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Abstract— Earth-observing satellites carrying multispectral
sensors are widely used to monitor the physical and biological
states of the atmosphere, land, and oceans. These satellites
have different vantage points above the Earth and different
spectral imaging bands resulting in inconsistent imagery from
one to another. This presents challenges in building downstream
applications. What if we could generate synthetic bands for
existing satellites from the union of all domains? We tackle
the problem of generating synthetic spectral imagery for mul-
tispectral sensors as an unsupervised image-to-image transla-
tion problem modeled with a variational autoencoder (VAE)
and generative adversarial network (GAN) architecture. Our
approach introduces a novel shared spectral reconstruction loss
to constrain the high-dimensional feature space of multispectral
images. Simulated experiments performed by dropping one or
more spectral bands show that cross-domain reconstruction
outperforms measurements obtained from a second vantage
point. Our proposed approach enables the synchronization of
multispectral data and provides a basis for more homogeneous
remote sensing datasets.

Index Terms— Geophysical image processing, neural networks
(NNs), remote sensing, unsupervised learning.

I. INTRODUCTION

CLIMATE change and related environmental
issues—including the loss of biodiversity and extreme

weather—are listed by the World Economic Forum as the
most important risks to our planet [1]. Monitoring the Earth
is critical to mitigating these risks, understanding the
effects, and making future predictions [2]. Multispectral
and hyperspectral satellite-based remote sensing enables
global observation of the Earth, allowing scientists to study
large-scale system dynamics and inform general circulation
models [3]. In weather forecasts, satellite data initialize the
atmospheric state for future predictions. On longer time
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scales, these data are used to measure the effects of climate
change, such as land-cover variations, temperature trends,
solar radiation levels, and the rate of snow/ice melt. In the
coming decades, increased investments from the public and
private sectors in satellite-based observations will continue to
improve global monitoring, as highlighted in NASA’s decadal
survey [4].

Satellites are designed based on specifications for a given
set of applications with fiscal, technological, and physical
constraints that limit their temporal, spatial, and spectral
resolutions. Geostationary (GEO) satellites rotate with the
Earth to stay over a constant position above the equator at
a high elevation of 35 786 km. This position enables GEO
satellites with onboard multispectral imagers to take contin-
uous and high-temporal snapshots over large spatial regions
and is ideal for monitoring diurnal and fast moving events.
Spectral bands measure the brightness and radiance intensities
of the electromagnetic spectrum at a specified center wave-
length and bandwidth. Bands are selected to satisfy defined
variables of interest constrained by technological cost and
accuracy. Applications of GEO sensors include atmospheric
winds measurement [5], tropical cyclone tracking [6], wild-
fire monitoring [7], and short-term forecasting [8]. Multiple
GEO satellites are needed to generate global high-temporal
resolution datasets to better monitor these events around the
world. However, variations in resolutions, sensor uncertainties,
and temporal life spans lead to a set of separate datasets that
are not consistent, making this process very challenging [3].
Developing consistent and homogeneous global datasets would
relieve many of these challenges.

The current generation of GEO satellites (shown in Fig. 1)
is now exception. The GOES-16/17 satellites operated by
NASA/NOAA (cost: $11 billion) have a set of 16 imaging
bands covering the visible, near-, and thermal-infrared spectral
range [9]. The Himawari-8 satellite operated by the Japanese
Space Agency (cost: $800 million) similarly has 16 bands
but swaps an NIR (1.38 μm) band for a green channel
(0.51 μm), enabling the construction of true-color images [10].
The 1.38-μm band is ideal for measuring Cirrus clouds,
composed of ice particles in the upper troposphere, a major
contributor to regulating the Earth’s climate that is not yet well
understood [11], [12]. Without capturing this band, directly
observing Cirrus clouds over Japan, East Asia, and Western
Pacific region from Himawari-8 is not possible. Synthetic
observations via virtual spectral sensors could be a low-cost
solution to improving coverage availability and consistency
with current satellites.
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Fig. 1. Full-disk GEO true-color images from (a) Himawari-8 AHI, (b) GOES-17 ABI, and (c) GOES-16 ABI. Green is synthetically generated using the
proposed method for ABI (b) and (c).

We present an approach to generate synthetic spectral chan-
nels from a multidomain unpaired satellite dataset. We treat
satellites with either dissimilar spectral coverage or varying
vantage points as separate spectral sets. In this way, the prob-
lem closely resembles that of colorization [13] and image-
to-image translation tasks [14]–[16] in the case where paired
images are not available but with the added complexity of
a large number of spectral bands. We use a combination
of variational autoencoder (VAE) and generative adversarial
network (GAN) [17] architectures adapted to our problem
to model a shared latent space, as in unsupervised image-
to-image translation [14]. Generating synthetic bands is an
underconstrained problem that paired with an adversarial loss
in high dimensions, which promotes overfitting. Our approach
mitigates these challenges by leveraging a weak supervision
signal based on partial overlap in spectral bands between
domains. By including a reconstruction loss on overlapping
spectral bands between domain pairs, we can substantially
improve spectral band synthesis.

To summarize our contributions, we: 1) introduce a shared
spectral reconstruction loss to a VAE-GAN architecture
for synthetic band generation; 2) test our methodology on
real-world scenarios; and 3) present and release a test dataset
of 2000 tiles of paired observations from the GeoNEX L1G
GEO imagery for future research. In Sections II–IV, we will
introduce related work in remote sensing and image-to-image
translation, describe the architecture, and review experiments.
Finally Section V, we will discuss the implications on this
work and conclude with future directions.

II. BACKGROUND

A. Remote Sensing

Current generation GEO satellites observe 16 spectral bands
over large regions every 10–15 min at a 0.5–2-km resolution.
At a suboptimal 2 km, this produces full-disk images of size
5424×5424×16, which causes storage constraints while being
computationally expensive to process. Physical and statistical
models are used to convert these images into more easily

interpreted variables, such as precipitation, cloud cover, and
surface temperature [18]. Multiple GEO satellites, currently
in orbit, extend the spatial ranges to actively monitoring
larger regions. However, differences in spectral bands and sen-
sor uncertainties/biases present challenges to commonly used
sensor-specific models, and especially, existing downstream
models do not generalize well to missing spectral information.

Spectral band adjustment is often applied to cross cal-
ibration of sensors using relative spectral responses with
a hyperspectral sensor, such as Hyperion [19], [20]. This
approach uses Hyperion to calculate spectral band adjustments
factors (SBAFs) from relative spectral responses and has been
applied to a number of datasets. For instance, SBAF was
applied to Harmonized Landsat and Sentinal-2 for accurate
cross comparison with the MODIS dataset [21]. Similarly,
the work [20] used SBAF to evaluate long-term AVHRR
surface reflectance datasets with a quadratic normalized differ-
ence vegetation index (NDVI). However, as outlined in these
studies, applying SBAF requires an intermediate simulated or
hyperspectral sensor to perform this translation. In contrast,
our approach learns this intermediate sensor as a “shared”
latent space capturing dependent information content between
sensors. The following sections will develop our approach in
the context of neural networks (NNs) and deep generative
modeling.

Neural models have long been applied to process
remote sensing data and generate downstream products.
Hsu et al. [22] presented some of the first work that showed
NNs could generate accurate and high-resolution precipitation
products from satellite observations. In recent years, convo-
lutional neural networks (CNNs) have been found to further
improve this task [23]. Similarly, CNNs have successfully been
applied to poverty mapping [24], super-resolution [25], sub-
pixel classification [26], model emulation [27], and land-cover
classification [28], all from low-level satellite products.
In terms of spectral synthesis, a few studies have explored
reconstruction of hyperspectral bands from RGB bands with
supervised approaches [29], [30]. While many of these prob-
lems are within the class of image-to-image translation, they
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generally assume that labels are widely available and focus on
individual sensors. To the best of our knowledge, no studies
have developed approaches to synthesize spectral information
by learning across satellites in the unsupervised setting.

B. Image-to-Image Translation

Many problems can be defined as an image-to-image
translation task, including super-resolution, style transfer, and
colorization. Approaches to image-to-image translation have
been developed for both supervised and unsupervised set-
tings to map images from one domain to another. In the
supervised setting, image pairs are available to learn a direct
mapping from one to the other. GANs have been shown
to be highly successful at this task [31], [32]. Numerous
unsupervised learning methods have been developed for the
common case of large unpaired datasets [14], [15], [33], [34].
CycleGAN, for instance, proposed an approach to directly
map from one domain to another and back by incorporat-
ing a cycle-consistency loss with a GAN [15]. UNIT [14]
proposed a probabilistic approach that uses an intermedi-
ate latent space between domains with a VAE [35] and
GANs [17]. In contrast to prior work on image-to-image trans-
lation, our scenario specifically requires spectral translation
and across multiple domains. Rather than translating between
relatively low-dimensional RGB images and segmentation
maps, as is found in traditional multimodal image-to-image
translation [36]–[38], satellite imagery contains tens to hun-
dreds of spectral bands. Domain adaptation is another area of
active research, which also considers the case of effectiveness
in unseen environments with cycle consistency and domain
invariant [39], [40]. Lee et al. [41] used a shared content loss
to translate between RGB image styles. Sanchez et al. [42]
presented an application of image-to-image translation for
four-band Sentinel-4 images between different times of day.
Using VAEs and GANs, their approach provided 94.5% accu-
racy in classifying ten land-cover types in the EuroSat dataset.
Our approach is based on the proven fundamental techniques
of learning a shared latent space using cycle-consistency and
adversarial losses extended in the spectral dimension. We also
use the prior understanding of spatial consistency between
domains to implement a partial skip connection.

C. Variational Autoencoders

Autoencoders (AEs) are widely used in deep learning to
encode high-dimensional data to a lower dimension represen-
tation [43]. AEs consist of two stages, encoding and decoding
networks, and are learned in an unsupervised manner. The
encoder network E(x) takes an input x to a low-dimensional
representation and inputs a decoder, written as G(E(x)). AEs
can then be trained with a mean square error loss to reconstruct
the input, �x − G(E(x))�2. While AEs are well suited for
compressing a high-dimensional feature space, there is little
control on the distribution of the latent space and can lead to
severe overfitting.

In contrast to AEs, VAEs are generative models, which aims
to learn an intermediate “latent” variable z as a compressed
representation of the input. This is done by first encoding the

data to z followed by a sampling operation and decoding
to the original domain [35]. More formally, VAEs model
the latent space as a probability distribution such that the
likelihood is written as p(x |z) = p(z|x) ∗ p(z). The prior
distribution p(z) is generally assumed to be Gaussian where
p(z) = N(0, I ). The posterior distribution p(z|x) is then
approximated as q(z|x) = N (E(x), c ∗ I ), where c is a
constant. Conditioning on the latent space z to reconstruct x
is then written as p(x |z) = G(z). The loss of a VAE is then
written as �x − G(z)�2 − KL(q(z|x)�p(z)) where KL is the
Kullback–Leibler divergence measuring the relative entropy
between two probability distribution. KL is formally defined
as

KL(q(z|x)�p(z)) =
∑

x

p(z)
p(z)

q(z|x)
. (1)

With this approach, we are able to generate previously
unseen examples from a constrained probabilistic latent space.
Previous examples of VAEs in remote sensing include clas-
sification [44], hyperspectral unmixing [45], and feature
extraction [46].

D. Generative Adversarial Networks

GANs have been found to be an effective approach to
generate outputs that could realistically exist in the training
set [17]. These models have been widely applied in computer
vision for generating high-resolution images [47], medical
imaging [48], and many others. In remote sensing, GANs
have been shown to be effective at super-resolution [49], pan
sharpening [50], and hyperspectral classification [51]. The
idea of GANs is to learn a classifier to discriminate between
real and generated examples, named an adversarial network.
The generator then aims to fool the discriminator D(x) by
learning to produce realistic looking outputs from a random
variable z. To learn these functions, the generators G(z) and
D(x) compete with each other as a minimax optimization
problem. The corresponding loss for GANs can be written
as: L(�) = Ex(log(D(x))) + Ez(log(1 − D(G(z)))) where z
is a random variable. This loss can then be optimized through
gradient descent.

III. APPROACH

VAEs and GANs are effective for image-to-image trans-
lation where pairs of images are not available [14]. This is
the case for satellites with no space–time overlap. However,
as in [14], a shared latent variable z can be used to approxi-
mate the joint distribution from marginal. An adversarial loss
applied to cross reconstructions satisfies the shared latent space
assumption but is underconstrained for high-dimensional, mul-
tispectral images. We shall observe that this leads to large
errors in our task. To address this, we introduce a shared
spectral reconstruction loss and skip connection to effectively
generate synthetic spectral bands (see Fig. 2), and the result
is a 50%–80% reduction in mean absolute error (MAE).

In the spectral domain, we consider the case of K satellites,
S = {S1,S2, . . . ,SK }, such that Sk ∈ R

H×W×Bk is a set of Bk

spectral bands with height H and width W , shown as a Venn
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Fig. 2. (Left) Network architecture for K = 3 satellites. Encoders (Ek ), decoders (Gk ), and discriminators (Dk ) are networks with residual blocks. Losses
terms are highlighted in red. (Right) Venn diagram shows how spectral bands can overlap between pairs and multiple satellites.

diagram in Fig. 2. The union of all sets, ∪K
i=1Sk , represents

the complete set of spectral channels in the data. We denote
the intersection of two spectral sets as overlapping bands. Our
goal is to generate synthetic bands well where Si ∩Sc

j �= ∅ for
∀(i, j), with c the complement. A shared latent variable z is
modeled with a Gaussian prior to learn a general representation
for mapping between sets such that the assumptions of shared
spectral reconstruction, weight sharing, cycle-consistency, and
cross-domain adversarial losses are satisfied.

A. VAE-GAN

For a given spectral set k, we define encoder–generator
pairs {Ek, Gk} such that q(zk |sk) = N (Ek(sk), I ) and ŝk→k

k =
Gk(zk ∼ qk(zk |sk)) for sk ∈ Sk . For any set j , ŝk→ j

k
corresponds to reconstruction from set k to j . The set of
encoders {E1, E2, . . . , Ek} shares their last layer of weights to
constrain the latent space to high-level representations. Using
prior pη(z) ∼ N (0, I ), the VAE likelihood is defined as

LVAEk (E, G) = θ1KL(qk(zk |sk)�pη(z))

− θ2 Ezk∼qk (zk |sk)[logpGk (sk |zk)]. (2)

Distributions pGk are modeled as Laplacian distributions and
a Gaussian latent space with prior z ∼ N (0, I ). GANs are
used to enforce realistic spatial/spectral distributions of recon-
structed images from the latent space. Discriminator networks
D1–Dk compare observations with cross reconstructions from
the latent space

LGANk = θ3Esk∼PSk
[log Dk(sk)]

+ θ3

∑

j �=k

Ez j ∼PSk
[log (1 − Dk(Gk(z j)))]. (3)

Network architectures for Ek, Gk, and Dk follow those used
in [14]. Our encoder, Ek , is a CNN with one downsampling
layer and 64 units in the latent space. Weights of the last

layer are shared between encoders to constrain the latent
space. The decoder, Gk , is also a CNN with four residual
blocks and one convolutional transpose layer for upsampling.
The discriminator, Dk , consists of two hidden layers with
leakyrelu activation and average pooling and is learned with a
least-square GAN loss. For details, we refer the reader to the
code in the Supplementary Material.1

B. Cycle Consistency

VAE and GAN losses are underconstrained and do not
satisfy the shared latent space constraint alone. As in [14],
a cycle-consistent loss is used such that sk = Fj→k(Fk→ j (sk))
for all satellite pairs ( j, k), where Fk→ j (sk) = G j(Ek(sk)).
The loss between sk and cycled reconstruction ŝk→ j→k

k is
written as

LCCk→ j (Ek, E j , Gk, G j )

= θ4KL(qk(zk |sk)�pη(z))

+ θ4KL(q j(z j |sk→ j
k )�pη(z))

− θ5Ez j ∼q j (z j |sk→ j
k )[logp(Gk(sk |z j))]. (4)

With multiple domains, each domain should cycle through
every other domain. The cycle-consistency loss for each per-
mutation results in a complete cyclical graph. This loss is
written as

LCCk =
∑

k �= j

LCCk→ j (Ek, E j , Gk, G j ). (5)

C. Shared Spectral Reconstruction Loss

Adversarial losses can be easily fooled with increased
dimensions. To help avoid this, we introduce an additional

1Code: https://github.com/tjvandal/unsupervised-spectral-synthesis
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Algorithm 1 Generate a Synthetic Band by Translating
From One Satellite to Another
Result: Synthetic spectral band
Image sk from satellite k;
Encode to latent space z = Ek(sk);
Decode to other satellite s̃ j = G j(z);
Select synthetic band from s̃ j ;

loss, LSSRk . In this problem, if the intersection of spectral
channels Sk, j = Sk ∩ S j between domains is not empty,
then the difference between p(sk→k

k |zk) and p(sk→k
k |zk) can

be minimized with KL divergence

LSSRk = θ6

∑

j �=k

KL
(

p
(
s̃k→k

k

∣∣zk
)∥∥p

(
s̃k→ j

k

∣∣zk
))

(6)

where s̃k ∈ Sk, j . The SSR loss encourages decoders to recon-
struct identical spectral wavelengths with similar distributions
while still synthesizing dissimilar bands. In this scenario,
partial constraints are placed between domains and allow
sampling of unobserved spectra from the shared latent space.
By decreasing θ6, the bias between bands will be relaxed,
which may reduce the effect of more uncertain domains.

D. Total Loss

The likelihood is maximized by optimizing the GAN mini-
max problem such that the generator aims to fool the discrim-
inator, alternating updates between (E, G) and (G, D)

L = min
E,G

max
D

K∑

k=1

[LVAEk + LCCk + LGANk + LSSRk ]. (7)

The hyperparameters used correspond to those in [14] and
set as θ1 = 1, θ2 = 0.01, θ3 = 1, θ4 = 1, θ5 = 0.01, and
θ6 = 0.1. The Adam optimization is used to train the networks
for 200 000 steps with a batch size of 8 with parameters β1 =
0.5, β2 = 0.999, and learning rate 1e − 5. The reader can find
the detailed information in the Supplementary Material. In the
following, we show the steps for generating a new band.

E. Data

Three GEO satellite imagery datasets, GOES-16 (G16),
GOES-17 (G17), and Himawari-8 (H8), are used in our
experiments. Each satellite captures hemispheric (full-disk)
snapshots from a constant vantage point over time but of
different regions. Examples are shown in Fig. 1. Images
contain 16 bands (channels) in the visible, near-infrared, and
thermal spectrum at 0.5–2-km spatial resolution (see Table I).
G16 and G17 have identical specifications viewing the east
and west regions of North America and include two visi-
ble (blue, red), four near-infrared (including cirrus), and ten
thermal infrared bands. H8 has 15 overlapping bands with
G16/G17 viewing the Pacific Ocean and East Asia, and this
ensures similar information content. H8 captures three visible
(blue, green, and red), three near-infrared (missing cirrus), and
the same ten thermal infrared bands as G16/G17. Visible and
near-infrared bands are measured as reflectances in the unitless

TABLE I

SPECTRAL BANDS AND WAVELENGTHS (μm) FOR GOES-16/17 ABI AND
HIMAWARI-8 AHI. INCONSISTENT BANDS IN HIGHLIGHTED BOXES

range 0–1.6. Thermal infrared bands capture temperature in
units kelvin (K). Thus, the G16 and G17 bands all overlap,
cirrus (1.37 μm) exists in G16 and G17 but is not in H8, and
green (0.51 μm) exists in H8 but not in G16 or G17. These
differences cause difficulties when applying models relying on
green or cirrus bands across satellite sets.

G16 observes the North, Central, and South Americas,
capturing a good distribution of land and ocean. G17 observes
the Pacific Ocean as well as most of North and Central
America. However, G17 has known problems with its thermal
cooling system causing the near- and thermal-infrared chan-
nels to be unusable during periods of high heat and biased
throughout [52]. This further highlights the gain in replacing
low-quality bands of G17 with a virtual sensor. Periods of high
heat are filtered out of our training and test sets with quality
control checks to eliminate the temporal periods of known
uncertainty. After quality control, considerable space–time
overlap between G16 and G17 can be used for testing.
H8 observes East Asia, Australia, and the Western Pacific,
partially overlapping with G17. Discrepancies are expected
between sensors caused by different solar and sensor viewing
angles, but we are not aware of a more appropriate dataset
for evaluation. The data generated by Wang et al. [53] are
used, which normalized G16, G17, and H8 to a common
georeferenced gridding system in order to facilitate inter-
comparisons and processed with the bidirectional reflectance
distribution function (BRDF). Bands have resolutions varying
from 500 m to 2 km which we interpolate to a common
suboptimal resolution of 2 km. Full-disk images are on a
common grid with tiles of size 300 × 300 × 16. Training data
are generated from the multipetabyte datasets. We randomly
sample images to build a well-distributed and large training
dataset from years 2018 (G16, H8) and 2019 (G17), which
totaled 359 GB of data. Each tile is split into 64 × 64 ×
16 nonoverlapping patches for training, generating millions of
samples.
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Fig. 3. Overlapping regions shown in true color between (a) H8/G17 and
(b) G17/G16 with the corresponding land masks.

A test set including 2000 randomly selected tiles from 2020
from overlapping G16 and G17 observations (see Fig. 3).
The random set of tiles assures a range of solar angles,
system patterns, and land-cover types. This dataset will be
made publicly available consisting of tiles from each satellite.
Similarly, a pair of overlapping tiles of data from G17 and
H8 on January 2, 2019, at 04:00UTC are selected to compare
synthetically generated green and cirrus bands (spatial overlap
of G17/H8 is mostly ocean).

IV. EXPERIMENTS AND DISCUSSION

In this section, we present a set of experiments to explore
the properties of our approach by testing which bands can be
robustly synthesized, how many bands can be generated, and
how effectively the proposed loss performs. The metrics Bias,
MAE, and Precision are used for evaluation. Relative metrics,
RBias and RMAE, are computed by dividing by the mean
intensity of the relevant band.

A. Individual Band Synthesis

Our experiments start with testing how well each spectral
band can be synthesized. To do this, we remove individual
bands from one satellite (G16) during training, synthesize
these bands, and compare with the ground-truth observations.
We use the full set of bands from the other two satellites
during training. This approach is applied on G16 such that
each model takes 15 bands of G16 and 16 of G17 and H8.

Three comparisons are used to help put the accuracy of
synthesized bands for G16 into context. Ours refers to bands
generated using our proposed approach with both SSR loss
and skip connection. Ours w/o SSR refers to bands generated
with our proposed approach without the shared spectral recon-
struction loss. Ours w/o Skip refers to bands generated with
our proposed approach without the skip connection between
the input and generator. UNIT refers to the unsupervised
image-to-image translation baseline as presented in [14] and
is equivalent to ours without SSR and skip connection. Sen-
sor refers to the performance if we simply use overlapping
observations from another satellite (G17), and this acts as our
lower bound in performance and is actually the status-quo

TABLE II

MEAN RBIAS, RMAE, AND PRECISION FOR VIS/NIR (REFLECTANCE IN
THE RANGE 0–1.6) AND TIR (TEMPERATURE K) BANDS BY METHOD

(essentially substituting the missing band with images from
the same band but from another satellite, which as we shall
see is a suboptimal solution). Reconstruction refers to the
images reconstructed from a full model trained on all satellites
with no missing bands, and this acts as our upper bound in
performance. Each of these signals is computed on our test
set of 2000 overlapping tiles from G16/G17. Fig. 4 shows the
RBias, RMAE, and Precision for each condition. Similarly,
Table II shows the average metrics for VIS/NIR and TIR of
each method.

The MAE in the sensor condition is substantial and largely
caused by clouds/aerosols in the vertical direction (see gif in
the Supplementary Material). On the other side, synthetically
generating bands using our approach substantially reduces
MAE by over 40% compared to both this baseline and UNIT
(see Table II). Similarly, synthesized bands also improve
upon the view from G17 even though during training they
did not see examples of the corresponding band from G16.
Mean biases for all approaches are all near zero but have
cross-sensor, UNIT, and ours w/o SSR each have high vari-
ance, corresponding to similarly low precision. In contrast,
our approach performs similar to reconstruction with lower
variance around the mean bias and high precision. Ablation
experiments removing the shared spectral reconstruction loss
and the skip connection show their effectiveness. SSR is
critical to learning a robust latent space and the skip con-
nection improves both VIS/NIR and TIR predictions in terms
of RBias, RMAE, and precision. We observe that without
introducing the SSR loss, performance is even worse than
the sensor baseline. From this, we learn that applying an
existing image-to-image translation model [14] to our task,
without adaptation, performs poorly. We find that band 7,
the shortwave infrared band (3.9 μm), is particularly difficult
to synthesize with RMAE, RBias, and precision significantly
above that of the full reconstruction. This result suggests that
the shortwave infrared band captures information that cannot
be inferred from the others. Notice how the wavelength gap
between bands 7 and 8 is relatively large (2.3 μm), and
this may explain why the performance is poor. In the future,
a similar and more extensive analysis could be used to inform
future satellite design configurations.

We show qualitative examples of generating synthetic bands
in Figs. 1 and 7. GOES-16 and GOES-17 images in Fig. 1
show the examples of true-color images generated from a
synthetic green band. This process is applied to Himawari-8
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Fig. 4. MAE of a substitute sensor (GT observations from a separate satellite), synthetic sensor without SSR, synthetic sensor without skip, synthetic sensor,
and reconstructed sensor (reconstructed images from a full model with access to all bands) for each band. The wavelength of each band is shown below the
band number. (a), (c), and (e) include visible and near infra-red (no physical units), while (b), (d), and (f) include thermal infrared measured in kelvin.

to generate a cirrus band (shown in Fig. 7). While there may
be challenges in synthetically generating all bands, most can
be reconstructed with a high signal-to-noise ratio and this
suggests that our approach could be used to make software
updates to current satellite datasets.

B. Land Versus Ocean Conditions

We analyze land versus ocean conditions using the models
trained in the previous experiment synthesizing individual
bands. Specifically, for each sample, we compute RBias,
RMAE, and Precision for land and ocean pixels separately
using the MODIS land/water mask shown in Fig. 3. The results
are shown in Fig. 5 boxplots such that the columns represent
metrics and rows correspond to VIS/NIR and TIR bands.

Overall, we find larger errors and reduced precision over
land conditions compared to ocean areas. However, the bias,
error, and precision of our approach outperform baselines cross
sensor and UNIT consistently. Precision for VIS/NIR suggests
that land areas are more challenging to recover compared to
ocean but continuously outperform the baselines. Future work
extended to surface reflectance may consider a similar analysis
over different land-cover types. Results on TIR bands show
high precision with very low bias.

C. Synthesizing Multiple Bands

Generating synthetic channels from satellites with a limited
number of spectral bands could be of significant value for
long-term analysis. For example, older generation satellites
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Fig. 5. Performance of models over land versus ocean. Columns correspond to (a) and (d) RBias, (b) and (e) RMAE, and (c) and (f) Precision, while (a)–(c)
rows correspond to visible and near-infrared (reflectances) and (d)–(f) thermal infrared (temperature K).

Fig. 6. Horizontal lines correspond to the sensor signal and error bars
represent 95% confidence intervals of tile MAE. (i) and (ii) Results of an
experiment synthetically generating more and more bands. (iii) and (iv)
MAE as a function of number of bands shared between spectral sets.
(i) and (iii) correspond to visible/near infrared and (ii) and (iv) correspond to
thermal infrared.

often have fewer channels and could provide greater utility in
downstream tasks if it was possible to generate images in addi-
tional frequency bands. Therefore, we set up an experiment to
test how many additional bands can be synthesized reliably and
how many initial bands are required. A set of synthesis models
were trained on G16, removing bands one by one until just
one band was left and while keeping all 16 G17 and H8 bands.
For simplicity, and to reduce computation, we dropped bands
in a fixed order: 9, 4, 13, 2, 15, 12, 6, 3, 10, 8, 14, 5, 11, 7,
and 16. In the most extreme case, we use visible band 1 and
attempt to synthesize the remaining 15. As above, results
are computed on the test set of 59 overlapping G16 and
G17 tiles. The results presented in Fig. 6 (left) show how

the number of available input bands affects the MAE for
VIS/NIR (bands 1–6) and TIR (bands 7–16). As expected,
MAE falls more or less monotonically as more bands are given
as inputs. When just two bands, 1 (blue) and 16 (TIR), are
used as inputs, the synthetic TIR reconstruction of G16 still
has a lower error than the observed sensor difference between
G16 and G17. These results show that few bands are needed
to synthesize images that improve upon the status quo. In the
TIR range, we find that MAE plateaus after 3–4 bands are used
as inputs. These results suggest that the information content
in a subset of bands may be sufficient for many applications.
However, we should be prepared that some bands may contain
specific information useful for monitoring rare events. Overall,
these results show that a good proportion of bands can be
synthesized remarkably well.

D. Sharing Spectral Losses

The effectiveness of the shared spectral reconstruction loss
is tested by gradually increasing the number of shared bands
included in the loss one by one. Mathematically, this corre-
sponds to the number of bands included in the set Sk, j . In all
runs, 16 bands of G16, G17, and H8 are used even if ignored
by the SSR loss. Fig. 6(iii) and (iv) shows that the effect
of adding shared bands during training leads to a dramatic
decrease in MAE. Corresponding cross-sensor signals are
shown as horizontal lines. In this setting, we find that using
the SSR loss is critical to learning this model. Sharing two
spectral bands in the loss function improves the signal and
is almost all that is needed for accurate reconstruction. This
further reinforces our insight above that a large amount of
the information is captured in just a few spectral bands.
In Table III, we further explore the SSR loss by testing a
range of values for θ6 from 0.01 to 10. Our results suggest that
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TABLE III

MAE FOR VIS/NIR (REFLECTANCE) AND TIR
(TEMPERATURE K) BANDS BY θ6

Fig. 7. Synthetically sensing cirrus from Himawari-8 using GOES-17. Images
are taken from (a) test set (January 2, 2019, at 4:00UTC). (a) G17 H8 observed
true color. (b) Cross-sensor observed G17 cirrus. (c) Synthetic H8 cirrus.
(d) Absolute difference between cross sensor and synthetic. (e) Histogram of
difference between cross sensor and synthetic.

increasing SSR weighting factor improves the performance on
the test set.

E. Synthesizing Cirrus for Himawari-8

As discussed above, the cirrus band (1.38 μm) monitors
ice particles in the upper troposphere which regulate the
climate, and H8 is missing this band. These ice particles
are often seen as thin clouds high in the atmosphere, which
may be viewed in the visible range, along with other clouds.
To generate a synthetic cirrus band, an H8 observation is
translated to G17. In Fig. 7, we show four images where
G17 and H8 have space–time overlap but different viewing
angles. Fig. 7(b)–(e) shows the cross-sensor G17 cirrus band,
corresponding H8 synthetic cirrus band, absolute difference
between cross sensor and synthetic, and histogram of differ-
ences, respectively. This scene consists of clouds of multiple
types and atmospheric heights on June 10, 2019, at 04:00UTC.
Cirrus clouds are found high in the atmosphere and are
seen as thin or wispy (see the lower right portion of the

images). Visually comparing images 7(b) and (c) shows the
similarity between synthetic bands and observations. Lower
level clouds, which can be seen throughout the true-color
image, are ignored by both the observed and synthetic cirrus
bands. However, from Fig. 4, we know that cross-sensor errors
are large relative to real observations. Hence, the quantitative
difference between synthetic and cross sensor is unsurprising.
The differences are normally distributed, which indicates ran-
dom noise. These results suggest that our learned latent space
can represent unobserved bands, distinguishing different types
of material.

F. Limitations

While the VAE-GAN architecture performs well overall,
it does present some limitations. VAEs aim to explicitly model
the data as a multivariate Gaussian and often produce blurry
outputs. The GAN counteracts this effect by discriminating
between real and generated images. However, there is a
concern that this reduces data precision and fails to detect rare
and anomalous events which may affect scientific applications.
Extending our work to use normalizing flows, as in [16], may
reduce this limitation.

V. CONCLUSION

We have presented an unsupervised learning approach for
satellite-to-satellite translation that can be used to synthesize
unobserved spectral bands. A novel shared spectral recon-
struction loss is presented to further constrain learning and
conserve spectral information and a partial skip connection
maintains spatial consistency. Experiments with sensors on
the GOES-16/17 and Himawari-8 satellites show that synthetic
spectral bands can be generated through reconstruction from a
shared latent space. For the first time, we are able to generate
true-color images from GOES-16/17 and the cirrus band from
Himawari-8, generating further value from these satellites.
Future work may consider conditioning the shared latent space
with known physical properties and extending to additional
tasks.
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