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Abstract— Glacial landforms are a significant element of land-
scape in many regions of Earth. The increasing availability
of high-resolution digital elevation models (DEMs) provides an
opportunity to develop automated methods of glacial landscape
exploration and classification. In this study, we aimed to:
1) identify glacial landforms based on high-resolution DEM
datasets; 2) determine relevant geomorphometric and spectral
parameters and object-based features for the mapping of glacial
landforms; and 3) develop an accurate workflow for glacial
landform classification based on DEM. The developed method-
ology included the extraction of secondary features from DEM,
feature selection with the Boruta algorithm, object-based image
analysis, and random forest supervised classification. We applied
the workflow for three study sites: one in Svalbard and two in
Poland. It allowed the identification of six categories of glacial
landforms: till plains, end moraines, hummocky moraines, out-
wash/glaciolacustrine plains, valleys, and kettle holes. The major-
ity of relevant secondary features represented DEM spectral
parameters calculated from 2-D Fourier analysis. The supervised
classification models with the highest performance exhibited up
to 96% overall accuracy with regard to a groundtruth dataset.
This study showed that glacial landforms can be identified using
novel image-processing methodology and spectral parameters of
high-resolution DEM. The complete classification workflow devel-
oped herein provides a solution for the transparent generation
of thematic maps of glacial landforms that may be reproducible
and transferrable to various glacial regions worldwide.

Index Terms— ArcticDEM, digital elevation model (DEM),
feature selection, glacial landforms, Light Detection and Rang-
ing (LiDAR), object-based image analysis (OBIA), Pleistocene,
remote sensing, supervised classification, Svalbard.

I. INTRODUCTION

GEOMORPHOLOGY is an interdisciplinary field study-
ing the distribution, size, morphology, and age of land-
forms, as well as processes shaping the Earth’s surface. The
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technological improvements in data collection and processing
in recent years allow an accurate description of landforms,
providing a basis for the study of the origin of different types
of terrain. High-resolution satellite-derived or Light Detection
And Ranging (LiDAR) digital elevation models (DEMs) form
the fundamentals for detailed inspections of terrain attributes
to quantitatively and qualitatively describe the Earth’s surface.
Novel numerical modeling and machine learning techniques
provide reliable and meaningful processing tools for remote
sensing datasets, allowing the generation of thematic maps
and drawing valuable geomorphological conclusions at various
scales [1], [2]. In particular, the development of geomorphom-
etry and feature extraction methodology is setting the current
course in geomorphology [3]. Baker [4] included supervised
classification, predictive modeling, and LiDAR mapping as
some other trends in future geomorphology development.
This article deals with all of the abovementioned disciplines,
proposing innovative solutions for glacial geomorphology
mapping that may be used worldwide.

A. State of the Art

The mapping of geomorphological structures has under-
gone substantial changes in recent years. It evolved from
the manual digitization (vectorization) of the Earth’s surface
landforms [2] to the automatic or semi-automatic characteriza-
tion of DEM using machine learning approaches [5]. Glacial
landforms were manually determined based on multibeam
bathymetry [6], [7], radar [8], [9], satellite imagery [10], or a
combination of all these sources [11]. Whereas traditional
results provide sufficient information for landform recognition
and identification, the process of vectorization is very time-
consuming [12]. By comparison, automatic or semi-automatic
approaches allow the rapid delineation of linear or polygonal
characteristics, especially using object-based approaches. The
advantages of automatic digitization are the lack of subjectiv-
ity, increased processing speed, repeatability, and consistency
in interpretation [13]. The introduction of the object-based
image analysis (OBIA) approach to geosciences has improved
the objectivity of thematic mapping by changing the unit
of analysis from pixels to objects [14]. Image objects have
advantages, such as their own statistics, shape characteristics,
and relations to other objects, and they are closely related to
real-world objects [15]. When reference ground-truth samples
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are available, they are often used to classify and assess the
accuracy of generated thematic maps [16]. The recent avail-
ability of high-resolution photogrammetric or LiDAR DEM
for terrestrial terrains creates an opportunity for the automated
classification and extraction of landform features from the
landscape.

Terrestrial remote sensing studies usually benefit from the
extraction of many features collected from different sensors,
such as satellite-derived spectral signatures, spectral indices
(e.g., Vegetation Indices and Geology Indices), and textural
analysis [17]. However, it should be clarified that, in this
research, we used the term ‘“feature” as typical in remote
sensing literature, describing the predictor variable for image
classification [18]. Unlike in many other remote sensing lit-
erature, we use the term “spectral” as a descriptor of the
DEM [19].

B. Rationale and Motivation

The recent advances in geomorphological mapping are
largely being driven by a change from analog to digital
techniques [20], significantly increasing the amount and size
of available datasets [21]. It is therefore necessary to focus
on the identification of new secondary features of DEM
and automatic classification protocols providing precise the-
matic maps of landforms. Secondary features mean predictor
derivatives that may be extracted from DEM (which is the
primary feature), such as geomorphometric attributes, spec-
tral parameters, or object-based variables [18]. In this study,
we propose a comprehensive, repeatable workflow that allows
the creation of reliable geomorphologic maps from high-
resolution LiDAR and satellite-derived photogrammetric DEM
surfaces.

Feature selection methods can successfully adjust a feature
set, improving thematic mapping accuracy in remote sensing
studies. Unfortunately, feature selection methods have rarely
been applied in geomorphological research with LiDAR or
photogrammetric DEM [22]. Whereas some recent studies
have applied the Boruta feature selection algorithm for the land
cover mapping of forests [23]-[25], in this study, we propose
that the Boruta technique is also suitable for geomorphological
mapping based on LiDAR or photogrammetric datasets.

The identification and prediction of glacial landforms based
on LiDAR datasets have rarely been studied using a clas-
sic pixel-based approach [26], [27]. Whereas OBIA has
been occasionally applied for the determination of landslides
[22], [28] and change detection [29], it has been rarely applied
for the exploration of glacial geomorphology [23], [30] from
high-resolution DEMs. Therefore, this research is one of the
first to involve OBIA for this purpose.

Although the use of semiautomatic supervised classifiers
in remote sensing studies is still growing [31], the random
forest (RF) and support vector machine (SVM) techniques are
currently among the most powerful methods for the accurate
classification of geospatial datasets [32]. In geomorphological
applications with high-resolution DEMs, RF has been applied
for the investigation of, for example, beach geomorphol-
ogy [33], fluvial geomorphology [34], and the modeling of
barrier-island habitats [35]. However, to our knowledge, ours
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is the first study to employ an object-based RF classification
methodology for the exploration of glacial landforms.

C. Research Objectives

The main objectives of this study included:

1) the identification of glacial landforms based on LiDAR
and satellite-derived DEM;

the determination of relevant secondary features from
geomorphometric features, spectral parameters calcu-
lated on the basis of 2-D Fourier analysis, and
object-based shape features;

the development of an accurate workflow for
glacial-landform classification based on high-resolution
DEM,;

the mapping of glacial landforms that is reproducible
and may be transferrable to different study sites.

2)

3)

4)

We investigated the abovementioned aspects using the
methodology described in Section II.

II. MATERIALS AND METHODS
A. Study Sites

We analyzed three study sites with a well-developed glacial
landscape: one located in the presently glaciated Arctic
region (Svalbard) and two located in the area of northern
Poland with glacial relief formed during the Late Pleistocene
(Fig. 1). We chose these study sites to check our workflow with
various glacial landforms formed by a contemporary glacier
and palaeo-ice sheet, based on high-resolution DEMs available
for these regions.

The study site within the presently glaciated area is located
in the Kaffigyra region—a coastal plain in Oscar II Land at
western Spitsbergen. There are several glaciers located in the
Kaffigyra, among which the biggest land-terminating glacier is
the Elise glacier which contains a particularly well-developed
marginal zone [Fig. 1(A)]. Conspicuous glacial landforms
located on the foreland of Elise glacier were formed as a
result of glacier retreat from its maximum Little Ice Age (LIA)
extent, which ended around Svalbard at the beginning of the
1920s [45]. Thus, the study site represents a very fresh glacial
landscape, comprising landforms that were formed about
100 years ago. To date, the foreland of the Elise glacier was
investigated by classical geomorphological mapping [37]-[39]
and sedimentological investigations of glacial landforms in the
field [40]. The study site consists of a conspicuous arc of
end moraines, indicating the position of Elise glacier’s margin
during the LIA, extensive and relatively flat outwash plain
on the foreland of the end moraines, as well as till plains,
outwash plains, and hummocky moraines located between
end moraines and present position of Elise glacier’s margin
[Fig. 1(A)]. The end moraine belt is 180—-500 m wide and up to
30-35 m high above the surrounding outwash plains. Till
plains have undulated surface with elongated hills (flutes)
mostly 100-200 m long and usually a few meters high.
Hummocky moraines have undulating, irregular topography
with hills and depressions. Hills are tens of meters wide and
long, up to 5 m high, and are characterized by various degrees
of elongation [see Fig. 1(A) and Table IJ.
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Fig. 1. Location of the study sites with the relevant DEMs and locations of ground-truth samples (separated for training and validation subsets; m a.s..—meters
above sea level; SIS—Scandinavian Ice Sheet). (A) Foreland of Elise glacier. (B) Gardno-Leba Plain. (C) Lubawa Upland.

The study sites with glacial relief formed in the late
Pleistocene are located in northern Poland, within regions
occupied by the last Scandinavian Ice Sheet (SIS) during
the Last Glacial Maximum and exposed as a result of the
subsequent ice-sheet recession. The first area [Fig. 1(B)] is
situated close to the Baltic Sea coast within the Gardno-Leba
Plain, and the second area [Fig. 1(C)] is located close to the
maximum extent of the last SIS on the northern slope of
the Lubawa Upland. The study site in the Gardno-Leba Plain
consists of a conspicuous arc of end moraines formed during
the recession of the last SIS as a consequence of local ice
readvance ca. 15—-14-ka BP [41], [42]. Other glacial landforms
typical for marginal zones of the ice sheet, such as: till
plains, outwash/glaciolacustrine plains, hummocky moraines,
or valleys, also occur there [see Fig. 1(B) and Table I]. The
most prominent landform in this study site is a 0.6-1.8 km
wide and up to the 60-m high belt of end moraines.

Valleys are up to 500-600 m wide and up to 10—15 m deep.
Hummocky moraines consist of irregular hills and depressions
up to 8—12 m high/deep. Till plains are flat or slightly undu-
lated, with relative heights which do not exceed a few meters.
Outwash/glaciolacustrine plains are also flat or undulated (if
secondary landforms such as paleochannels or young erosional
incisions occur within them) with maximum local denivela-
tion in order of 5-10 m (Table I). This glacial landforms
assemblage is one of the most conspicuous geomorphological
records of the palaeco-ice sheet marginal zone in northern
Poland. So far, it was identified and analyzed mainly based
on traditional field-based geological and geomorphological
mapping [43] investigations of the structural sedimentology
of sections exposed within the end moraines [44]. The study
site in the Lubawa Upland consists of hummocky moraines,
till plains, kettle holes, and valleys [see Fig. 1(C) and Table I].
Local denivelations within till plains do not exceed a few
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TABLE I

L1ST OF GLACIAL LANDFORMS IDENTIFIED IN
GROUND-TRUTH INVESTIGATION

Description
Relatively flat or undulating (usually a few
meters amplitudes) areas covered with till.
Remnant of subglacial deposition across the
terrain surface exposed during deglaciation.

Type
1 Till plains

Arcs or belts of ridges formed along the snout of
glacier/ice-sheet. Usually composed of till,
boulders, gravel or sand deposited due to the
release of ice marginal debris (accumulation
moraines) or the bulldozing of debris at the ice
margin during glacier/ice sheet advance (push
moraines). End moraine belts are usually
hundreds of meters to kilometres wide, and tens
of meters high.

2 End moraines

Irregular, "uncontrolled” topography comprising
small, irregular hills and intervening hollows,
with local denivelations usually in order of few
meters, max. to 10-15 m. Hills composed of till,
sand, gravel, often poorly sorted; depressions
infilled with fine grained and/or organic
sediments. This landform type may be formed
as a result of ablation of debris-mantled ice.
Chaotic, ice-stagnation topography, could be
also exhibit more "control" when the distribution
of moraines is inherited from debris
concentration or septa within the parent ice sheet
(e.g. along shear planes).

3 Hummocky moraines

Relatively flat or undulating (in order of 5-10
m) areas composed of fluvioglacial sand and
gravel or glaciolacustrine clay and silt. Formed
as a result of sediments accumulation by
meltwater flowing in front of glacier/ice sheet
(outwash) or by fine grained deposition from
suspension within the ice-dammed lakes.

4 Outwash/glaciolacustrine
plains

Being an effect of river erosion, valleys dissect
other forms. They may have been created by the
glacial meltwater erosion and later modified by
non-glacial rivers. In the analyzed study sites,
valleys are up to hundreds meters wide and few
meters deep.

5 Valleys

6 Kettle holes Depressions resulting from the melt-out of large
dead-ice blocks. Usually few meters deep with

round, oval or irregular planar shape.

meters, whereas the irregular hills and depressions within
hummocky moraines range from 10 to 12 m high. Valleys are
up to 140-160 m wide, and up to 8 m deep, and kettle holes are
usually elongated depressions 400—800 m long and 6—8 m deep
(Table I). The final shaping of these landforms is associated
with the recession of the last SIS from its LGM position at
ca. 22-18-ka BP [45]. This study site was previously mapped
using traditional methods of delineation and interpretation of
particular landforms based on geological data (boreholes and
hand drillings) and topographic maps [46].

High-resolution DEM data were previously used only for a
visual inspection and interpretation of the landforms visible
in the study sites. However, the knowledge on the glacial
landforms in the area is relatively solid due to the avail-
ability of geological and geomorphological maps or aer-
ial and satellite images. Our approach using high-resolution
DEM and semiautomated classification was used for the
first time in these selected areas representing glacial relief
formed by the contemporary glacier around a hundred years
ago (Spitsbergen), and by palaeo-ice sheet ca. 22—14-ka BP
(northern Poland).
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B. Data Acquisition and Processing

This research benefits from elevation data from an open
access photogrammetric ArcticDEM digital surface model
of the Arctic [47] and LiDAR DEM available for the
territory of Poland [48]. ArcticDEM was generated by
applying stereo autocorrelation techniques to overlapping
pairs of high-resolution optical satellite images. It was
constructed from in-track and cross-track high-resolution
(~0.5 m) imagery acquired by the DigitalGlobe constellation
of optical imaging satellites, mostly from the panchromatic
bands of the WorldView-1, WorldView-2, and WorldView-3
satellites [47]. Stereo pair images were processed to DEMs
using the Surface Extraction from TIN-based Searchspace
Minimization software [49]-[51]. The resulting DEM
data were downloaded from ArcticDEM explorer Website
(https://livingatlas2.arcgis.com/arcticdemexplorer) as 2-m spa-
tial resolution 32-bit GeoTIFF of mosaicked elevation data,
blended and feathered to reduce void areas and edge-matching
artifacts. Filtered IceSAT altimetry data have been applied to
the raster files to improve absolute accuracy [47]. We applied
ArcticDEM 2-m GeoTIFF elevation data to glacial landforms
mapped on the foreland of the Elise glacier in Spitsbergen.

DEM data for the Gardno-Leba Plain and the Lubawa
Upland study sites were downloaded from the database of the
Head Office of Geodesy and Cartography in Poland (GUGIK)
as a part of the ISOK flood protection project [52]. They
were collected based on LiDAR scanning of the terrain surface
conducted in Poland in 2011-2014 [48]. They represent bare
surfaces without any objects, such as buildings, trees, or
plants. The Airborne Laser Scanning (ALS) point cloud had a
density of 4 points/m?, a vertical accuracy of <0.15 m and a
horizontal accuracy of <0.50 m. Points within the ALS cloud
were initially classified according to the type of objects they
represented (e.g., ground, vegetation, and water). Then, based
on ground and water points, the LIDAR DEM was created by
the interpolation of point values to a density of 1 point/m?.
Consequently, a 1-m DEM representing the elevation of the
ground surface and water surface was downloaded as ASCII
files (XYZ coordinates) from the GUGIK database. The original
1-m resolution DEM was used to map glacial landforms in the
Lubawa Upland area (~37 kmz), whereas a 5-m DEM based
on resampling of original ASCII files was used for analyses
in the Gardno-Leba Plain in order to speed up the calculation
processes (especially spectral parameters) for this relatively
extensive area (~117 km?) and to filter out some small-scale
landforms originating from anthropogenic activity.

In this study, we followed the main assumptions of remote
sensing image classification summarized by Lu and Weng [17].
A summary of the processing workflow explicitly developed
in this study is provided in Fig. 2. Sections II-C to II-I contain
methodological descriptions of all the steps of the workflow.

C. Ground-Truth Dataset

The ground-truth dataset was constructed based on visual
inspections of DEMs, existing geological and geomorpho-
logical maps, orthophoto maps, and the identification and
interpretation of distinct types of landform. Based on the
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Fig. 2. Processing workflow developed in this study.

morphological characteristics listed in Table I, we sampled
representative points indicating the location of a particular
landform type within DEMs (Fig. 1).

For the foreland of Elise glacier, 167 samples were
separated into four classes: till plains, outwash plains, end
moraines, and hummocky moraines. The locations of all the
ground-truth samples are provided in Fig. 1(A). In the Gardno-
Leba Plain, the ground-truth dataset contained 246 point
locations appropriate for the five landform categories: valleys,
end moraines, till plains, outwash/glaciolacustrine plains, and
hummocky moraines [Fig. 1(B)]. Finally, for the Lubawa
Upland, our ground-truth dataset contained 382 samples,
divided into four categories: valleys, till plains, kettle holes,
and hummocky moraines [Fig. 1(C)].

Once determined, the ground-truth sample dataset was
divided into training and validation (test) subsets, allowing
the training of the supervised classifier and measurement
of its performance in terms of accuracy. We separated the
training and validation subsets with the ratio 70/30 with the
Subset Features procedure in ArcGIS (Environmental System
Research Institute (ESRI), 380 New York Street, Redlands,
CA 92373, USA). The procedure allows for random separation
of the point shapefile with an unbiased analysis.

D. Feature Extraction

In this study, we extracted 21 types of secondary features
from DEMs. A list of all the extracted features is provided
in Table II. In Sections II-E-II-I, we describe the meth-
ods for feature extraction with pixel-based and object-based
separation.

E. Pixel-Based Features

All the pixel-based geomorphometric features were cre-
ated using a 3 x 3 neighborhood window size in ArcGIS.
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TABLE 11
Li1ST OF ALL FEATURE TYPES EXTRACTED IN THIS STUDY

Window
No Feature Type size/scale of
objects
Pixel-based, 3
1 Slope .
geomorphometric
5 Aspect Pixel-based, . 3
geomorphometric
Pixel-based, 3
3 Curvature .
geomorphometric
Pixel-based, 3
4 Planar curvature .
geomorphometric
5 Profile curvature Pixel-based, . 3
geomorphometric
Pixel-based, 3
6 Surface area to planar area .
geomorphometric
Fractal dimension (Dfft) Pixel-based, spectral 80-500°
8 Spectral skewness (7;) Pixel-based, spectral 80-500°
Spectral skewness defined Pixel-based, spectral 80-500°
9 for central moments
(s centr)
10 Spectral width (v2) Pixel-based, spectral 80-500°
11 Spectral moment my Pixel-based, spectral 80-500°
12 Spectral moment m, Pixel-based, spectral 80-500*
13 Quality factor (Q) Pixel-based, spectral 80-500°
14 Mean frequency (mo) Pixel-based, spectral 80-500°
15 Asymmetry Object-based 25-40°
16 Compactness Object-based 25-40°
17 Length/Width Object-based 25-40°
18 Shape Index Object-based 25-40°
19 Roundness Object-based 25-40°
20 Elliptic Fit Object-based 25-40°
21 Rectangular Fit Object-based 25-40°

* Window sizes varied depending on the study sites: Lubawa Upland (80,
140); Gardno (250, 500); Elise (80, 100, 160, 200, 250, 300).

b Scale of image objects varied depending on the study sites: Lubawa
Upland (25); Gardno (40); Elise (40).

The slope and aspect of DEMs were calculated using the
methodology described by Burrough and McDonell [53]. The
curvature was calculated using the algorithm proposed by
Zevenbergen and Thorne [54]. Curvature was calculated per-
pendicularly to the slope and is expressed as the planar
curvature, whereas the profile curvature was computed parallel
to the slope [54]. The DEM roughness was calculated using
the Surface Area to Planar Area (SAPA) algorithm proposed
by Jenness [55].

Pixel-based spectral features were calculated using our own
algorithms developed in MATLAB (MathWorks, 1 Apple Hill
Drive, Natick, MA 01760-2098, USA). They were generally
computed based on 2-D Fast Fourier Transform (2-D FFT).
In order to avoid spectral leakage, 2-D spectra were multi-
plied by a function of Discrete Prolate Spheroidal (Slepian)
Sequences (DPSS). The algorithm was executed using moving
window sizes from 80 x 80 m to 500 x 500 m, with 90%
of the window overlapping depending on the resolution and
extent of the considered dataset. The 2-D FFT allowed the
determination of cross sections producing 1-D spectra, every
5°, in a range of 0°-180°, allowing the further determination of
averaged spectral parameters according to Tegowski et al. [56].

For each of the 37 spectra, we calculated two spectral
moments (mo and m»,) [57]. Whereas wq represents the mean
frequency of the spectrum, the concentration of the spectral
energy density around the mean frequency is expressed as the
spectral width (v?). The spectral skewness defined for central
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moments (ys cenrr) 1S @ parameter that may represent slight
changes of the DEM surface [58]. The fractal dimension (Dfft)
is the parameter determining the fractal characteristics of
the LiDAR dataset [59]. Being a measure of spectrum peak
“sharpness,” the quality factor (Q) is a parameter representing
combined characteristics of spectral moments [60]. Detailed
descriptions of the spectral parameters of the DEM used
in this study and the necessary formulas are provided by
Trzcinska et al. [19]. In general, spectral parameters refer
to the spatial frequencies that build up the total shape of
rough terrain. Therefore, the spectral parameters characterize
the scale and degree of surface roughness.

FE. Object-Based Features

Object-based features were calculated using our rulesets
developed in eCognition (Trimble, Inc., 935 Stewart Drive
Sunnyvale, CA 94085, USA). They are provided as mean
values per image object, created using a multiresolution seg-
mentation algorithm with a scale factor of 25 or 40. The used
segmentation methodology, with its parameters, is described
in more detail in Section II-H.

All the extracted object-based features represented the shape
properties of the image objects. Asymmetry described the
dependence between the length of an image object relative to
that of its regular polygon based on the ellipse surrounding the
image object. A similar feature, Length/Width, represented the
smallest of the relations of the eigenvalues of the covariance
matrix or the Length/Width ratio calculated from the bounding
box of the image object. The compactness measured the ratio
between the magnitude of the image object’s length and width
to its area, expressed in pixels. It can take values from O to co,
where 1 means identical compactness. The smoothness of
an image object’s border was described by the Shape Index
feature; the lowest value it can take is 1, and a lower value
means a smoother border. The comparison of an image object
with an ellipse was performed according to the Roundness
feature, taking values from 0 to oo, where the lowest values
mean ideal roundness. The similarity of an image object to
an ellipse of similar size and shape was estimated by another
measure, Elliptic Fit. The last object-based feature extracted in
this study was Rectangular Fit, expressing the similarity of an
image object’s shape to a rectangle of similar size. A detailed
description of the object-based features used in this study,
with reference to specific formulas, is provided in eCognition’s
Reference Book [61].

G. Cross Correlation and Feature Selection

The initial data analysis includes cross correlation, which
was the first step before feature selection. It was performed in
advance to preclude highly correlated features from further
processing so that they did not make a significant contri-
bution in relation to other features. We performed cross
correlation using the ‘“caret” library in the R statistical soft-
ware [62] (R Foundation for Statistical Computing, Vienna,
Austria, Wirtschaftsuniversitit Vienna, Welthandelsplatz 1,
1020 Vienna, Austria). Features with Pearson’s correlations
higher than 0.75 were considered highly correlated.
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The relevance of all the extracted features for supervised
classification was determined with the Boruta feature selec-
tion algorithm [63]. The algorithm, based on the RF clas-
sifier, allows the selection of the most important features,
providing their importance or Z scores in relation to other
irrelevant features generated as “shadow” variables [64], [65].
We used the R implementation of the algorithm provided
in the “Boruta” library. A detailed description of the work-
ing principles of the used feature selection method is given
by Kursa and Rudnicki [63]. We performed the Boruta
algorithm based on sets of features before and after cross
correlation.

H. Object-Based Image Segmentation and Classification

OBIA was the basis for the generation of object-based
features and the determination of image objects with similar
characteristics in terms of the DEM. As resulted from the
processing workflow developed in this study, the properties
of all the features were calculated based on the mean val-
ues of image objects belonging to ground-truth categories
(see the process “export object statistics” in Fig. 2). Image
objects were generated using the multiresolution segmentation
algorithm proposed by Benz et al. [15] in eCognition. The
algorithm uses an iterative, bottom-up merging technique to
create image objects suitable for delineating specific features
in remote sensing images (in our case, high-resolution DEM).
Benz et al. [15] defined the parameters of multiresolution
segmentation that affect the size and shape of the final image
objects, such as the scale, shape, and compactness. The scale
is a dimensionless parameter based on the relative sizes of
image objects. The two other parameters represent depen-
dences between image object properties such as color, shape,
smoothness, and compactness. A detailed description of the
multiresolution segmentation’s working principles is provided
by Benz et al. [15]. All further analyses were performed
using image objects (instead of pixels) as the primary units
of analysis.

Image classification was performed using a supervised
approach related to decision trees and machine learning.
Of several tested supervised classifiers (Classification and
Regression Trees, SVM and K-Nearest Neighbor), SVM and
RF are recommended, often providing the highest accuracy
according to remote sensing literature [31], [66]. The principle
of SVM is to separate the dataset after transformation into
a multidimensional feature space where it seeks the best
fitting hyperplane between the classes [67]. Being an ensemble
classifier, RF generates multiple decision trees (often called
forests) based on a randomly selected subset of ground-truth
training samples and features [64]. In this study, the RF
classifier was trained using a training subset of ground-truth
samples and selected important features. We used the RF
implementation in eCognition [61].

1. Accuracy Assessment

The accuracy of the supervised classification was calculated
based on an error matrix and accuracy statistics using a
validation subset of ground-truth samples [16]. The calculated
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Fig. 3. Result of Boruta feature selection

(where appropriate, window sizes (in meters) are denoted after underline marks; green boxplots—important features;

blue boxplots—shadow variables). Y-axis represents the importance measure (Z score) of the Boruta feature selection algorithm. Study areas: (A) Foreland
of Elise glacier. (B) Gardno-Leba Plain. (C) Lubawa Upland. Used abbreviations: Spw—spectral width; Q—quality factor; plan_curv—planar curvature;
mo—spectral moment my; Spsk—spectral skewness; mo—spectral moment mg; Spsk_c—spectral skewness defined for central moments; Dfft—
fractal dimension; sapa—surface area to planar area; Asymm—Asymmetry; prof_curv—profile curvature; L_W—Length/Width; mfreq—mean frequency;
Sh_Ind—Shape Index; Round—Roundness; Rect_Fit—Rectangular Fit; El_Fit—Elliptic Fit; Comp—Compactness; DEM—Digital Elevation Model.

accuracy statistics include the user’s and producer’s accuracy,
omission error, commission error [68], [69], overall accuracy,
and Cohen’s Kappa coefficient [70]. The user’s accuracy
means the proportion of total ground-truth samples that were
adequately classified in relation to a particular class. The
producer’s accuracy may be explained as the proportion of all

classified pixels in the remote sensing image that were classi-
fied correctly. Whereas the overall accuracy is the sum of all
the correctly classified ground-truth samples in relation to the
total number of samples, Kappa is the other measure of overall
accuracy that includes the possibility of misclassification by
chance. Accuracy was assessed using eCognition [61].
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TABLE III

LI1ST OF SELECTED FEATURES USED FOR
CLASSIFICATION FOR ALL STUDY SITES

Site  No Feature Size*
L1 Spectral moment mg 160
5 2 Surface area to planar area 3
= 3 Quality factor 100
2 4 Spectral skewness defined for central moments 100
5 5 Spectral skewness defined for central moments 200
5 6 Planar curvature 3
T 7 DEM -
= 8 Spectral skewness defined for central moments 300
E 9 Compactness 40
10 Quality factor 300
1 DEM -
= 2 Spectral skewness 250
s 3 Spectral moment my 500
o4 Quality factor 250
S 5 Slope 3
’g] 6 Curvature 3
£ 7 Mean frequency 500
g 8 Quality factor 500
9 Spectral skewness defined for central moments 250
10 Mean frequency 250
1 Spectral width 140
2 Quality factor 140
3 Planar curvature 3
4 Spectral moment m, 140
5 Spectral width 80
6 Spectral skewness 80
7 Curvature 3
8 Spectral moment m, 140
9 Quality factor 80
= 10 Spectral skewness defined for central moments 80
—‘2 11 Spectral skewness 140
=} 12 Spectral moment m, 80
§ 13 Spectral moment m, 80
f-; 14 Fractal dimension 80
= 15 Surface area to planar area 3
16 Spectral skewness defined for central moments 140
17 Asymmetry 25
18 Profile curvature 3
19 Length/Width 25
20 Fractal dimension 140
21 Slope 3
22 Mean frequency 80
23 DEM -
24 Shape Index 25

* Depending on the feature type, the measure corresponds to window size
or scale of image objects

Moreover, we calculated error matrices and accuracy
assessment statistics for quantitative comparison with man-
ual separations of all study sites. Our compliance with
manual classification was calculated in ArcGIS based on
cross-tabulation between automatic and manual classification
areas. The results were expressed in percentage values. Manual
classification of landforms in the foreland of Elise glacier was
based on available geomorphological maps of the area [39]
and visual interpretation of the DEM and orthophoto map
(Fig. S1A). For the Gardno-Leba Plain and the Lubawa
Upland, this interpretation was based on available maps of
surface deposits (Fig. S1B, C) combined with a visual inspec-
tion of LiDAR DEMs.

III. RESULTS
A. Feature Extraction and Selection

Data analysis indicated that 10 of 15 extracted features
were relevant for the foreland of the Elise glacier study site.
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DEM Expected Obtained

Till plains

End moraines

Hummocky
moraines

Outwash/
glaciolacustrine
plains

Valleys

Kettle holes

I end moraines outwash/glaciolacustrine plains [l valleys

hummocky moraines [ till plains I kettle holes

Fig. 4. Close-ups of specific areas of interest for all glacial landform types.
Expected—results of manual classification; Obtained—results of semiauto-
matic classification. Locations of close-ups are marked in Fig. 1.

Similarly, 10 of 12 features were selected as important
for Gardno-Leba Plain. Features for these scenarios were
selected after initial cross correlation. In comparison, 24 of
30 extracted features were relevant for the Lubawa Upland
study site (Table III). These features were selected without
cross correlation. We trained classifiers based on datasets
before and after cross correlation, then we selected the results
with the highest accuracy. The lists of all important features
for the three considered study sites were provided in Table III.
The importance of all selected features was presented as
boxplots in Fig. 3. The selected features were used for further
supervised classification.

B. Object-Based Image Segmentation and Classification

Object-based image segmentation was performed using the
following parameters for multiresolution segmentation: shape,
0.1; compactness, 0.5. Whereas the multiresolution segmenta-
tion scale for the foreland of Elise glacier and the Gardno-Leba
Plain was 40, the same parameter for the Lubawa Upland
was 25. In all scenarios, the segmentation algorithm was
applied based on a single DEM feature.

SVM and RF provided the best classification performances
confirmed by accuracy assessment results from several tested
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Fig. 5.
(B) Gardno-Leba Plain. (C) Lubawa Upland.

supervised classifiers. Whereas the RF classifier was the most
appropriate for the foreland of the Elise glacier scenario, SVM
had the highest performance for the Gardno-Leba Plain and the
Lubawa Upland case studies. Fig. 4 shows close-up results list
of representative glacial landforms marked in areas provided
in Fig. 1. In this outcome, we provided a comparison between
the original DEM and the expected versus obtained results.
Whereas the expected column in Fig. 4 refers to a manual
classification of landforms based on existing satellite images,
geological/geomorphological maps (Fig. S1), and visual inter-
pretation of DEM, the obtained column is related to semi-
automated results of the supervised classification performed
according to our processing workflow.

We provided a comparison between hillshade reliefs,
manual maps, and semiautomated maps for all study areas
(Fig. 5; A—the foreland of Elise glacier; B—the
Gardno_Leba Plain; C—the Lubawa Upland). Maps presented
in Fig. 5 include polygon data related to other landforms
(nonglacial), water bodies, and glacier ice (see Fig. SI).
Visual comparison of the classification results from Figs.
4 and 5 with spatial distributions of ground-truth samples
(Fig. 1) suggests a high correlation for all scenarios.

Legend

Glacial landforms
I end moraines
hummocky moraines
outwash/glaciolacustrine plains
[ il plains
B valieys
I kettle holes

Other landforms
1224 marine terraces/bedrock
/77| peat plains and sand barriers

water

757 glaciers

Comparison of DEM hillshade reliefs, manual maps and results of semiautomated classifications for all study sites. (A) Foreland of Elise glacier.

C. Comparison With Relevant Spectral Parameters

From six relevant spectral features selected by the Boruta
algorithm in the foreland of Elise glacier, spatial variability
of spectral moment mg calculated in window sizes 160 m
largely follows the spatial distribution of the main glacial
landform types. High values of m are correlated with diverse
topography within the arc of end moraines and also partly
within till plain with flutes, whereas low values of m( occur
across much flatter areas of outwash plains (Fig. 1A, S2).
Quality factor Q (calculated for 100- and 300-m windows)
reveals high variability within all identified landform types,
whereas spectral skewness defined for central moments y; centr
(calculated for 100-, 200-, and 300-m windows) has high val-
ues for all landforms, with the highest variability and locally
low values within flat areas of outwash plains (Fig. 1A, S3).

In the Gardno-Leba Plain, high values of spectral moment
mg calculated for 500-m window sizes are also correlated
with diverse topography within end moraine arcs and partly
within hummocky moraines and along valley slopes, in con-
trast to spectral skewness 7, calculated for a 250-m win-
dow, which is the lowest in areas of diverse topography.
Flat areas of outwash/glaciolacustrine plains show the lowest
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TABLE IV
ACCURACY ASSESSMENT FOR THE FORELAND OF ELISE GLACIER
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TABLE VI
ACCURACY ASSESSMENT FOR THE LUBAWA UPLAND

Reference Reference
Outwash End Till Hummocky Hummocky Till  Kettle
. . . . um Valleys . - Sum
plains  moraines plains  moraines moraines plains  holes
o Outwash plains 20 0 0 0 20 o Valleys 26 0 2 5 33
-2 End moraines 0 13 0 0 13 -2 Hummocky moraines 2 35 3 0 40
5 Till plains 1 0 9 0 10 -5 Till plains 0 4 29 0 33
:;:’ Hummocky moraines 0 1 0 7 8 E Kettle holes 0 0 0 7 7
Sum 21 14 9 7 51 Sum 28 39 34 12 113
Producer’s accuracy 0.95 0.93 1.00 1.00 Producer’s accuracy 0.93 0.90 0.85 0.58
User’s accuracy 1.00 1.00 0.90 0.88 User’s accuracy 0.79 0.88 0.88 1.00
Omission error 0.05 0.07 0.00 0.00 Omission error 0.07 0.10 0.15 0.42
Commission error 0.00 0.00 0.10 0.12 Commission error 0.21 0.12 0.12 0.00
Overall accuracy 0.96 Overall accuracy 0.86
Kappa 0.94 Kappa 0.80
TABLE V TABLE VII
ACCURACY ASSESSMENT FOR THE GARDNO-LEBA PLAIN COMPLIANCE WITH MANUAL SEPARATION FOR
THE FORELAND OF ELISE GLACIER
Reference
Valleys Humm.ocky Ti.l | En'd Outwash Sum Refer'ence
moraines _ plains _moraines Outwash En.d T1.11 Hummpcky Sum
Valleys 9 0 0 0 0 9 moraines plains moraines
o Hummocky 0 1 0 1 ) 14 Outwash plains 51.28 1.69 1.58 0.04 54.58
.2 moraines End moraines 0.70 21.87 1.63 0.09 23.30
3 Till plains 0 0 6 0 1 7 g Till plains 1.74 2.17 16.37 0.03 20.31
n{i End moraines 0 1 3 15 0 19 ‘£ Hummocky 0.26 0.14 0.00 1.41 1.82
Outwash plains 2 0 2 0 20 24 5 moraines
Sum 11 12 11 16 23 73 ;‘:) Sum 53.98 2488  19.57 1.57 100.00
Producer’s 082 0.92 0.55 0.94 0.87 Producer’s accuracy 0.94 0.90 0.81 0.78
accuracy User’s accuracy 0.95 0.84 0.84 0.90
User’s accuracy 1.00 0.79 0.86 0.79 0.83 Omission error 0.06 0.10 0.19 0.12
Omission error 0.18 0.18 0.45 0.06 0.13 Commission error 0.05 0.16 0.16 0.10
ecr?(l;r;mlsswn 0.00 0.21 0.14 021 0.17 Overall accuracy 0.90
Overall accuracy ~ 0.84
Kappa 0.79

values of mp and much more diversified and locally high
values of 7, (Fig. 1B, S4). Mean frequency w, and quality
factor Q (calculated for 250- and 300-m window) reveal
high variability within all glacial landforms identified in this
study site.

The spectral moments m, and m, (calculated for window
sizes 80 and 140 m) in the Lubawa Upland show high values
within valleys and other local depressions such as kettle holes
or parts of hummocky moraines (Fig. 1C, S5). The high value
of the mean frequency parameter wy means the presence of
small forms, whereas its low value means large ones, with
respect to the moving window size of 80 m. Therefore, high
values for the 80-m window size mainly occur in valleys
(being relatively small). Low values of spectral skewness 7
and y; cenyr Occur in valleys and kettle holes for both 80- and
140-m moving windows, high values were recorded mainly
within till plains. The spectral width v? and quality factor Q
show high values mainly within valleys and till plains, whereas
low values of these parameters occur mainly within hummocky
moraines (Fig. 1C, S5).

D. Accuracy Assessment

The error matrices and accuracy assessment statistics for
the SVM and RF models were presented in Tables IV-VL
Tables VII-IX provide error matrices and accuracy statistics

for compliance analysis with manual classifications in all
case studies.

The highest overall accuracy statistic reached 96% and 94%
of the Kappa for the foreland of the Elise glacier (Table IV).
The other results showed overall accuracy and Kappa scores
from 79% to 86% (Tables V and VI). Whereas the highest
compliance with manual separation for the foreland of Elise
glacier scenario reached 90% (Table VII), the overall accuracy
statistic for two other areas indicated 63%—-65% correctness
(Tables VIII and IX). User’s accuracy for individual landform
types in Gardno-Leba Plain varies from 79% for end moraines
and hummocky moraines to 100% for valleys (Table V), and
in the Lubawa Upland from 79% for valleys to 100% for kettle
holes (Table VI).

In general, these quantitative results show high to very
high correspondence with ground-truth samples and lower
compliance with manual geomorphological classifications.

IV. DISCUSSION
A. Reference to the Main Hypothesis and Research Problems

This study confirmed that glacial landforms, such as
till plains, end moraines, hummocky moraines, outwash/
glaciolacustrine plains, valleys, and kettle holes, can be
identified using novel image-processing methodology and
spectral parameters of high-resolution DEM. From a total
of 122 extracted variables (62 for the foreland of Elise glacier,
30 for the Gardno-Leba Plain and the Lubawa Upland),
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TABLE VIII

COMPLIANCE WITH MANUAL SEPARATION
FOR GARDNO-LEBA PLAIN

Reference
Hummocky Till End

Valleys . . . Outwash  Sum
moraines plalns moraines

Valleys 2.94 0.58 055 0.70 381 8.8
Hummocky ) 14 8.52 059  2.89 766 20.84
= moraines
S Till plains 0.22 0.07 337 0.08 230 6.04
3
5 End 0.17 1.30 1.81  13.85 109 18.22
< moraines
- Outwash

! 1.87 2.46 524 215 3458 4631
plains

Sum 6.40 1293 1156  19.67  49.44 100.00
Producer’s 5, 041 056 076 075
accuracy

User’s 0.46 0.66 029 0.0 0.70
accuracy

Omission

coron 0.66 0.59 044 024 025
Commission 5, 0.34 061 030 0.30

error

Overall 063

accuracy

TABLE IX

COMPLIANCE WITH MANUAL SEPARATION FOR THE LUBAWA UPLAND

Reference
Valleys Humocky Ti'll Kettle Sum
moraines  plains holes
o Valleys 3.40 5.01 260 044 1145
-2 Hummocky moraines 0.71 44.15 4.67 026 49.80
-5 Till plains 0.51 19.68 17.05 0.08 37.32
E Kettle holes 0.24 0.61 0.18  0.39 1.43
Sum 4.87 69.47 24.50 1.17 100.00
Producer’s accuracy 0.30 0.89 046 027
User’s accuracy 0.70 0.64 0.70 034
Omission error 0.70 0.11 054 073
Commission error 0.30 0.36 046 027
Overall accuracy 0.65

we determined relevant types of spectral features of the DEM
that may be diagnostic for the thematic mapping of glacial
geomorphology. Besides the DEM, they include four types of
geomorphometric features, eight types of spectral features, and
four kinds of object-based features. The complete workflow for
glacial landforms classification developed in this study allowed
for the quick and transparent analysis of DEM. It provided
a solution for the generation of thematic maps of glacial
geomorphologic features that is reproducible and may be
transferrable to other areas of interest.

B. Research Relevance in Relation to Other Works and
Interpretations of the Main Findings

In comparison with other applications of the RF algorithm in
remote sensing studies [33]-[35], the classifier’s performance
in this work was amongst the highest, suggesting high rele-
vance of RF for investigations of glacial geomorphology based
on DEM surfaces.

According to our best knowledge, spectral parameters were
not extracted from LiDAR and satellite-derived DEM before.
Object-based features are the other relevant group of features
selected in this study, confirming their usefulness in light
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of the very few OBIA glacial geomorphology studies based
on LiDAR datasets [30], [71]. Finally, the relevance of geo-
morphometric features, confirmed by their high importance,
supplements current trends in the development of geomorpho-
logical science [3], including evaluation of geomorphometric
attributes [72].

Moreover, the current trends also involve the technological
development of automatic mapping methods presented for a
small section of glacial landforms in this study [20], [21]. This
method avoids the disadvantages of manual digitization, such
as subjectivity and a lack of repeatability [71].

User’s accuracy for individual landform types of the fore-
land of Elise glacier varies from 88% for hummocky moraines
to 100% for outwash plains and end moraines (Table IV).
The comparison with manual separation of particular landform
types shows the slightly lower but still very high accu-
racy of our semiautomated classification—overall accuracy
of 90% (Table VII). Robb et al. [71] used OBIA to the
semiautomated classification of four types of glacial landforms
(moraines, eskers, outwash, and till plains) on the foreland of
Breidamerkurjokull in Iceland, and they obtained an overall
accuracy against the manual mapping of 77%. Our level of
accuracy indicates that the proposed workflow for glacial-
landform classification works particularly well in presently
glaciated areas with young glacial landforms.

The obtained levels of accuracy in the Gardno-Leba Plain
and Lubawa Upland relative to the ground-truth dataset are
lower than on the foreland of Elise glacier in Spitsbergen
but still high enough (>80%) to consider our workflow as
applicable for mapping the glacial geomorphology of formerly
glaciated regions. The level of overall accuracy concerning
reference datasets in the order of ca. 80% is often considered
in remote sensing analyses as enough for reliable automatic
maps [73]-[76]. The comparison with manual separation of
landform types (manual maps) shows an overall accuracy
of 63% in the Gardno-Leba Plain (Table VIII) and 65%
in the Lubawa Upland (Table IX). Lower accuracy with
respect to manual maps is understandable because traditional
geomorphological mapping is based not only on an analysis
of morphological patterns but also on the spatial distrib-
ution of surface sediments/rocks when designating partic-
ular landforms. While the approach we present here is a
semiautomated classification based on morphological char-
acteristics, secondary features, and ground-truth points but
without additional input of surface sediments/rocks. However,
analysis from other regions of Pleistocene glaciations such as
North America shows the accuracy of supervised classification
of glacial landforms with respect to traditional geological maps
in order of 51%—-61% [77].

In addition, the influence of three different DEMs reso-
lutions on outputs of supervised classification is worth dis-
cussing. The highest accuracy was reached for the DEM,
separated for four landform types with 2-m spatial resolution.
Whereas an increase in spatial resolution often complicates
the classification process, it is not surprising that the other
DEM with a higher spatial resolution (Lubawa Upland) and
the same number of classes had a lower accuracy. Besides, our
results suggest that increasing classification classes may have
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a greater influence on the accuracy than a lower resolution of
spatial datasets, which is visible especially in the Gardno-Leba
plain. In this scenario, the DEM had the lowest spatial
resolution while separated into five classes. It is also worth
mentioning that all calculations were performed regarding the
object-based approach, which by design should be independent
of the spatial resolution of datasets [14], [15]. Therefore, our
results seem to support the fact that classification complexity
had a much more significant effect on the accuracy of the
results than the spatial resolution of DEM datasets in the
object-based approach.

C. Potential Sources of Errors

Accurate thematic maps may obviously be obtained when
ground-truth samples have previously been determined in
a precise manner. This is crucial because all the accuracy
statistics were calculated in relation to the ground-truth-sample
test dataset. Whereas ground-truth samples can be obtained
through, for example, field work or expert knowledge, their
determination should be as precise as possible. It should
be noted that the interpretation of landform types for the
ground-truth dataset has a degree of subjectivity. It is reduced
by increasing the number of samples or increasing the use
of high-resolution DEMs. The quality of the ground-truth
dataset is higher when training points are inserted based
on manual mapping using the most reliable remote sensing
data in particular regions, e.g., orthophoto maps in unvege-
tated regions or high-resolution LiDAR DEMs representing a
detailed picture of the terrain surface, even within areas with
rich vegetation [78]. Ideally, ground-truth samples should be
designed in a random, representative way and not spatially
autocorrelated. At the same time, from a statistical point of
view, they should be designed as large as possible and capture
all occurring landform types. Whereas in the case of spatially
extensive landforms, determination of such points does not
usually cause any problems, it may be challenging for smaller,
geomorphologically distinct forms. Examples of such differ-
ences in our study include, e.g., outwash/glaciolacustrine/till
plains versus kettle holes and hummocky moraines. In order
to ensure statistical significance, samples in classes occupying
small areas had to be more densely clustered, thus expos-
ing themselves to significant spatial autocorrelation. In this
work, local spatial autocorrelation analysis (LISA, [79]) has
shown that in the case of hummocky moraine class in the
foreland of Elise glacier, samples of low spatial diversity were
surrounded by other samples of low spatial diversity. In the
case of the kettle hole class in the Lubawa Upland study
site, the spatial autocorrelation of samples was statistically
insignificant.

A closer look at the spatial distribution of kettle hole and
valley classes in Lubawa Upland shows that some validation
samples of kettle holes were found within valleys. On the
other hand, no samples of other classes were found within
the kettle holes classified areas (Table VI). This suggests that
the kettle hole class should have a slightly larger surface
area instead of the valley class. The other potential sources
of errors may be related to the occurrence of ground-truth
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samples nearby the border of landforms. Considering the
same example, the boundary of kettle hole—valley classes
in the one site occurred in less than 0.2 m (comparing to
1-m raster resolution) from the one misclassified kettle hole
sample. It is worth mentioning that mistakes at the border
of two classes can always happen, but they are usually few.
Some attempt to deal with them is to determine the locations
of data samples away from potential boundaries of given
areas, but ultimately we have no direct influence on how the
boundaries will be determined in the process of image seg-
mentation, especially when the border has gradational or fuzzy
character.

D. Limitations of Our Research

In comparison with conventional geomorphometric studies,
our thematic map did not delineate landforms as polylines
along their crests or thalwegs [2], [80], but instead areas (poly-
gons, see [10], [11], [81]) where geomorphometric features
occur with high probability. This was caused by the working
principles of the object-based methodology. The proposed
approach is similar to land cover or habitat mapping and
can be used as a diagnostic tool for the further (qualitative)
delineation of landforms and decision-making.

Although the precision may affect the accuracy of classifi-
cation [82], the details of how ground-truth samples should
be defined appropriately were beyond the scope of this
research. Another problem related to ground-truth samples is
the training/test separation ratio used for image classification.
Although the ratio of 70/30 used in this research is common in
remote sensing studies [83], [84], some researchers emphasize
the need for its further examination [82], [85], [86].

The proposed procedure produces maps with delimited areas
of given geomorphometric features and identifies given glacial
landforms. However, in terms of genetic interpretations of
glacial landforms (e.g., linking their geomorphometric features
with morphogenetic processes), it is essential to bear in mind
that various geomorphological processes may produce mor-
phometrically similar or even identical landforms [87]-[89].
For example, although different processes stay behind the
formation of till plains and outwash/glaciolacustrine plains,
their morphology (surface relief) may be very similar or
even the same (Table I). Moreover, hills and hummocks
produced in different glacial settings may also have similar
morphology. In the foreland of Elise glacier, we identified
landforms of comparable shape and dimensions belonging to
end moraines, hummocky moraines, or till plains. Hills with
similar length, width, and elongation ratio as well as height
and cross-profiles were detected within end moraines belt and
hummocky moraines or within end moraines belt and undu-
lation of till plains [Fig. 6(A)]. Also, undulations occurring
within some parts of till plains and outwash/glaciolacustrine
plains in the Gardno-Leba Plain are comparable, creating
similar relief [Fig. 6(B)]. Thus, except for pure geomor-
phometric parameters, the geological and geomorphological
context of particular landform occurrences is always crucial
for their adequate identification and interpretation. Informa-
tion such as the spatial context of landforms distribution,
their inner structure, or types of sediments/rocks may be
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Fig. 6.

Morphometric similarities between glacial landforms of various origin and examples of anthropogenic transformation of the analyzed relief.

(A) Fragment of the foreland of Elise glacier. Similar landforms (red and yellow circles) and manual separations (dashed lines) are marked. Hypsometric
profiles with the main morphological parameters (L—length, W—width, E—elongation ratio, H—height) are given. (B) Fragment of the Gardno-Leba Plain
with manual separations (dashed lines) and hypsometric profiles across till plain and outwash/glaciolacustrine plains. Anthropogenic modifications of the relief

are also shown: dark arrows—road embankments and ditches; white arrows—sand pits.

critical for adequate interpretation. Geological investigations
(e.g., classical landforms and sediments mapping in the field)
may provide new details not provided by surface analy-
sis. Therefore, the compliance of our semiautomated clas-
sification with manual landform mapping is in the order
of 63%—65% for formerly glaciated regions. However, we have
to bear in mind that classical geomorphological maps are
also based on subjective interpretation and the detail of
landform mapping depends on the scale of the mapping
process, lists of landform types separated during map-
ping, author’s experience, etc. Thus, manual separations
are only an approximation of reality and should not be
treated as an exact reference for automated glacial landforms
extraction.

We observed a significant difference in accuracy level for
the classification of glacial landforms in the presently glaciated
arctic region (overall accuracy of 96%) and the region of
Pleistocene glaciations (overall accuracy of 84%—-86%). Lower
accuracy in the region of past glaciations is probably related
to a significant postglacial and anthropogenic transforma-
tion of relief captured on high-resolution DEMs [Fig. 6(B)].

Therefore, our new methodology is particularly suitable for
regions of present glaciation, where glacial landforms are
young and clearly recognizable in the landscape.

E. Recommendations for Future Research

Although this research included the development of an
RF and SVM supervised classifiers that performed with the
highest accuracies, other classifiers were also tested. This
corresponds with other authors suggesting the evaluation
of different methods of classification [32], [90]. Therefore,
we also recommend testing different methods of supervised
classification, such as Decision Trees [91], Artificial Neural
Networks [92], etc.

Whereas this research benefited from the 70/30 proportion
for the training and test subsets of ground-truth samples, future
research may consider tests of other separation ratios, e.g.,
50/50 [93], [94], 60/40 [95], [96] or 80/20 [97]. The other
approaches may include resampling methods, as proposed
by Lyons et al. [85] and investigation on the impact of the
spatial arrangement of ground-truth samples for classification
accuracy [98].
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The spectral parameters could potentially be extracted for
other digital surfaces using different moving window sizes.
We used nine different window sizes (from 80 to 500 m),
and our feature selection results confirmed the almost all of
them were relevant for classification. In any case, we recom-
mend extraction from high-quality spatial datasets and testing
different moving window sizes, considering tailoring them to
the size of the expected glacial landforms, bearing in mind the
significant increases in processing time and necessary comput-
ing power for smaller window sizes. However, once spectral
parameters and other secondary features were developed,
single running of key processes (segmentation, classification,
and accuracy assessment) required several minutes for the
study area. Possible further applications of the methodology
developed in this study include other glacial landforms, such
as drumlins, eskers, kames, tunnel valleys, marginal channels,
that do occur in other areas in the European lowlands or
beyond.

We appreciate the potential of this classification method
for both land and sea applications [19]. The future potential
application of the method (taking into account the increase
in the development of information technology) includes a
quick screening of DEM from different sources. It provides
fast, accurate information about landforms supporting further
interpretation and decision-making.

V. CONCLUSION

This study considered research and methodological
approaches that may be used for the mapping of glacial
landforms. The main assumptions can be further transferred
and support other crucial remote sensing applications, like
land-use decision making, that requires increasing processing
time and computing power. An essential part of geomorpho-
logical studies, the automatic method of thematic mapping
based on LiDAR and photogrammetric datasets is a response to
the current needs of the research community. Due to the devel-
opment of computer science, the technical possibilities of data
processing have increased over time. Therefore, we believe
that automatic methods of classification should be supported
and developed.

The general achievement of this study was the development
of a novel method for the mapping of glacial landforms. This
unique method included the use of OBIA, RF, SVM, DEM
spectral parameters, and Boruta algorithms for the accurate
exploration of glacial geomorphology in the three study sites
in Northern Poland and Svalbard. We identified and classified
the following glacial landforms: till plains, end moraines, hum-
mocky moraines, outwash/glaciolacustrine plains, valleys, and
kettle holes. Our feature extraction and selection confirmed the
relevance of 44 of 122 features, including spectral parameters,
as primary diagnostics for the mapping of glacial landforms.
For all investigated study sites, spectral parameters such as
skewness, moment mg, and quality factor were relevant for
the identification of analyzed glacial landforms.

The methodological solutions proposed in this article can
be easily adapted and utilized for other landscapes, either
present and from the past. The main advantages are reliability,
transferability, and repeatability, giving transparent results.
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Once the model is generated, the other advantage is the fast
computation for a particular area. The principal requirement is
a high-quality DEM surface and precise ground-truth-sample
dataset.
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