases proportionally with SNR; additionally,
smoothening the image data also improves the OA. Notably,
the original OA produced by the CART, RF, and kNN classi-
fiers, as shown in Fig. 11, was only 59.69%, 69.26%, and
67.59%, respectively, whereas that shown in Fig. 12 was
72.94%, 82.67%, and 84.72%, respectively. This was mainly
because of the differences in the sample size [60], [61].
The number of pixels in the image decreased as the spatial
resolution decreased. To avoid the influence of sample size
differences in our experiments, we used training data and
test data with the same sample sizes for all the datasets.
The sample size was reduced to 1% of its original size
when the spatial resolution was degraded from 0.5 to 5 m.
We performed an additional comparative experiment to verify
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Fig. 14. Impact of sampling size on the classification accuracy.

the impact of the sample size on the classification accuracy,
as shown in Fig. 14. It was observed that the sample size
had a noticeable impact on the OA produced by the three
classifiers. This is why the original OA shown in Fig. 11
is different from that shown in Fig. 12. Compared to the
results shown in Fig. 7, those in Fig. 11 also indicate that
the SNR had a severe impact on the identification accuracy
for datasets with a small sample size. The OA obtained from
the CART, RF, and kNN classifiers increased by 17.13%,
14.47%, and 10.12%, respectively, as the SNR increased by
approximately 2.5 times. The experimental results depicted in
Fig. 11 are similar to those of some reported studies related to
the characteristics of the observation area and target size [13],
[17]. Different regions and applications have different spatial
resolution requirements. A 30-m resolution may be sufficient
to map tundra peatland environments [14], [18]. However,
to develop accurate maps, a spatial resolution of less than
5 m is required [22], [24]. Centimeter-level spatial resolution
is required to map peatland plants [20]. In this study, our
research area was mainly plains, where the species distribution
is relatively even. Although the OA changed when the spatial
resolution varied from 0.5 to 5 m, some species with variations
and classes in small patches may not be observed and mapped
if an instrument with a coarser spatial resolution is used [17].
We aimed to investigate the tradeoffs between the spatial
resolution and the other two parameters to achieve the best
crop identification accuracy. The selection of spatial resolution
for different observation areas was not considered in this study.

As a coarser spatial resolution yields a better classifica-
tion result, the spatial resolution can be reduced to improve
the other parameters and thus obtain a better classification
accuracy. Further, the imaging swath can be enlarged and
the instrument’s operation efficiency can be improved as
the requirement of spatial resolution is decreased [14], [19].
It can be observed from (1) and (2) that a reduction in
the spatial resolution can improve the SNR of the system,
thereby improving the image quality. If the spatial resolution is
decreased while the SNR remains unchanged, then the spectral
resolution can be increased for some special applications in
with higher spectral resolutions are required.

The experimental results shown in Fig. 12 indicate that the
OA changed with the degradation of the spectral resolution.
The OA obtained using the ASR method first increased,
plateaued, and then decreased. However, the OA obtained
using ISR method showed a decreasing trend; however, this
decrease was not very high. When using the ISR method,
the OA produced by the CART, RF, and kNN classifiers
reduced by 0.19%, 1.26%, and 0.83%, respectively, when
the spectral resolution was degraded from 2.4 to 9.6 nm.
As explained before, two comparative spectral resampling
methods were used to demonstrate the influence of the SNR.
In the ASR method, when the spectral resolution used by the
RF and CART classifier was finer than 19.2 nm and that used
by the kNN classifier was finer than 9.6 nm, the SNR had a
more significant effect on the OA than spectral resolution had,
and the OA increase. When the spectral resolution used by the
RF and CART classifier was coarser than 19.2 nm and that
used by the kNN classifier was coarser than 9.6 nm, the reverse
was observed, i.e., the spectral resolution had a greater effect
on the OA than the SNR had, and the OA decreased in this
case. These experimental results agree well with the theoretical
expectations. According to the experimental results, the best
tradeoff between the spectral resolution and SNR is achieved
when the spectral resolution is 19.2 nm for the RF and CART
classifiers and 9.6 nm for the kNN classifier. The highest OA
produced by the CART, RF, and kNN classifiers was 79.21%,
86.02%, and 86.06%, respectively. Notably, we selected equal
number of spectral channels for the two spectral resampling
methods. Our aim was to analyze the behavior of the classi-
fication accuracy with variations in the spectral resolution or
the number of spectral channels, and compare these results
with those obtained from other experiments. Fig. 13 shows
the spectral curves with different spectral resolutions, obtained
using the ASR method. Evidently, similar spectral features and
the smoother curves are obtained when the spectral resolution
varies in the range of 2.4–19.2 nm. This is consistent with the
results in shown in Fig. 12.

If the spectral resolution negligibly affects the classification
accuracy within a specific range, then the spectral resolution
can be appropriately decreased to improve the other parameters
for improving the imaging performance of the instrument.
The spectral channels will reduce as the spectral resolution
decreases, the data volume will decrease, and the difficulty in
data processing will also decrease. It can be observed from (1)
and (2) that a reduction in the spectral resolution can improve
the system SNR, which will improve the image quality.
If the spectral resolution is reduced while the SNR remains
unchanged, then the spatial resolution can be increased. This
is especially important for applications where higher spatial
resolutions are required.

In summary, the SNR, spatial resolution, and spectral
resolution have significant effect on crop identification. The
tradeoffs between the spectral resolution and the SNR should
be considered while designing a hyperspectral imaging system.
The experimental results shown in Fig. 12 indicate that the
highest identification accuracies can be achieved with 19.2-nm
spectral resolution for the RF and CART classifiers and 9.6-nm
spectral resolution for the kNN classifier. Therefore, AMMIS
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may not require 256 spectral bands to identify the crops.
Furthermore, 32–64 spectral channels should be used to obtain
higher accuracy owing to the increase in the SNR.

B. Suggestions for Improving the Hyperspectral Imager for
Crop Identification

According to the experimental results, appropriate opti-
mization operations can be performed for the AMMIS to
improve its crop identification performance. First, the design
requirement for the spatial resolution can be reduced for crop
identification of similar sites. The instrument’s swath can be
increased to improve the operational efficiency, and the system
SNR can be increased to improve the hyperspectral image
quality. A spatial resolution of better than 5 m can meet
the requirements based on the experimental results. Second,
the spectral resolution or number of spectral channels can be
reduced. This will reduce the difficulties in data processing
and improve the system SNR. The band numbers from 32 to
64 can meet the performance requirements, as evident from the
experimental results. Third, multioperational modes that can
adjust the spatial and spectral resolutions should be designed to
meet different application requirements. In fact, two working
modes were designed in the AMMIS as the detector used in
AMMIS performs binning of the pixel. These two modes are:
1) 0.125-mrad IFOV and 64 spectral bands and 2) 0.25-mrad
IFOV and 256 spectral bands. Some commercial hyperspectral
imagers, such as Specim AFX10, already have multiple opera-
tion modes with spatial and spectral binning options [62]. The
frame frequency can also be increased when the band number
decreases. The observation distance can then be adjusted to
meet the requirements of the application. Therefore, when
selecting hyperspectral image data, the spatial and spectral
resolutions should be considered along with the instrument
SNR because it has a significant influence on the instrument
application. In addition, the results of the hyperspectral data
preprocessing should be noted. The accuracy of radiometric
calibration, geometric correction, and atmospheric correction
significantly impacts the applications, especially the quantita-
tive applications.

C. Extension of the Study to a Different Site With Various
Crop Classes

Based on the objective of this study, unique hyperspectral
datasets with high spatial resolution, spectral resolution, and
SNR were required. To analyze the impact of spectral resolu-
tion on the identification accuracy, the original spectral bands
should be retained. Hence, dimensionality reduction process-
ing cannot be used. Therefore, large FOV and corresponding
ground investigations are also needed to obtain a sufficient
sample size to avoid the Hughes phenomenon [63]. These
factors make it difficult to compare the results with those of
the other study sites or the publicly available hyperspectral
datasets. However, we can discuss how similar the results
would be over a different study site with various crop classes.
Our experimental results showed that the SNR has an evident
impact on the identification accuracy. This result should be
applicable to most study sites with different crop classes. This

has been proposed in some published literature as well [13];
however, they were verified in our study. We found that the
spectral resolution affects the identification accuracy but the
identification accuracy shows less variations when the spectral
resolution changes slightly. This result is also similar to those
of some of the published reports [12]. However, in our study,
the influence of SNR was also considered in addition to that
of the spectral resolution.

There are some limitations that should be considered while
analyzing the role of spatial resolution. Reference data limita-
tions, target characteristics, and within-class spectral variabil-
ity are the three main factors that affect the spatial resolution
when its influence on the accuracy is analyzed [17]. In this
study, the reference map used for evaluating the classification
results was typical of many such benchmark datasets (e.g.,
the Purdue Indian Pines, Pavia data, etc.). These hyperspectral
datasets are suitable for the classification of crops. In the case
of uniform distribution of crop types, the same species are
clustered together, and there is not much crossover between
the species. However, some areas such as roads and borders
of fields are left blank, and the effect of spatial resolu-
tion on the classification of these areas may be different.
In addition, the experiments are designed around aspatial (i.e.,
per-pixel) classification. With an aspatial classifier, reducing
the spatial resolution of an input image will improve the
classification accuracy because of the reduced variance in the
image itself. As shown in Fig. 11 and described previously,
the accuracy improved because of the smoothing of the image
and increase in the SNR. Spatial classifiers based on deep
learning [64]–[66] may also be used, and a different result
related to the role of spatial resolution may be found.

VI. CONCLUSION

The configuration of the hyperspectral imaging system para-
meters influence the instrument applications. In this article,
we report an experimental study on the relationship among
the three core parameters (i.e., SNR, spectral resolution, and
spatial resolution) of an airborne hyperspectral imager and the
identification accuracy of crops. This analysis focused on the
Xiongan New Area in China, which is endowed with different
classes of crops. The study was conducted using CART, RF,
and kNN classifiers. The experiments were designed to analyze
the following issues: 1) the effect of SNR on the identification
accuracy using hyperspectral datasets with different SNRs;
2) the influence of spatial resolution on the identification
accuracy using datasets with the spatial resolution degraded
from 0.5 to 5 m; and 3) the impact of spectral resolution
on the identification accuracy using datasets with the spectral
resolution degraded from 2.4 to 153.6 nm. The experimental
analysis resulted in exciting conclusions related to the relation-
ship among the three parameters as well as the identification
accuracy. In particular, we proposed that the tradeoffs among
these three core parameters should be considered to achieve
the best results for any applications.

The major conclusions from this study are as follows.
1) The instrument SNR has a noticeable impact on the crop

identification accuracy. The higher the SNR, the better
is the identification accuracy. A high SNR is an essential
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requirement for the development of a hyperspectral
imaging system.

2) Based on the hyperspectral image datasets of the
AMMIS, it was found that the SNR, spatial resolution,
and spectral resolution have significant impact on crop
identification. The tradeoffs between the spectral reso-
lution and the SNR should be noted while designing a
hyperspectral imaging system.

3) To achieve better accuracy in crop identification,
the AMMIS can be optimized as follows: the spatial
resolution can be decreased (better than 5 m), the num-
ber of spectral bands can be reduced (more than 32),
and efforts should be made to improve the SNR. In the
future, the SNR should be noted in addition to the spa-
tial and spectral resolutions while developing improved
hyperspectral imagers and selecting hyperspectral data.

In summary, the results provide significant insights into the
design of hyperspectral sensors and data selection methods
used to identify crops. These results aid in framing important
recommendations on the tradeoffs among the spatial resolu-
tion, spectral resolution, and SNR in such applications. It is
worth noting that the results of our study can also be used
in other areas, where hyperspectral image data are used. The
inferences drawn from the reported results will aid in bridging
the gap between the back-end hyperspectral sensor designing
and front-end applications.
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