
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022 4403114

State-and-Evolution Detection Models:
A Framework for Continuously Monitoring

Landscape Pattern Change
Lingwen Tian , Xiangnan Liu , Meiling Liu, and Ling Wu

Abstract— Detecting the evolution of large-area landscape
patterns using long-term remote-sensing images is helpful in sup-
porting research on the relationship between landscape patterns
and ecological processes, as well as the development of ecological
process simulations and spatiotemporal interaction models. How-
ever, detection methods have generally been developed as separate
applications, each with a separate type of landscape pattern
change; remote-sensing images are acquired at epochal timesteps.
Consequently, in practical applications, many omission changes
for some types of pattern changes and inaccurate evolution
time are presented in the detected map. In this article, state-
and-evolution detection models (SEDMs) are promoted to obtain
complete information about the evolution of landscape patterns
based on yearly land cover data. In the proposed framework,
we first define the major categories of landscape pattern changes
to comprehensively reveal the characteristics of landscape pattern
changes associated with real change cases. Next, a morphological
rule-based pattern recognition approach is proposed for quan-
titative discrimination among these categories. This approach is
then applied in annual land cover data to continuously detect
landscape pattern evolution processes and evolution time. Finally,
the detected evolution time in different evolution processes is
applied to measure the timestep between two disparate types. The
performances of the SEDMs are presented by Landsat-derived
land cover evolution in Shanxi, China. The detected results
are indirectly verified by the land cover conversion matrix and
connect index, indicating strong robustness and generalization
ability of the SEDMs.

Index Terms— Continuous, land cover data, landscape pattern
evolution, state-and-evolution detection models (SEDMs).

I. INTRODUCTION

ALANDSCAPE is a heterogeneous land area contain-
ing multiple ecosystems or a mosaic of different land

use/cover [1]. The types, proportions, and spatial arrangements
of the landscape ecosystems or land use/cover [2]–[4]—often
known as the landscape pattern—are considerably influenced
by nature and humans, which may influence ecologic processes
and the resulting biodiversity, with profound effects on the
ecological, social, and economic functions of systems [5], [6].
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The change in the landscape pattern contains meaningful reg-
ularity from heterogeneous land areas [7], [8]. The regularity
is the typical change patterns (trends and spatial distribution
regularities) of landscape patterns related to different ecologi-
cal processes (such as soil erosion, urban sprawl, agricultural
mechanization, and vegetation succession), which is significant
for exploring factors and mechanisms that produce and control
the landscape pattern [9]. The pattern change analysis on a
small spatial scale [10]–[14] and within a short time period
lacks repeatability, which cannot explain the spatial patterns
and processes on larger temporal (decades or longer) and
spatial scales (such as regional landscape levels and higher
levels). However, these large-scale phenomena are important
because most environmental and resource management issues
occur on large/medium-scale and large-scale patterns, and
processes must be linked with small-scale ones to understand
nature [15]. Therefore, numerous studies on landscape pat-
tern change analysis have emerged based on landscape cells
(a group of land cover pixels within a given window) using
multiple remote-sensing images that support timely and accu-
rate land cover change information [16]–[19].

The analytical strategies adopted in these studies can
be categorized into comparative analysis [11], [20], [21]
and spatiotemporal dynamic analysis of landscape patterns
(SDALP) [2], [4], [22]–[24]. The comparative analysis high-
lights differences between landscape patterns in different time
phases, but seldom obtains the regularity and process of
landscape pattern changes [4], making it difficult to reveal
the evolution mechanism. The SDALP describes how a land-
scape evolves and reflects the basic mechanisms governing
the process of landscape changes. Therefore, compared with
comparative analysis, the SDALP is more dominant and mean-
ingful in pattern-process dynamic studies.

The models for the SDALP have three steps to reveal
the change process: 1) classifying the changes of landscape
patterns; 2) quantifying the changes of landscape patterns;
and 3) determining the temporal scale. The changes of land-
scape patterns in the models are typically classified as types
(i.e., the type of landscape pattern change/CT) associated with
two ecological processes: landscape fragmentation (such as
forest fragmentation) or expansion (such as urban growth)
[23], [25], [26]. For example, a type change tracker model
based on forest fragmentation models was developed to
quantify and track the degree and evolution of fragmentation
over time [24]. Civco et al. [21] created an urban growth
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model to quantify and categorize urban changes. These models
have generally been developed for a specific application of
detecting limited CTs. However, different types of ecological
processes usually exist in the same region, covering various
combinations of CTs. Therefore, a unified model is needed to
detect multiple CTs for the SDALP.

Landscape patterns can be quantified for categorical maps
by a series of landscape indices (such as the proportion and
configuration of patches, the distribution of patch sizes, and the
shape and connectivity of edges) that inform specific spatial
characteristics of patches, classes of patches, or entire land-
scape [27], [28]. Landscape indices are an effective avenue for
describing spatial land-use heterogeneity and spatial morpho-
logical characteristics, which have been increasingly applied
to the analysis of land-use dynamics and landscape pattern
change processes [29], [30]. The models for the SDALP track
different landscape patterns by using the landscape indices
(proportions and continuity of patches) to set thresholds. For
a specific CT, its spatial morphological characteristics change
little and can be calculated by fewer landscape indices. There-
fore, a comprehensive characterization of landscape pattern
dynamics requires a change detection model that can detect
more spatial morphological features, which means that there
is a need to explore suitable combinations of landscape indices
for quantifying all kinds of pattern dynamics on a long-term
period.

The temporal scale of the SDALP is usually set to epochal
timesteps, such as five years [31], decadal [32], or longer [33].
Large temporal scales lack the detailed information of the
process. The evolution of CTs cannot be well characterized
with multiple-temporal images, because the spatiotemporal
discontinuity of the multiple-temporal images causes their
limited capacity to detect the time and the process of new CT
generation following disturbance (i.e., evolution) [34], [35].
For example, forest fragmentation can vary over time with
the interaction of disturbance and recovery processes, thereby
altering the amount and spatial configuration of forest patches
on a landscape [34]–[36]; the time when forest fragmentation
occurs and the related recovery processes cannot be accurately
detected based on large temporal scales. Remotely sensed time
series data provide consecutive measurements of landscape
conditions, allowing the capture of both abrupt and gradual
changes over time [37]. Recent landscape pattern change
analysis based on remote-sensing time series images has
provided more important characteristics of long-term spatial
dynamics. For example, Xiao et al. [18] detected the spa-
tiotemporal dynamics of the landscape structure in the middle
reach of the Heihe River basin from 1990 to 2015 using
status and trend indicators. Hermosilla et al. [36] described
and quantified various forest patterns and temporal trends
that emerged in areas following stand-replacing (harvest and
wildfire) and non-stand-replacing (such as water stress and
insects) disturbances using yearly Landsat data from 1984 to
2016. However, these characteristics are represented as the
change turning point and the change trends before and after
this point in the single- or multiple-landscape indices’ time
series related to one ecological process. The categorical CT
and evolution in landscape patterns are not considered, thereby

limiting the processes of landscape pattern change for land
cover to be fully explored.

In this study, we proposed a new framework of detecting the
evolution of common types of landscape pattern change based
on annual land cover data to improve the detection accuracy
and usability in the SDALP. Our proposed state-and-evolution
detection models (SEDMs) have two objectives: 1) to com-
prehensively summarize CTs and 2) to detect the evolution
information related to CTs. First, six main CTs associated with
important ecological processes are defined based on literature.
Then, a discrimination approach is constructed to distinguish
these CTs based on four landscape indices and implemented
with land cover data using year-by-year recognition strategies
to detect the evolution patterns and time. Finally, the timestep
between two CTs is calculated based on the detected evolution
time. To assess the performance and accuracy of our proposed
framework, SEDMs were applied to cropland landscapes as
a case study by using annual Landsat land cover data. The
output results are validated using the land cover conversion
matrix and connect index.

II. METHODOLOGY

The proposed SEDM framework comprises three compo-
nents (Fig. 1) and is performed in MATLAB (V2018a). For
most approaches used in spatially explicit landscape modeling,
it is common to analyze landscape change across a grid that
divides a larger area into smaller regularly sized landscape
cells, although they can be any shape and size [38], [39].
Similarly, the first step in building an SEDM is to partition
landscape spatially into a set L of n regular cells. An SEDM
represents changes over time in state of each cell as a sto-
chastic continuous-time process {Xt : t ≥ 0}, where the state
denotes the type of landscape pattern change (CT) at a certain
phase; the state space (SS) is a set consisting of k discrete
state types (Xt ∈ SS); t is discrete timesteps [Fig. 1(a)].

A. Defining the State Space Set

The state types captured by SEDMs are the CTs related
to typical ecological processes. These processes are generally
divided into landscape fragmentation, landscape expansion,
and landscape aggregation [4], [22], [25], [36], [40]. Land-
scape fragmentation (such as forest disturbance) refers to the
reduction or segmentation of patches into smaller and inde-
pendent patches driven by natural (such as fire and insects) or
artificial (such as harvesting) processes [Fig. 2(a)] [41]–[43].
Landscape expansion is the increased patch areas of different
patch types in landscape [Fig. 2(b)], including soil erosion,
desertification, species spreading, urban growth, and forest
restoration [23], [44], [45]. Landscape aggregation refers to
an increase in nodes between patches (connectivity) and area
[Fig. 2(b)], such as forest restoration process. We considered
all these three ecological processes in SEDMs.

Six steps of landscape fragmentation are distinguished
[Fig. 2(a)] according to spatial morphological rules [25], [46].
In fact, stages are not strictly separated from each other since
several of them occur simultaneously; however, the dominant
stage can often be identified [25]. For example, dissipation
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Fig. 1. Flowchart of the proposed SEDM framework. (a) Defining the state
space. (b) Recognizing state types. (c) Continuously evolution detection.

stages geometrically have no separate meaning relative to
dissection and shrinkage, but it can be regarded as a combined
type of dissection and shrinkage. Incision stages can be con-
sidered as the same type with dissection stages because of their
morphological similarity, although they have different degrees
of fragmentation. Likely, attrition stages are similar with
shrinkage stages. Shrinkage stages (edge fragmentation) and
perforation stages have been identified as two types of forest
fragmentation in many studies [22], [26], [40]. Therefore,
we summarize three main state types of the fragmentation
process caused by different factors: dissection (Type D),
shrinkage (Type S), and perforation (Type P). Landscape
expansion mainly involves three types of spatial patterns
[Fig. 2(b)], i.e., outlying, edge expansion, and infilling, while
other types are generally the variants or hybrids of these three
basic patterns [4]. In our model, outlying is defined as creation
type (Type C), and edge expansion and infilling are merged
into enlargement types (Type E) as both internal and external
additions to the patch edge. Creation (Type C) and enlargement
(Type E) describe the state types of landscape expansion.
Aggregation (Type A) is also included in the model.

Consequently, six main state types are integrated and iden-
tified, and the SS can be obtained as follows:

SS = {P, D, S, C, E, A} (1)

where P , D, S, C , E, and A represent the six state types of
perforation, dissection, shrinkage, creation, enlargement, and
aggregation, respectively.

B. Recognizing State Types

After defining state types from three ecological processes,
a morphological rule-based pattern recognition approach is
promoted to recognize discrete state types based on the differ-
ences of spatial morphological characteristics [Fig. 1(b)]. The
response to morphological features (i.e., the shape and form
of patches for land cover classes) varied for each state type.
A single morphological feature (such as area) is insufficient
for detecting various state types, as an obvious feature in
one state type may be the same in another one. Therefore,
more features are used to identify the six state types of land
cover classes. In addition, the judgment condition for detecting
state type may be the same for different land cover classes.
We select effective landscape indices to detect state types
for all land cover classes based on the following principles:
1) they could capture the main morphological features of the
patches and 2) they could distinguish different state types.
For example, the number of patches in type S is persistent,
while type C has an increase in the number of patches.
Hence, the number of patches could be used as an indicator to
distinguish between type S and type C. Similarly, the perimeter
of patches could be used to differentiate type S from type P.
According to the principles, four indices are selected after
comparing the differences of morphological features between
state types: number of patches (LI1), area of patches (LI2),
perimeter of patches (LI3), and mean patch fractal dimension
(LI4) [47], [48].

LI1 equals to the number of patches (ni) included in land
cover class i in landscape cells and LI1 ≥ 1

LI1 = ni . (2)

A higher LI1 indicates a more fragmented pattern when
the area of the landscape cell does not change. LI2 is the
proportion of a given landscape cell occupied by a land cover
class

LI2 =
n∑

j=1

Li j (3)

where j refers to the different patches of a land cover class,
and Li j is the area of patch i j . LI2 is greater than 0 m2.
A larger value of LI2 indicates a more dominated cover relative
to other land cover classes [49]. LI3 is the perimeter of
patch i j , including the length of patch edge and the perimeter
of cavity inside

LI3 = pi j . (4)

The value of LI3 is greater than 0 m. LI4 could be calculated
as follows:

LI4 =
{∑m

i=1

∑n
j=1 2 ln

(
0.25LI3
ln LI2

)}
N

(5)

where N is the number of patches in landscape cells, and m
and n are the number of land cover classes in landscape cells
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Fig. 2. Types of (a) fragmentation and (b) expansion and aggregation, distinguished according to geometric characteristics.

and the number of patches in a land cover class, respectively.
A larger LI4 value indicates an increase of the complexity of
the patch shape (i.e., more fragmentation).

Based on the differences of the four landscape indices
between two phases for six state types, a morphologi-
cal rule-based pattern recognition approach is conducted
[Fig. 1(b)] and Fig. 3). For each landscape cell, a and b can
present any two phases in state time series

Xa = {LIai |i = 1, 2, 3, 4} (6)

Xb = {LIbi |i = 1, 2, 3, 4} (7)

where Xa and Xb are the states at phases a and b, respectively;
LIai and LIbi are the four index sets obtained at phases a and b,
respectively. States from phase a to b can be expressed and
recognized by calculating the differences of landscape indices
between the two phases

�LIi = LIbi − LIai (8)

with

ST(Xa→Xb)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S, if �LI1 =0,�LI2 <0,�LI3 ≤0,�LI4 ≥0

P, if �LI1 =0,�LI2 <0,�LI3 >0,�LI4 ≥0

D, if �LI1 > 0,�LI2 < 0,�LI4 ≥0

E, if �LI1 = 0,�LI2 > 0,�LI4 < 0

A, if �LI1 < 0,�LI2 ≥ 0,�LI4 < 0

C, if �LI1 > 0,�LI2 > 0,�LI4 < 0

Null, otherwise

(9)

where ST(Xa→Xb) is the state type belonging to phase a to
phase b. �LI1, �LI2, �LI3, and �LI4 are the difference
values for the four indices between phase a and phase b,
respectively. S, P , D, E , A, and C are the defined state types.

C. Detecting State-Type Evolution Time Continuously

Evolution is a change from one type of landscape pattern
change into another one. The evolution of state types in the
state time series uses continuous detection based on the mor-
phological rule-based pattern recognition approach [Fig. 1(c)].
The dynamic character added in SEDMs allows it to update
the time series once new land cover maps become available,
so that the evolution process can be adjusted over time. Given
a landscape cell, the discriminant rules [(9)] are applied in
landscape indices time series of a land cover class; phase a
and phase b are changed to two consecutive time points; ST is
the state type belonging to phase b; b is the possible evolution
time. Indices in landscape cells satisfying the distinguishing
criterion are treated as a state type and assigned the value of
state type. The others are treated as unrecognized cells and
assigned a value of null.

The basis of the detection method is to continuously com-
pare land cover maps in two consecutive years to detect the
evolution of the state type since the limited epochal detec-
tion. Since landscape pattern in natural areas (such as lakes)
does not change significantly within a short time, state-type
evolution is determined if a landscape cell is detected as a
new state type in multiple consecutive phases (multiple times).
Conversely, the landscape pattern that is most frequently
disturbed by humans (such as cropland) generally changes
within one year. For those landscapes, if a new state type is
found in one phase (one times), the landscape cell may evolve.
Therefore, SEDMs use the smallest time scale of landscape
pattern evolution that has been normalized by “one times”
time criterion to detect all land cover classes. If cells show
a new state type for one land cover map, an evolution is
identified. The cell and time when new state type is detected
are assigned to “evolution class” and “evolution time,” respec-
tively; otherwise, land cover maps will be flagged as outliers.
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Fig. 3. Sketch map of the state-type discrimination using the morphological-rule-based pattern recognition approach. Ta and Tb are any two phases, LIa and
LIb are the landscape indices calculated in two phases, and the state type from time Ta to time Tb is judged by the comparing the magnitude of the landscape
indices at the two phases.

Fig. 4. Example using the threshold of one times and comparison with the former state type for continuous evolution detection. (a) State types and evolution
time of a cropland landscape cell generated by SEDMs. (b) and (c) Examples of no evolution time.

Fig. 4(a) illustrates how “one times” time criterion is used to
initially detect state-type evolution and time by comparing the
present state type and previous one for a cropland landscape
cell. When there is no evolution time, one or more land
cover maps satisfy the discriminant condition of one state type
[Fig. 4(b) and (c)].

D. Tracking State Type Evolution Patterns
In addition to identify evolution time, it is more beneficial

to describe the process of state-type evolution [Fig. 1(c)]. The
evolved landscape cells have their own state types before and
after any evolution time based on the step-by-step evolution
detection. By classifying state-type evolution, SEDMs can
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Fig. 5. Two cases of state-type evolution patterns were obtained in two cropland landscape cells. (a) One evolution. (b) Special one evolution.

provide state-type evolution patterns in the entire time period
for all landscape cells.

Some principles should be noted when detecting state-type
evolution patterns. First, by continuously detecting the time
series, only one state type is detected in the landscape cell,
which is classified as a “no evolution” pattern [see Fig. 4(b)].
Second, if one evolution is detected, only two state types will
be detected during this time period. As shown in Fig. 5(a),
the detection results of the time series provide two different
state types for a landscape cell, so this cell contains the
evolution of “A to D” (A-D). Third, the originally detected
state type remains unchanged before a new state type is
detected. In Fig. 5(a), the gaps in the two different state types
belong to type A because no other state types are detected
between these two types. Fourth, if the same state type is
detected in a row, it will always be defined as this state
type until a different one occurs. For a landscape cell that
undergoes an evolution from A to A [Fig. 4(c)], there is no
different from the case in the first principle, and it contains
merely one state type in the time series. Similarly, although
two types of A and D are continuously detected, they still
belong to the evolution of A to D since no other types are
detected in type A and D [Fig. 5(b)]. These cases demonstrate
that the information involved in SEDMs helps to classify the
state-type evolution process, and by using the indices’ time
series, the information can also offer a single state type for a
period of unclear evolution.

E. Measuring the Timestep between State Types

Counters are adopted to track the timestep between
state (TBS) types for each cell that has undergone evolution
[Fig. 1(c)], where TBS represents the timestep to evolve from
one state type to another one (Fig. 6). To implement this in the
SEDM, the SS for Xt is first improved to include all possible

evolution paths (random pairwise combinations of state types)
and TBS. To execute counters, each cell is assigned an initial
time (Tm) for the first detected state type, and Tm is then
updated every timestep (incremented by 1) until a different
state type occurs at Tn. TBS is recorded using the follows
rules:

TBS =
{

Tn − Tm, evolution occurs

0, no evolution
(10)

The assignment of the cell’s TBS depends on whether the
cell has an evolution. The time-varying TBS can change with
state types, functions of states, and evolution paths. TBS is
repeatedly tracked for each evolution path in a similar manner.

III. EXPERIMENTS

In this section, we introduce the input datasets, specify the
framework configuring process, and show the output applied in
cropland classes in Shanxi, China, including: 1) the evolution
pattern output, which records when and where evolution
occurs and 2) the TBS output, which records the timestep and
the evolution paths. The performance of SEDMs was assessed
by adopting the land cover conversion matrix and connect
index.

A. Experimental Datasets

The annual, cloud-free, and spatially seamless classification
image set generated from time-series Landsat dataset was
utilized to test the performance of the proposed SEDM frame-
work. Details of these two datasets are presented as follows.

Landsat Collection 1 Tiers data (including Level-1 data
products generated from Landsat 8 Operational Land Imager
(OLI)/Thermal Infrared Sensor (TIRS), Landsat 7 Enhanced
Thematic Mapper Plus (ETM+), Landsat 4-5 Thematic Map-
per (TM)∗, and Landsat 1-5 Multispectral Scanner (MSS)
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Fig. 6. Sketch map for calculating the evolution timesteps (TBS). Tm and Tn are the time when the two different state types (type1 and type2) are detected,
and the time interval (green arrow in the figure) between Tm and Tn is the evolution timesteps. One of the six main state types may appear at both Tm and Tn .

instruments) from June to September were acquired for Shanxi
between 1987 and 2018 from the Unite States Geologi-
cal Survey (https://espa.cr.usgs.gov/) via the Google Earth
Engine (GEE) platform. GEE is a cloud-based geospatial
analysis platform with massive computational capabilities [50].
The Composite-2-Change approach generated the annual
best-available pixel (BAP) image composites by inputting
optimal observations for each pixel [51]. The spectral trend
analysis was applied to the pixel-level time series of these
annual composites to further remove noisy observations (such
as haze and unscreened clouds) and infill data gaps (due to
missing observations and severe cloud cover) with proxy val-
ues [52]. The classification image set was derived from all the
spectral bands provided by the Shanxi-wide pixel composites
using a random forest classifier available in GEE. In total of
3500 training samples were selected every year to classify
land cover classes by the interpretation of high-resolution
imagery from Google Earth. The elevation and the slope from
the Advanced Spaceborne Thermal Emission and Reflection
Radiometer Global Emissivity Database (ASTER-GED) in
GEE were assisted in correcting the classification results for
higher accuracy. The random sampling method was used in the
classification procedure to generate 750 random points each
year for verifying the annual classification results. The final
land cover maps comprise seven land cover classes, including
forest, cropland, grassland, water body, built-up area, mining
area, and barren land. The classification accuracy for the
individual years has been reported in the appendix. SEDMs
were tracked only for state types and their evolution related
to the cropland class. The scale of change assessment was
determined by the cell size. The cell size was fixed with n = 51
(1.5 × 1.5 km2) based on a scale analysis of the indices used
in the model and found that the optimal scale is 1.5 × 1.5 km2

(51 × 51). The mean patch fractal dimension, the mean patch
area, and the mean patch perimeter were analyzed on ten scales
(n = 11, 21, 31, 41, 51, 61, 71, 81, 91, and 101). The analysis
results show that the optimal scales of mean patch fractal
dimension and mean patch area are both 51, and the optimal

Fig. 7. Map of evolution patterns at the Shanxi site constructed using the
SEDM framework. The statistical chart shows the primary patterns between
1987 and 2018.

scale of mean patch perimeter is 61, so the average optimal
scale is 51.

B. Results of State-Type Evolution Detection

Our experiment presents a sample of the state-type evolution
patterns created by SEDMs. Based on this framework, both the
evolution patterns in a landscape cell and the overall evolution
patterns in the large area can be obtained. At our study site,
a total of 233 evolution patterns and 2 “no evolution” patterns
occurred over the 31-year span, with the number of evolutions
ranging from 0 to 10 (Fig. 7). A total of nine evolutions
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Fig. 8. Evolution time detected in three main evolution patterns. (a) Pattern A-C. (b) Pattern A-D-A. (c) Pattern A-D-A-D. The histogram is a statistic of
the number of landscape cells that undergo a type of evolution at the individual years. And the time point connected to the histogram is the most frequent
time of this evolution.

dominated the study area (95%), and the largest contributor
to evolution patterns was A-D. Considering all the state types,
three significant types, A, D, and C, were detected across all
landscape cells, while the other types were rarely detected.
One reason is that other landscape pattern changes at this
site rarely occur, and another reason is that other types are
not sensitive to the time scale of cropland landscape pattern
changes.

For the performance of detecting evolution time, three
main evolution patterns and their evolution times are shown
in Fig. 8. The evolution time in each evolution pattern can be
analyzed at both the landscape cell and the regional scales.
In our experimental cases, the most frequent evolution time
from one state type to another in the area that was obtained
by calculating the proportions occupied by the evolution
time. The evolution time from A to C dominated in 1994.
The corresponding evolution time for pattern A-D-A was
observed in 1994 and 1998. The evolution of pattern A-D-A-D
was primarily detected in 1994, 1996, and 2006. Therefore,
the evolution of “to A” mainly occurred in 1996 and 1998;
“to D” mainly occurred in 1994 and 2006; “to C” mainly
occurred in 1994. SEDMs could also help to analyze the

differences in the evolution time between two state types for
various evolution patterns. In addition to the mathematical sta-
tistics of regional evolution time, the analysis of the temporal
and spatial correlations of evolution time could promote the
understanding of the regularity in terms of the temporal and
spatial changes at regional scale, which could be applied to
other similar landscape areas.

The timestep of evolution between two state types was
counted by SEDMs across all landscape cells. There were six
categories of evolution paths among the nine main detected
evolution patterns, including A-C, C-A, A-D, D-A, C-D,
and D-C. Fig. 9 shows the corresponding timestep that
emerges from these evolution paths. For this experimental
case, the TBSs that appear most frequently in these categories
are 6 years, 2 years, 2 years, 2 years, 4 years, and 4 years
for each category, respectively. The lessons learned from the
TSB at the regional scale can promote the prediction of future
landscape pattern evolution in larger landscapes.

C. Validity of State-Types Evolution

Although SEDMs are capable of detecting landscape pattern
type evolution and evolution time, the reference data used
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Fig. 9. TBS produced by the SEDM framework for (a) A-D, (b) A-C, (c) D-C, (d) C-D, (e) C-A, and (f) D-A. The data on the black triangle radar chart
indicate the timestep with the highest proportion, and the data on the red triangle radar chart indicate the proportion (the largest proportion) of this step. The
blue arrow in triangle figure indicates the direction of evolution. For example, the blue arrow in the bottom left corner indicates the evolution from D to C
and A to C; the blue arrow in the bottom right corner indicates the evolution from D to A and C to A.

to directly assess its accuracy is hard to acquire. Since the
evolution time is the time when a new state is happening,
detecting the occurrence of the type, and its time can verify the
accuracy of the state-type evolution. To evaluate the accuracy
of our framework, the three primary state types and the time
they occurred detected by SEDMs were verified using the land
cover conversion matrix and connect index based on the state
types and were applied over the evolved landscape cells.

Changes in landscape patterns are inseparable from land
cover change [2], [53], [54]. The dissection of the agricultural
landscape is mainly attributed to the conversion of cultivated
land to construction land (such as roads). Therefore, the under-
standing of the transition of cultivated land at the detected
time would contribute to the assessment of type and temporal
accuracy. The land cover conversion matrix was calculated
before and during the year when state type D occurred to
determine whether the landscape cells shifted “from cropland
to construction land” at that time. The landscape cells that
have the total area of cropland flows into that of construction
land in the matrix statistics from the former year to the
detected year are referred to as the “accurate cell.” This
process was assessed for all cells where the SEDM found
evolution and were correctly identified in spatial domain. The
overall accuracy (OA) was then used to assess the accuracy
of the detection results as follows:

OA = Cd

Cn
(11)

where Cd is estimated as the number of records for which the
abovementioned transition occurred in the detected year, and

Cn is the total number of cells from Cd containing type D. The
OA measure reflects the OA for the detected time and type.
The accuracy assessment was performed each year type D
was detected. The average OA was 78.27%. The accuracy was
particularly high in 1994 (97.18%) and 2006 (84.43%) when
type D was detected (Table I).

A benefit of land cover conversion is that it provides robust
accuracy estimations for type D and the time that it occurred.
However, types A and C are related to many sophisticated
cases, in which cropland is transferred. For example, the aggre-
gation and creation of cropland may be caused by the conver-
sion from grassland or forest to cropland, which would lead to
inaccurate verification. Therefore, we verified the accuracy of
these two state types using the connect index [55], [56], which
represents the connection between patches. It was computed
considering that each cell exhibits these two types, as follows:

CONNECT =
[∑n

j=k Ci jk

ni (ni−1)
2

]
× 100 (12)

where Ci jk is a connection between patches j and k; a connec-
tion = 1 and no connection = 0;

∑n
j=k Ci jk is the number of

connections between all patches of type i in the landscape. The
connections are calculated by setting the maximum threshold
distance to determine whether the patches are connected. If the
boundary distance from one patch to another (defined by the
8-neighbor rule) is less than the maximum threshold distance,
it indicates that the two patches are connected, otherwise they
are not connected. ni is the number of patches of type i ;
(ni (ni − 1)/2) is the number of all possible connections,
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TABLE I

VALIDATION RESULTS FOR THREE STATE TYPES

which represents the number of pairwise connections between
all patches of type i , for a defined maximum threshold
distance. The CONNECT values with the maximum threshold
distance of 500 m between patches were calculated from the
program FRAGSTATS v4 [55]

�CONNECT = CONNECTt − CONNECTt−1 (13)

where CONNECTt is the value of connectivity at the time
when type A or C occurred; CONNECTt−1 is the value of
connectivity at previous time. Specifically, from the previous
year to the detected year for these two state types, the num-
ber of nodes between cropland patches increased, and the
number of possible nodes decreased for type A, and the
number of nodes between cropland patches remained constant,
and number of possible nodes increased for type C. As a
consequence, if a landscape cell where type A is detected
is calculated with �CONNECT > 0, it is an accurate type
A cell. Conversely, if the calculated index of the landscape
cell is �CONNECT < 0, it is an accurate type C cell. The
calculations were performed every year when these two types
were detected. Similarly, the final estimation of accuracy could
be estimated by the OA, which is obtained by dividing the
number of accurate cells by the number of coincident cells of a
type. By using our model, the state type and the time achieved
relatively high average accuracies in terms of type A ranging
from 60.90% to 88.49% and type C ranging from 57.34% to
81.97% (Table I). For the dominant time when type A was

detected, the accuracy in 1996 was higher than that in 1988.
These validation results from this strategy confirmed that the
SEDM framework was effective in extracting CTs’ evolution
and evolution time using time series land cover data.

IV. DISCUSSION

Holistically characterizing the changes of landscape patterns
and their evolution processes across a large area and a long
time period is necessary to promote monitoring landscape
and reporting activities. SEDMs described here demonstrate
a novel framework for generating CTs’ evolution maps and
detecting evolution time at cell scale using yearly land
cover data. Furthermore, it presents an enhanced report of
timesteps for mutual transformation of different CTs through
the detected evolution time. The strategy validates the effec-
tiveness of the SEDM framework. Landscape pattern changes
have been linked to change processes and corresponding
drivers [53], [57], [58]. In this coupled human–natural system,
the main actual forces that lead to pattern changes in a
local landscape come from human’s decisions and actions
(i.e., agents). The three main state-type results (types A, C,
and D) in Shanxi were affected by prior knowledge provided
by local agricultural bureau data and farmers’ declarations,
including agricultural practices (such as reclamation of waste-
land), the government policies (such as new countryside
construction, freezing of cropland occupied by nonagricul-
tural construction, and grain for green project), and timing
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Fig. 10. Basic timeline of policy drivers related to agricultural practices of the Shanxi site and evolution of the landscape. The drivers were provided by
local agriculture bureau and identified by a few farmers.

of agricultural development. Overall, the occurrence of state
types detected by the SEDM is well explained by the time of
government policies and agricultural practices (Fig. 10). In the
middle of the 1990s, the “development-oriented agriculture”
from local agricultural bureau data was followed by “freezing
of cropland occupied by nonagricultural construction” in 1996.
According to the survey, during the freezing period, the land
for various construction projects could only use the existing
construction land, and made full use of wasteland, inferior
land, and abandoned land instead of cropland. This force
protected cropland and contributed to cropland aggregation.
In 1994, the speeding up of the process of urbanization and
new countryside construction in 2005 was the efforts taken
to add new houses and roads. This resulted in the occurrence
of cropland dissection in developing urban and rural areas.
Although extensive urbanization was carried out since 1994,
as stated by the farmers, the “reclaiming of wasteland” had
been operated in many rural areas, which had result in the
regaining of some cropland parcels (i.e., the creation of
cropland).

Compared with other landscape pattern change-detection
models, the three key features of the SEDM framework are
summarized as follows.

1) One feature of SEDMs is the comprehensiveness. Land-
scapes are dynamic ecosystems in which all kinds of
change processes are ongoing at any given time, espe-
cially managed landscapes. Although some remotely
sensed methods have the capacity to detect changes
related to one type of landscape pattern change process,
the detection of other types that may also have impacts
on landscape dynamics remains a vacancy. In contrast to
these methods, our framework considers multiple change
processes (all of fragmentation, expansion, and aggre-
gation) rather than depending only on a single pattern

change type, which may not include the real states of the
landscape pattern on the ground. Moreover, our frame-
work allows us to describe landscape patterns after being
disturbed by multiple events, not only considering how
the fragmentation process changes but also considering
the process of aggregation related to recovery from the
spatial forms. This is important because some patches
are in the processes of fragmentation and reduction,
while some may have been aggregated at a certain phase
of recovery. Thus, understanding all these processes
is needed to better characterize landscape dynamics
occurring over time.

2) Another feature is the generality. The framework con-
stitutes an adaptable foundation, which is suitable for
landscape monitoring in different applications. More
specifically, our conceived patch-tracking mechanism
can describe those dynamics through patches coming
from different land cover classes of the time series.
After the land cover class is determined, the numerous
combinations of its attributes (e.g., shape, size, and
location) can be analyzed by the model. Note that we
did not experiment with all land cover classes during
implementation for this simple example. However, our
detection would still be implemented once our defined
types of pattern changes occurred in the land cover class
change. Modifying the combination of land cover class
attributes brings some flexibility and the capacity to cus-
tomize our proposed framework according to the users’
tasks. Additionally, the framework defines “evolution”
once, depending on the land cover class that is most
frequently disturbed by humans and nature. Therefore,
it is still valid for other land cover classes to detect the
evolution of landscape pattern change process in each
landscape cell and larger landscape.
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3) Third, we refer to extensibility. With all land cover
classes represented as time-space continuous entities,
SEDMs provide a simple and flexible approach to land-
scape pattern monitoring. Depending on the application,
the proposed approach can independently generate or
transparently combine spatially explicit maps for each
state type and timestep. Such maps could then be input
into spatially explicit wildlife distribution models or
simply used to analyze the structural features of the
human footprint (such as cut-block size and frequency
distribution) in more detail. The TBS types generated
across large areas contributes to calculating a matrix
of evolution probabilities between state types, which
could be a key function in simulating landscape pattern
changes over time (such as the land cover change model
and cellular automata model). Furthermore, this frame-
work can generate maps of CT before and after evolution
occurs or over any specified time period. The trends
of spectral index over time have provided insights into
the change processes in various landscapes [59]–[64].
A simultaneous view of state types and current spectral
index changes for a given landscape could promote
understanding of the relation between landscape patterns
and processes, which is a difficult recursive question
in landscape ecology. In addition, our framework is
capable of integrating agent/individual-based models,
an increasingly important way to represent drivers of
landscape dynamics. By extrapolating “lessons learned”
at data-rich locations to the larger landscape, the SEDM
framework can also be explored to design field trials on
uncharted areas with an exploratory tool for drawing a
global overview of the study site.

However, SEDMs have limitations. First, classification
accuracy affects the change detection in landscape pattern. The
classification error can bias the calculation of the landscape
indices, leading to the misjudgment of state types. In this
study, although composite images obtained from all available
images can overcome some issues, such as the scan-line
corrector failure in Landsat 7, clouds, cloud shadows, and
snow, accurate classification in the regions with persistent
clouds (such as the south of China) is still a challenge.
Reference samples used for modeling and verification are
extracted from satellite images through manual interpretation
instead of strictly ground truth data. This sample selection
process may introduce errors and propagate to the final output.
However, in our framework, the absolute accuracy value of
classification is not the dominant factors affecting the final
outputs, since the recognition of state types is based on the
difference between landscape indices from two consecutive
land cover maps. Therefore, the result of pattern evolution
based on the classification result can be accepted as long as
the annual classification accuracy is kept consistent. Second,
this framework has room to grow in terms of fully defining
state types. Although the method for detection of landscape
pattern evolution in experimental sites produced promising
detection results, it will omit detection or will not be able
to extract the evolution of places with state types outside
of the defined types. Some other pattern characteristics of

land cover classes (such as position transfer and deformation)
in the timing of landscape dynamic change probably prove
particularly challenging, and more indices must be considered.
Third, we assume that our framework is able to estimate CTs’
evolution for all land cover classes, but it may be invalid for
the class with more intra-annual variation in some places. The
proposed model needs to be improved into a more complex
model, if it is to be applied to all cases. Finally, the “one
times the types” criterion is set manually based on prior
knowledge rather than automatically set. The criteria used in
this framework are not universal and are dependent on the
actual condition of the study area. Hence, the criteria that
automatically adapt to the land cover classes may provide
better accuracy. Further work will focus on detecting the state
type more intelligently using machine learning or fuzzy theory
to capture more comprehensive landscape pattern evolution
patterns in a given area, which have great potential in helping
policy-makers and land managers to comprehensively report
landscape pattern dynamics over large areas.

V. CONCLUSION

In this article, a novel framework is presented for auto-
matically extracting information on the evolution of landscape
pattern changes from annual land cover data. The framework
was tested by tracking state types associated with the cropland
class in Shanxi, China. The experiments underlined how to
deeply explore the main and significant spatial change charac-
teristics from the extracted information at the landscape cell
scale that cannot be obtained from previous approaches. The
validation based on land cover conversion matrix and connect
index indicates that SEDMs can accurately detect CTs and
their evolutions, with average OAs of 78.27%, 74.90%, and
69.65% for dissection, aggregation, and creation, respectively.
SEDMs differ from previous landscape pattern change detec-
tion approaches in three important ways, including the ability
to comprehensively characterize landscape pattern changes
associated with real change cases for various land cover
classes, to reveal the long-term evolution process of state
types, and to represent multiple patterns of evolution between
pairs of state types. SEDMs can be extended to solve a wide
range of issues, including analyzing the relationship between
landscape patterns and ecological processes, simulating and
predicting ecological processes, and constructing spatiotem-
poral interaction models. SEDMs describe the change process
in more detail, and the combined analysis with ecological
process derived from remote-sensing spectrum can get more
information of the relationship between landscape pattern and
process. Our approach is inherently stochastic, the evolution
probability of which can be obtained from timesteps between
state types, making it suitable for simulating and predicting
changes in landscape patterns. Combined with the time series
models, SEDMs can provide a simple and powerful approach
for developing various spatiotemporal interaction models.
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