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Abstract— Ship tracking facilitates a comprehensive insight
into maritime traffic situations and ensures its safety and security.
However, with the current operational surveillance systems,
detecting several maritime threats is still a major challenge.
In this article, we propose a supportive ship tracking concept
using an airborne-based radar sensor. The proposed tracking
algorithm is suitable for dense multitarget scenarios. Track-
ing is performed in the range-Doppler domain. The primary
advantage of using the range-Doppler domain is that ships even
with low radar cross section moving with certain line-of-sight
velocity appear out of the clutter region, thus improving their
detectability. In addition, a powerful track management system
is also developed to handle false targets. The simulated and real
experimental results from the DLR’s airborne radar sensors,
F-SAR and DBFSAR, are presented to prove the concept.

Index Terms— Airborne radar, maritime safety, radar detec-
tions, radar tracking.

I. INTRODUCTION

MARITIME transport is considered as the backbone of
international trade and the world economy. While the

seaborne trade is in continuous expansion, the increasing
number of vessels for fulfilling the demands of the global pop-
ulation has stimulated the development of a robust, reliable,
and accurate maritime surveillance system [1].

State-of-the-art sensors that are used for maritime traffic
situational awareness are the automatic identification system
(AIS) [2] and marine radars [3]–[5]. These kinds of systems
are appealing and serve as the dominating source for the
localization and tracking of vessels [6]–[8]. Some of the major
limitations of these systems are given as follows.

1) Not all ships, especially the smaller ones, are equipped
with AIS transponders.

2) Marine radars suffer from limited visibility.
3) The targets of low radar cross section (RCS) and also

those targets that are lying in the shadow and blind sector
of the marine radar are difficult to detect.
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To deal with these limitations, spaceborne and airborne radars
are the desirable choices. One distinguishing feature of air-
borne radars is their flexibility to collect data with very high
resolution and with shorter revisit and longer observation
times. The performance of these radar systems is mainly
restricted by their endurance, which can be overcome in the
future by installing them on high-altitude platforms (HAPs)
or high-altitude pseudo satellites (HAPSs) that are flying in
the stratosphere for several days, weeks, months, or even
years [9], [10].

Unlike marine radars, with airborne radars, the targets are
observed and tracked differently, as illustrated in Fig. 1.

As shown in Fig. 1(a), in the case of the airborne radar,
the target is tracked as long as it is illuminated by the antenna
beam that itself moves at the speed of the aircraft. The antenna
in the shown example is nonsteerable, has wide beamwidth,
and is typically designed for synthetic aperture radar (SAR)
systems. On the other hand, in Fig. 1(b), the marine radar uses
a long rotating antenna to transmit a very narrow horizontal
beam [11]. The narrow antenna beam of marine radars allows
them to measure directly the range and azimuth (bearing)
of the target for a much longer time, limited mainly by the
revolutions per minute (RPM) of the antenna.

Several tracking approaches are available on ship tracking
using the marine radar [5], [12], [13]. However, current state-
of-the-art tracking algorithms published in the open litera-
ture are not well explored for tracking ships with moving
airborne radar platforms [14]. The available algorithms for
such platforms were originally designed for tracking road
vehicles [15]. They use low range-resolution data where the
vehicles of interest, in most cases, occupy not more than
a single resolution cell. For such cases, tracking can be
executed easily at the cost of limited detection performance.
For tracking extended targets, such as ships, additional efforts
are needed (see Section III).

A potential overall processing concept of maritime surveil-
lance using airborne radars is shown in Fig. 2.

As shown in Fig. 2, the major blocks of the processing
flowchart are detection, tracking, inverse SAR (ISAR) imag-
ing, and AIS data fusion. ISAR imaging and AIS data fusion
are out of the scope of this article.

We use range-compressed (RC) radar data (single-channel
or multichannel data) for airborne-based maritime
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Fig. 1. Acquisition geometries of (a) air and (b) marine-based radars. The
3-dB antenna beam and the targets within the beam are shown in the figure.
(c) Received signal for a single strip for (Top) air and (Bottom) marine
radars.

surveillance [16]. With the airborne or future HAP or
HAPS radars, the signal-to-noise ratio (SNR) in many cases
is sufficiently large. Therefore, there is no need to use fully
focused radar images. This saves the processing time and
paves the way for future real-time capability.

Ships are detected in the range-Doppler domain after apply-
ing the azimuth fast Fourier transform (FFT) to the RC data.
In the Doppler domain, ships even with low RCS, moving with
sufficient line-of-sight (LOS) velocity, are shifted out of the
clutter region, thus improving their detection capability [see
Fig. 4(a)].

Detected ships are then tracked to reconstruct their tra-
jectories. Like detection, tracking is also performed in the

Fig. 2. High-level flowchart of the ship monitoring steps using airborne radar
data.

Fig. 3. Flight tracks flown during the two-day North Sea campaign in
June 2016 (top: day 1; bottom: day 2).

range-Doppler domain. Tracking in range-Doppler has the
benefit that overlapping target signals in the time domain
can be separated in the Doppler domain if they are moving
with different LOS velocities. This is because the targets
moving with different radial velocities are shifted to different
Doppler frequencies. This is very advantageous for tracking
multiple targets, especially in dense multitarget scenarios. The
target tracks in the range-Doppler domain are needed for the
following.

1) Generating high-resolution ISAR image sequences after
successively extracting all the required ship data (see
Fig. 27), which later on aid to target recognition and
identification [17], [18].

2) Mapping the detections accurately on the ground after
computing additionally the direction-of-arrival (DOA)
angle of the target [19]. The ground tracks can later
be compared with the AIS data for validation purposes
(see Fig. 29).

Therefore, tracking in range-Doppler is indispensable and a
prerequisite for the aforementioned applications.
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Fig. 4. (a) Real X-band HH polarized RC airborne radar data in the
range-Doppler domain for a specific azimuth time. The ship signal (in the
exoclutter region) and the clutter band are marked in the figure. (b) Clustered
pixel-based detections belonging to the ship with its bounding box.

This article proposes a novel range-Doppler-based tracking
algorithm for tracking multiple extended targets using RC
airborne radar data. Extended targets in the data may give rise
to more than one detection per target per frame [5]. Therefore,
the extracted centroids of the targets are tracked using a
suitable state-space motion model. The overall multitarget
tracking (MTT) system is designed using an SQLite [20]
database structure. A powerful track management system is
also developed, which runs simultaneously within the tracker
to automatically recognize and terminate false or ghost tar-
gets. An additional challenge associated with tracking in
range-Doppler is the Doppler aliasing (or back-folding) effect.
In this article, the problem is briefly discussed with real exper-
imental results. To validate the proposed range-Doppler-based
tracking algorithm, the simulated and real linearly and cir-
cularly acquired experimental data from DLR’s (German
Aerospace Center) airborne F-SAR [21] and DBFSAR [22]
system are presented.

The remainder of this article is organized in the following
order. Details about the experimental airborne radar data are
provided in Section II. Ship detection and clustering algo-
rithms are discussed briefly in Section III. The concept of
the extended target tracking in the range-Doppler domain is
explained in Section IV. Track management is explained in
Section V followed by the Doppler aliasing phenomena in
Section VI. In Section VII, the results from the simulated and
real experimental data are presented. Section VIII concludes
this article with a short summary and discussion.

II. EXPERIMENTAL AIRBORNE RADAR DATA

Since, in the following, results based on real data are used
for the explanation of our proposed algorithm, we will discuss

TABLE I

RADAR SYSTEM AND ACQUISITION GEOMETRY PARAMETERS OF THE
SINGLE-CHANNEL X-BAND LINEAR AND CIRCULAR FLIGHT TRACKS

in the next paragraphs when and how these experimental data
were acquired.

A two-day F-SAR flight campaign was conducted in
June 2016 in the North Sea. All radar data, in a total of more
than 1 TB, were acquired fully polarimetric and simultane-
ously in the X- and L-bands. On the first day of the campaign,
the island Helgoland and the town Cuxhaven, including the
coastal areas and ships of opportunity, were observed, mainly
during linear flight tracks, but also during a circular track
with the radar antenna pointing not to the circle center but
to the opposite direction [see the red circle in Fig. 3 (top)].
On the second day, a dedicated experiment with a controlled
ship operated by the German federal police was carried out.
The ship moved with velocities of 0–20 knots (kn) between
three different waypoints. The circular flight tracks, this time
with the antenna pointing to the circle center, were flown with
a radius of 5600 m, resulting in a total ship observation time of
approximately 400 s (=6.7 min) per circle [see the red circle
in Fig. 3 (bottom)].

The acquisition geometry and the system parameters of the
linearly and circularly acquired real single-channel airborne
radar data are listed in Table I. Further details about the
conducted flight campaigns can be found in [17].

III. DETECTION AND CLUSTERING

The methodology proposed in [16] is used to detect ships
in the range-Doppler domain. In that paper, the authors have
proposed a constant false alarm rate (CFAR)-based ship detec-
tion algorithm, which is adapted for the RC airborne data.
After obtaining multiple pixel-based detections from a single
ship, clustering is applied to group these detections as a single
“physical object.”

A standard density-based spatial clustering of applications
with noise (DBSCAN) algorithm [23] is used to form the
ship clusters. An example of clustering a ship signal in the
range-Doppler domain of real X-band HH polarized F-SAR
data is shown in Fig. 4.

To perform tracking the center of the clustered ship, i.e., its
Doppler frequency and range position [see cluster centroid in
Fig. 4(b)] have to be estimated and tracked at successive times.
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Fig. 5. Illustration of the series of data in range-Doppler domain used for
target tracking. The clustered detections with the bounding boxes are shown
in the figure.

Therefore, we have computed here the center of gravity (COG)
of the cluster to be used for extended target tracking. Other
metrics, such as the center corresponding to the maximum
peak or the center of the bounding box, could also be used.
For our investigated airborne radar data and for almost all the
ships, we found COG to be more stable. It is worth mentioning
that principally 2-D correlation-based methods can also be
used for cluster center position estimation [24].

IV. TRACKING IN RANGE-DOPPLER

Target tracking is defined as the reconstruction of the
motion of the targets with associated parameter estimates
based on a sequence of noisy measurements at each time
step. In our case, tracking is completely performed in the
range-Doppler domain. The noisy measurements are the
estimated cluster center positions (COG in Section III).
Fig. 5 shows a schematic representation of the ship tracking
concept.

As shown in Fig. 5, the RC data are first partitioned along
the azimuth direction into small coherent processing intervals
(CPIs). The length of the CPI is data and system-parameter-
dependent. For the F-SAR data, each CPI has 128 azimuth
samples. Thus, with the pulse repetition frequency (PRF)
of 2.4 kHz, each CPI has a duration of approximately 53 ms.
After transforming individual CPIs to the Doppler domain,
ship cluster center positions are estimated and tracked at
each CPI.

The simplified processing steps of the proposed range-
Doppler-based tracker are shown in Fig. 6. The tracking
methodology can be summarized as follows.

1) Estimate the cluster center positions for each detected
target (see Section III).

2) Store the target position and its related motion parame-
ters in a database (see Section IV-A).

3) Associate the targets to already existing tracks for MTT
(see Section IV-F).

Fig. 6. Simplified processing flowchart of the proposed range-Doppler-based
tracking algorithm. The dashed black rectangular block in the figure is
important for ISAR imaging but not needed for tracking.

4) Run track management after every �tmng seconds for
updating the tracks (see Section V).

5) Monitor the Doppler frequency of the target (see
Section VI) for considering the Doppler back-folding.

The details related to each processing block in Fig. 6 are
sequentially presented in the following.

A. Database Structure

We have developed an SQLite database structure for storing
the detection and clustering results and also for doing target
tracking. The database has a table where each row of the table
represents a detected target at each CPI. The column contains
among others the target motion parameters. The database
is designed for storing and tracking an arbitrary number
of targets, limited only by the available memory and the
SQLite limitations. An example of a database table is shown
in Fig. 7.

The table shows that three exemplary targets were detected
at CPI = 0. These targets are stored in the database and have
their unique IDs (=unique row numbers), which increments
automatically with subsequent detections in the following
CPIs. Along the column of each row, parameters such as
the positions and the extents of the targets and also the data
patches belonging to the targets for ISAR imaging (dashed
block in Fig. 6) are stored. The table also has additional
columns, such as a relation and a predicted flag (PF). Their
importance and need are explained in Sections IV-F and V.

The detected ships (i.e., the cluster centers) at each CPI
are tracked by using a target motion model. Tracking can still
be performed without using any motion model. This is valid
only when the targets are detected at every time step, and the
time steps are relatively small (53 ms in our case). However,
without a motion model, gaps due to missing detections cannot
be bridged. The ability of the motion model to fill the gaps in
the detections is explained in Section IV-E.
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Fig. 7. Simplified representation of a database table. The detected targets
(along the rows) and their measured motion parameters (along the column)
are shown in the table.

B. State and Measurement Model

In this section, we define the state and measurement models
used for tracking targets in the range-Doppler domain.

Assume that a target is moving with constant velocity (CV)
on the ground. Such a target in RC data has an azimuth time-
dependent range and Doppler history [see Fig. 8(b) and (c)].
This is because the range between the moving radar platform
and a specific point of the target on ground changes.

The target’s CV motion on the ground with respect to time
(in the Cartesian coordinates) is given as

xt(t) = x0 + vx0t (1)

yt(t) = y0 + vy0t (2)

where x0 and y0 are the ground positions of the target at t = 0,
and vx0 and vy0 are the along-track and across-track velocity
components, respectively. If vp is the platform velocity, zt and
zp are the target and platform altitude with respect to the
ground, respectively, the target range r(t) as a function of
time [see Fig. 8(b)] can be written as

r(t)=
��

x0+vx0t−vpt
�2+�

y0+vy0t
�2+�

zt − zp
�2

�1/2
. (3)

The corresponding Doppler history fa(t) as a function of
time [see Fig. 8(c)] is obtained by

fa(t)= −2

λ

dr(t)

dt
(4)

where λ is the radar wavelength. Inserting (3) into (4), the
first-order Taylor series approximation of the Doppler history
[see Fig. 8(c)] can be written as [25]

fa(t) ≈ fDC + kat (5)

where fDC and ka denote the Doppler shift and the Doppler
slope, respectively. The terms fDC and ka are mathematically

Fig. 8. (a) Simulated moving point target on ground with a CV of 5 m/s and
a heading angle of 30◦ . Its corresponding (b) range and (c) Doppler frequency
history in RC data. (d) Target range plotted against its Doppler frequency. The
assumed platform velocity is 91 m/s, and the aircraft is flying at an altitude
of 5000 m over ground.

expressed as [25]

fDC ≈ − 2

λr10

�
y0vy0 + x0

�
vx0 − vp

��
(6)

ka ≈ − 2

λr10

��
vx0 − vp

�2 + v2
y0

	
1 − y2

0

r2
10


�
(7)

where r10 is the range between the antenna and the target
at t = 0. Using (6) and (7) in (3), the range history of a
target moving with CV on the ground [see Fig. 8(a)] can
be approximated using Doppler parameters in the following
way:

r(t) ≈ r10 − λ

2
fDCt − λ

4
kat2. (8)
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For simplicity, we write (8) as

r(t) ≈ r10 + urt + 1

2
art

2 (9)

where ur and ar can be considered as the initial velocity and
acceleration components of the range history and have values
of −(λ/2) fDC and −(λ/2)ka, respectively.

Inserting (5) into (8), the moving target range history as a
function of the Doppler frequency can be written as [26]

r( fa) ≈ r10+
	−λ fDC

2ka



( fa− fDC)+ 1

2

	−λ

2ka



( fa− fDC)2. (10)

Substituting f̃a = fa − fDC, (10) can further be written as

r
�

f̃a
� ≈ r10 + vdop f̃a + 1

2
adop f̃ 2

a (11)

where vdop and adop are the Doppler velocity and Doppler
acceleration, respectively. Equation (11) is depicted in
Fig. 8(d), where the quadratic behavior of the target’s range
history can be seen as a function of the Doppler frequency.

In this article, the target kinematics in the range-Doppler
domain, which are assumed to evolve in time, are expressed
by the following five-state vector Z(tk) ∈ �n , which is defined
as:

Z(tk) �

⎡
⎢⎢⎢⎢⎣

fa(tk)
ḟa(tk)
r(tk)
ṙ(tk)
r̈(tk)

⎤
⎥⎥⎥⎥⎦ (12)

where tk is the azimuth time corresponding to the CPI k
and the symbol � is the definition sign. The estimates fa(tk)
and ḟa(tk) are the Doppler frequency and its first derivative
[see (5)], respectively, and r(tk), ṙ(tk), and r̈(tk) are the
range and its first- and second-order derivatives [see (8)],
respectively. The components ḟa(tk), ṙ(tk), and r̈(tk) of the
target state vector in (12) are written as

ḟa(tk) = ka (13)

ṙ(tk) = −λ

2
( fDC + ka.tk) (14)

r̈(tk) = −λ

2
ka. (15)

To estimate the target kinematics shown in (12), the target’s
Doppler frequency and range can be approximated by CV and
constant acceleration (CA) motion models [27], respectively.
For the range history, a CV motion model can also be used
assuming that the range is piecewise linear due to the very
small-time intervals.

The received measurements (i.e., the cluster centers) are the
Doppler frequencies ( fam) and the range positions (rm) (see
Section III). The 2-D target measurement vector m(tk) ∈ �l

is defined as

m(tk) �
�

fam(tk), rm(tk)
�T

. (16)

The state-space motion model and the measurements dis-
cussed in this section are incorporated within the framework
of the Kalman filter (KF) [28]. It is computationally fast since
it uses the current measurement and the estimated state and

its uncertainty from the previous CPI in order to estimate the
true state at the current CPI. Nonlinear filters, such as the
extended/unscented KFs [29], could also be applied [see (11)];
however, their investigations are out of the scope of this
article.

C. Kalman Filter

The KF works in three stages. In the first stage, also known
as the initialization stage, the initial state mean Ẑ(0|0) and
the initial posterior error covariance of the state are set up.
We assume here that Ẑ(0|0) is the first detected position of the
target because the true position of the target at k = 0 cannot
be known in advance. The initialization of the error covariance
matrix of the target state is explained in Section IV-D2.

In the prediction stage, the target dynamics [see (12)] are
predicted by using a motion model described in Section IV-B.
The KF equations for the prediction stage are

Ẑ(k+1|k) = F Ẑ(k|k) (17)

P(k + 1 | k) = F P(k | k)FT + Q (18)

where Ẑ(k + 1|k) is the predicted state at k + 1 given the
state estimate Ẑ(k|k) at k. The matrices P(k +1|k) and Q are
the n × n covariance matrices of the predicted state and the
process noise, respectively.

The state transition model F applied to the previous state
Ẑ(k|k) to predict Ẑ(k + 1|k) is written as

F =

⎡
⎢⎢⎢⎢⎢⎣

1 TCPI 0 0 0

0 1 0 0 0

0 0 1 TCPI T 2
CPI/2

0 0 0 1 TCPI

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

(19)

where TCPI is the time interval corresponding to one CPI (see
Fig. 5).

In the last stage, i.e., the update stage, the predicted state
and the covariance matrix from (17) and (18) are updated
based on the received noisy measurements [see (16)]. The
updated target state Ẑ(k + 1 | k + 1) and the associated covari-
ance matrix P(k + 1|k + 1) then become

Ẑ(k+1|k + 1) = Ẑ(k+1|k) + K (k + 1)D(k + 1) (20)

P(k + 1 | k + 1) = (I − K (k + 1)H )P(k + 1 | k) (21)

where I is the identity matrix and H is the l × n observation
matrix that transforms the state space to the measurement
space. Here, n and l are the dimensions of the target and the
measurement states, respectively. The matrix K (k + 1) is the
Kalman gain, and D(k + 1) is the innovation (or the residual
vector), which are expressed as

K (k + 1) = P(k + 1 | k)H TS(k + 1)−1 (22)

D(k + 1) = m(k + 1) − m̂(k + 1 | k) (23)

where m̂(k + 1 | k) = H Ẑ(k + 1 | k). The matrix S(k + 1)
in (22), commonly known as the measurement prediction
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TABLE II

DETAILS OF THE REAL AIRBORNE RADAR DATA TAKES USED FOR
THE INITIALIZATION OF KF MATRICES. THE DATA WERE ACQUIRED

USING LINEAR FLIGHT TRACKS. NOTE THAT THE SHIP SHOWN IN

THE TABLE IS ALSO USED IN THE CIRCULAR

FLIGHT EXPERIMENT

TABLE III

ESTIMATED R MATRIX FOR DIFFERENT DATA TAKES. FIRST AND SECOND

VALUES OF THE DIAGONAL MATRIX CORRESPOND TO VARIANCES IN
DOPPLER AND RANGE, RESPECTIVELY

covariance matrix or innovation covariance matrix, is written
as

S(k + 1) = H P(k + 1 | k)H T + R (24)

where R is the l × l measurement noise covariance matrix. The
significance of the matrix S(k + 1) and the innovation vector
D(k + 1) in terms of MTT are explained in Section IV-F.

D. Initialization of the Kalman Filter Matrices

Kalman filtering requires the initialization of the P(0|0),
R, and Q matrices. They are set offline based on either
simulated or already available real experimental data and
are kept constant throughout the filtering process. This is
because the online estimation of these matrices is difficult as
we do not have the ability to observe the process that we
are estimating [30]. However, a fairly good approximation
of R can be made by using the cluster centers themselves.
In this section, we give, in our case, the plausible initialization
values of R, P(0|0), and Q matrices. To initialize these
matrices, three linearly acquired real X-band HH polarized
experimental RC data were investigated. Each data had a
real single controlled moving ship. The specifications of the
data (e.g., wavelength and PRF) are listed in Table I, and
details about the experiments were already given in Section II.
Additional details of the radar data and the ships in the data
are given in Table II. We found that these three acquisitions
were sufficient to retrieve suitable initialization parameters of
the KF.

1) Initialization of R: The R matrix is a diagonal matrix
that stores the variance of the deviations between the received
measurements and the true measurements (see Table III).
The received measurements are the cluster centers that were
computed at each CPI using the methodology presented in
Section III. The true measurements in our case are assumed
as the higher order polynomial fitting to the received noisy

Fig. 9. Standard deviation over azimuth for (a) measured Doppler and
(b) range positions of a real ship signal.

measurements. This is because the single true position of
an extended target in high-resolution data cannot be known
accurately because of the ship dimensions.

After having at each time instant the true and the received
measurements from the ship, the variances are computed
over azimuth. Fig. 9 shows the square root of the computed
variances, i.e., the standard deviation plot of the measured
Doppler and range positions of the ship in data take I (see
Table II).

As shown in Fig. 9, the uncertainties for both Doppler and
range vary significantly over time. This is mainly because
of the unstable estimated cluster centers. The factors that
contribute to the instability of the cluster centers are the
ship extents (see Table II), their amplitude fluctuations in
the data, and the Doppler and range bin sizes, which, for the
investigated F-SAR data, are approximately 20 Hz and 0.3 m,
respectively.

In order to set the initials for the R matrix, the mean
standard deviations in Doppler and range are computed using
the results shown in Fig. 9. The obtained values are then
squared to get the mean variances that are listed in Table III
for three different data takes.

Using Table III as a reference, the initial values of the R
matrix are set as diag(350, 5). The initialization is, however,
data-dependent and is usually recommended to be set higher
as the obtained estimates.

2) Initialization of P(0|0): The initialization of P(0|0) is
based on our knowledge about the initialization error of the
target states. If it is assumed that the initial state is far from its
true state, then P(0|0) should be set higher. We also assumed
that we have no information about the typical values of P(0|0),
and therefore, we can write P(0|0) = σ 2

p0 In, where In is the
identity matrix and n is the number of target states (see (12),
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Fig. 10. KF-based trajectory reconstruction of a real moving ship present
in data take I (see Table II). The noisy cluster centers can be seen in the
figure. The ship track is shown in the range-Doppler domain using different
initializations of σ 2

p0.

where n = 5). The only tuning parameter of P(0 | 0) is σ 2
p0.

Fig. 10 shows the impact of different initializations of σ 2
p0 on

the trajectory of a real moving ship in the Doppler domain.
In Fig. 10, it is observed with lower initialization values

(i.e., P(0|0) = 0.01I5); the predictions are trusted more and
more at the beginning. As a result, the cluster centers are
ignored, and larger errors are observed. Therefore, we set
P(0 | 0) = 1000I5 in order to avoid the discrepancies at
the beginning of the estimation. Although it is fixed initially,
it gets updated with successive times minimizing the estima-
tion error [see (21)].

3) Initialization of Q: The Q matrix represents the expected
uncertainties in the state equations. The uncertainties are
due to the modeling errors, measurement errors, and the
approximations made in the derivations [see (5) and (8)]. The
initialization of Q is not straightforward and is constructed
intuitively. To do so, we have tabulated different initial values
of Q after fixing R and P(0 | 0)(see Table III and Fig. 10) and
checked how their initialization affects the Doppler frequency
and range position accuracies. The true state to compute the
RMSE (root mean square error) in the Doppler and range is
again the higher order polynomial fit to the measurements (as
done for Fig. 9). The results are shown in Table IV where we
performed the investigations again for the same three different
data takes.

From Fig. 10 and Table IV, it is clear that the best accuracy
is achieved with a high value of P(0|0) and low value of Q.

In a concluding remark for the matrix initialization of the
KF, it can be said that R should be estimated offline using
either simulated or already available real experimental data.
The matrix P(0|0) should be set higher, and Q should be set
lower. From now on, for further investigations, we set R =
diag(350, 5), P(0|0) = 1000In, and Q = 0.01In.

4) Filter Consistency: With the given initializations,
the consistency of the KF for the real data with extended
targets and the airborne acquisition geometry is checked by
computing the normalized innovation squared (NIS) [31].
NIS is a statistical hypothesis test for detecting the model
mismatch. If the initializations of the KF filter are properly set
then for l = 2 degrees of freedom, NIS should be chi-square

TABLE IV

DOPPLER FREQUENCY AND RANGE RMSE ASSESSMENT FOR DIFFERENT
INITIALIZATIONS OF Q AT P(0|0) = 1000I5 AND R = DIAG(350, 5).

THE NUMBERS IN BOLD SHOW THE BEST ACCURACY ACHIEVED

WITH THE GIVEN COMBINATION OF Q

Fig. 11. NIS computed for a real ship signal. The bounds are marked by
the horizontal red dashed lines in the figure.

(χ2) distributed, and within the two-sided 95% confidence
interval, the NIS bound (or the acceptance region) is given by
[0.05, 7.38]. If a lot of the computed NIS points lie outside
the given bound, then there is a serious mismatch and the
initializations have to be set properly. In this article, we show
the NIS plot of data take I (see Table II) in Fig. 11.

As shown in Fig. 11, the computed NIS values of a real
ship in data take I are within the given bounds (horizontal red
dashed lines in the figure). Here, only the upper bound is of
interest because the lower bound is practically zero (0.05), and
it is shown that the NIS is well below the upper bound [31].
Although not shown, the NIS for the other two data takes also
satisfies the criteria. This means that the proposed model and
the selected initializations can be used.

E. Maximum Manageable Gap as Motion Model
Performance Measure

In real scenarios, it is expected that there will be missing
measurements at certain azimuth times. This could be due
to the lower backscatter received from the moving target or
when the target is not illuminated by the antenna beam [see
Fig. 25(a)] [17]. In such situations, the KF is able to give a
predicted position [see (17)].
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Fig. 12. Illustration of the range history of a single moving target in the
range-time domain with an artificially introduced gap.

TABLE V

ANALYSIS OF DIFFERENT METHODS IN TERMS OF TIME IN SECONDS

AFTER WHICH THE TARGET TRACK AND THE POSITION ARE LOST.
THE POSITION ACCURACIES ACHIEVED USING DIFFERENT

METHODS ARE ALSO SHOWN. THE NUMBERS IN BOLD

SHOW THE BEST ACHIEVED ACCURACY. THE RESULTS

ARE FROM REAL SHIP SIGNALS IN THE X-BAND
HH POLARIZED F-SAR DATA

However, inaccurate predictions of the missed measure-
ments may further lead to a track loss. Therefore, we have
investigated and compared “CV only” and (CV +CA) motion
models of the KF to assess their performance in the presence of
missed measurements. In the “CV only”-based motion model,
along with the Doppler, the range history is also modeled as a
CV by assuming it as piecewise linear. The (CV+CA) motion
model was already discussed in Section IV-B.

For the investigations, the gaps in the data were artificially
introduced (see Fig. 12). The gap duration was successively
increased to a point after which the target track is lost. The
performance achieved using the motion models is compared
with the one where no motion model is considered. The results
are shown in Table V again for the same three data takes (see
Table II). The position accuracies are also evaluated.

From Table V, it can be seen that, although, in terms
of the position accuracy, all methods perform similarly, the
(CV+CA)-based target motion model can still be considered

Fig. 13. Principle of the relation generation in the database. Arrows of the
same color indicate the link between the unique IDs for one target detected
at each CPI. In the relation field, the unique ID of the previous detection
belonging to the same track is listed.

as a better model based on the track duration (e.g., 9.5 s for
data take III).

In the following, we explain the use of relations and unique
IDs (see Fig. 7) to form the tracks of an arbitrary number of
targets.

F. Relation Generation Using Database
For tracking targets, it is essential to establish a rela-

tion between the detected targets at a given CPI and the
already existing tracks from the previous CPI. Fig. 13 shows
an example of the concept of relation generation using a
database structure for tracking three consecutively detected
targets.

In Fig. 13, there are three detected targets at CPI = 0. These
targets are assigned to unique IDs. The unique IDs are the row
numbers of the database table, and for a newly added row, it is
incremented automatically.

If the same three targets are detected in the next CPI,
the unique IDs are again generated (i.e., new rows are added
into the database). The relation columns of these newly added
rows are now updated with the unique IDs of the same targets
from the previous CPI (see the relation columns at CPI = 1
and the Unique ID columns at CPI = 0 in Fig. 13). After the
tracking is over, a link between the unique rows belonging
to the same target is established (arrows of the same color
in Fig. 13). For instance, in the figure, it is shown that unique
IDs 7-4-1 (green arrow) belong to the same target and likewise
for the other two targets. A relation of −1 indicates that the
target is detected for the first time and has no relation with
any previously existing tracks.

1) Target to Track Association: Previously, it was shown
that unique row numbers belonging to the same target at
different CPIs are linked to create the target tracks. Generating
such links is possible only when the target detections at the
current CPI are associated with the tracks from the previous
CPI. In tracking literature, this is termed data association. The
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Fig. 14. Illustration of the data association concept in the range-Doppler
domain. The rectangular gate in the current CPI is centered at the predicted
measurement. Detections in the previous and current CPIs are marked in the
figure.

concept of data association for a single target tracking is shown
in Fig. 14.

In Fig. 14 at CPI = k − 1 (previous CPI), only one
measurement is observed, which is denoted as m(0)(k − 1).
The track is initialized for this target, and the motion para-
meters are stored in the database. At CPI = k (current
CPI), two measurements are observed

(
m(1)(k) and m(2)(k)

in Fig. 14
)
. Data association is now performed as a two-step

procedure.
First, the position of the previously detected target is pre-

dicted at the current CPI. The position m̂(0)(k | k − 1) is the
KF-based predicted measurement of m(0)(k − 1) [see (23)].
Second, a validation region centered around the predicted
measurement (which is now an established track) is created.
This is done in order to eliminate unlikely observation-to-track
pairings. Detections falling within the gate of the track are
considered for updating the track [see Fig. 14, where m(1)(k)
lies in the gating region of m̂(0)(k|k − 1)]. Detections lying
outside the gate

(
m(2)(k) in this case

)
could either be a false

target or a new target. The tracker will initiate a new track for
such cases.

Rectangular gating shown in Fig. 14 with the fixed size is
one of the possibilities. An ellipsoidal gating could also be
used to select measurements for a track [32]. Its limitations in
the context of the state-of-the-art tracking filters are explained
in Section IV-F2. Furthermore, a discussion on measure-
ment uncertainty i.e., when more than one measurement lies
inside the gating region of a given track, is also presented
in Section IV-F2.

The rectangular gating criteria shown in Fig. 14 are math-
ematically expressed as

��m fa(k) − m̂ fa
�
k
��k − 1

��� < � fthres (25)��mr(k) − m̂r
�
k
��k − 1

��� < �rthres (26)

where |m fa(k) − m̂ fa(k|k − 1)| is the offset between the
detected and predicted Doppler frequency and |mr(k) −
m̂r(k|k − 1)| is the offset between the detected and predicted
range [see (16) and (17)]. The terms � fthres and �rthres are
the width (along Doppler) and length (along range) of the
rectangular region, respectively.

From Fig. 14 and (25) and (26), it is clear that the extents
of the rectangular search window have to be first determined

Fig. 15. Residuals/Innovations computed using (23) for (a) Doppler fre-
quency and (b) range positions of a real moving ship.

to associate detections to their corresponding target tracks.
Before determining the extents of the rectangular gate, it is
first necessary to investigate how the offsets shown on the
left-hand side of (25) and (26) vary so that reasonable values
of gate extents can be set. These offsets are obtained directly
from one of the KF equations shown in (23). In the equation,
the disparity between the received measurement and the pre-
dicted measurement is clearly reflected. An example of these
offsets (also known as innovations) estimated for a real moving
ship in data take I (see Table II) is shown over the azimuth
time in Fig. 15.

From Fig. 15, the maximum observed offsets in the Doppler
and range are approximately 40 Hz (almost twice the Doppler
bin size) and 4 m (almost 14 times the range bin size),
respectively. The factors that cause such variations were
already explained in Section IV-D1. For the relation gener-
ation, the size of the rectangular window must be larger than
these estimated offsets. A wise choice for the extents of the
search window can be set three times the maximum offsets.
This will prevent the track loss even if the maximum offsets
are a bit larger than what was observed in Fig. 15.

2) Measurement Uncertainty: There are situations when
multiple measurements fall within the gate of a single-track
causing measurement uncertainty. Two popular algorithms that
are used for resolving such uncertainties and are applied
in real-world problems are the global nearest neighbor
(GNN) [33] and the joint probabilistic data association filter
(JPDAF) [5].

Given a set of measurements and tracks, both GNN and
JPDAF first compute the Mahalanobis distances between the
track and the measurements and compare them to a gating
threshold to select the candidate measurements for each track.
GNN then uses the Hungarian algorithm [34] for assigning
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Fig. 16. Illustration of the JPDAF sensitivity to the innovation covariance of
the track in our data. The ellipses represent the validation regions of the tracks
centered at their predicted positions. (a) True measurement belonging to the
track falls outside its gating region when the covariance is small. (b) False
target is assigned to a true track when its covariance grows over time in
the case of several subsequent missed target detections. For two degrees of
freedom and for a gating probability of 0.99, the standard gating threshold
used in JPDAF is 9.2 [32].

the most likely measurements to the existing tracks [33].
JPDAF, on the other hand, uses all the measurements within
the validation region of the track, evaluates the measurement-
to-track association probabilities, and combines them to update
the target state and covariance [32], [35].

For tracking an unknown number of targets, it is advisable
to use a separate track management logic along with GNN
and JPDAF [36].

The Mahalanobis distance used in GNN and JPDAF for
selecting the potential measurements is sensitive to the inno-
vation covariance of the track [see (24)]. If the covariance
is set smaller, then the distance between the track and the
measurement is more than the validation region of the track.
As a result, the true measurement might fall outside its
validation region [see Fig. 16(a)]. Especially, for our data, such
a situation is very likely because the resolution in Doppler is
very coarse due to coherent integration of a small number of
azimuth samples, and the resolution in the range is very fine
(<40 cm). As a result, the center of the ship is jumping around
significantly over time. The larger the ship is, the higher
could the jump be. Increasing the R matrix can increase the
innovation covariance, but the states will deviate from the radar
measurements because the reduced Kalman gain causes less
dependence on the measurements [see (20)].

Furthermore, in Fig. 16(b), when a true target is not detected
in several subsequent CPIs, its innovation covariance grows
bigger. Due to high covariance, the false measurement is closer
to the true target track, and therefore, the threat of false
target assignment is very high. This situation can by far be
avoided by setting a threshold in the covariance, but, again,
this is something to be set manually [5]. In addition, with an

Fig. 17. Data association methodology adopted in the range-Doppler domain
when several detections belong to a single track or vice versa.

Fig. 18. Case when more than one measurement falls within the rectangular
gating region of an established track and vice versa. Arrows indicate the
distances between the center of the rectangular gate and the measurements
falling within the validation region of each track.

increasing number of targets and measurement uncertainties,
the computation time of JPDAF also increases.

3) Proposed Method: We propose here a rather simple but
fast and efficient MTT approach shown in Fig. 17. To explain
the method, an example is shown in Fig. 18.

In Fig. 18, at a given CPI, there are three established tracks
(T1–T3) (predicted positions from the previous CPI) and five
detections (D1–D5). Detections D1 and D2 fall within T1, D2,
D3, and D5 within T2, and D4 and D5 within T3.

As shown in Fig. 17, to solve the measurement uncer-
tainty, an assignment matrix is initially computed by pro-
viding the number of tracks and detections. The elements
of the assignment matrix are the Euclidean distance offsets
between the existing tracks and the available detections. The
assignment matrix is computed separately for Doppler and
range because both are measured in different units. Based
on our knowledge of Doppler and range bin sizes, we create
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Fig. 19. Illustration of the measurement uncertainty situation corresponding
to Fig. 18. (a) Binary matrix computed after applying rectangular gating. Bold
values in the matrix show that more than one detection belongs to each track
(see also Fig. 18). (b) Mahalanobis distances measured only between the track
and its validated measurements. Detections assigned to their respective tracks
(shortest Mahalanobis distance) are highlighted in green, and the unassigned
detections are highlighted in red.

a rectangular gating region around each track for selecting
potential target-originated measurements [see Fig. 14 and
(25) and (26)]. After applying the gating, if there is more
than one candidate measurement of a confirmed track (see
Fig. 18 where there are three detections within the valida-
tion region of track T2), we then compute the Mahalanobis
distances [37] only between the track and its validated mea-
surements [see Fig. 19(b)]. The Mahalanobis distance is used
because the dimensions are not equally weighted. To estimate
the Mahalanobis distance, the covariance matrix is required,
which, in this case, is the covariance of the innovation vector
D [see (24)].

Assume that, in a CPI, there are Nvm numbers of validated
measurements lying within the rectangular validation region of
a particular track. We then calculate the Mahalanobis distances
{dMi}Nvm

i=1 between the track and its validated measurements.
The measurement corresponding to the minimum Mahalanobis
distance is considered for the track update. For a given track,
the minimum Mahalanobis distance dmin can be mathemati-
cally expressed as

dmin = min
� {dMi}Nvm

i=1

�
(27)

where dM is the Mahalanobis distance that is written as

{dMi}Nvm
i=1 =

�
{Di}Nvm

i=1

�T
S−1{Di}Nvm

i=1 (28)

where D is the innovation vector and S is its covariance matrix
[see (23) and (24)]. An example to resolve the measurement
uncertainty is shown in Fig. 19, which is specifically solved
for the situation shown in Fig. 18.

As shown in Fig. 19(b), after using (27), the detections D1,
D3, and D4 are assigned to tracks T1, T2, and T3, respectively.
The unassociated detections D2 and D5 initiate their own new
tracks.

Fig. 20. Schematic representation of the track management when real and
false targets are present in the scene. Green dots are the target detections,
and blue dots are “only predictions.” The predictions are given by the KF.
Terminated target positions are marked by the red dots.

Unlike JPDAF, our approach is not sensitive to the innova-
tion covariance for selecting the candidate measurements for
the track because we use a Euclidean distance-based approach
[see (25) and (26)]. We found this as an advantage not just
to apprehend the true measurement but also to discard false
target assignment to a confirmed track.

This simple method of data association is found sufficient
for most of the investigated airborne radar data.

V. TRACK MANAGEMENT

Every unassigned detection initiates a tentative track. If the
detection belongs to a real target, then the target is expected
to be detected in several subsequent CPIs. Such a track then
becomes a confirmed track. Once the target moves out of the
antenna beam, it is no longer detected and, therefore, should be
terminated. Also, if there exist some false targets (clutter), they
should also be terminated as they are not originated from real
targets. To do this, we employ a track management scheme
for updating the confirmed tracks and also to terminate the
finished tracks and false targets [38]. The concept of track
management is illustrated in Fig. 20.

Track management runs periodically within the tracker. For
the investigated F-SAR data, it is run after, e.g., every 2 s (can
be defined by the user), which corresponds to approximately
40 CPIs as per the current F-SAR system configuration.

As an example, in Fig. 20, there are three targets. One of
them is a real target, and the others are false targets. Each
target initiates its own track in its very first detection (given
by the green dots). A value of zero is then assigned in the PF
column of each target, which implies that these are detected
targets (see Fig. 7). In the next time step, only the real target
is detected, and the rest are not detected. In the absence of
detection, the target position is predicted by the KF (given
by the blue dots). For the predicted position, we now assign
a value of one in its PF column. As the tracking continues,
at CPI = 40 (i.e., nearly after 2 s), the individual target tracks
are extracted, and their track lengths are determined. As shown
in the figure, each target should at least be tracked for 2 s. This
is because the observed time of less than 2 s is too small to
terminate the targets (see false targets in the figure). For the
tracks that are equal to 2 s, their prediction percentages (PP)
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Fig. 21. (a) Real single moving ship in the X-band F-SAR data. Tracking
results (b) without and (c) with track management. Target ID_0 is the
trajectory of the real ship. The real ship and the false targets are marked
in the figure. For visualization purposes, the tracks are shown in the time
domain rather than in range-Doppler where the detection and tracking were
actually carried out.

are estimated using

PP(%) = Npred × 100

NL
(29)

where, for each extracted track, Npred is the total number of
CPIs in which the target is only predicted and NL is the total
extracted track length, i.e., 40 CPIs in the shown example.
We set the PP threshold to 70%, which means that the targets
that are “only predicted” for more than 70% of the time
without having their corresponding detections are terminated.
In the figure, the real target is also terminated after 10 s (it
was last observed at 8 s).

An example of tracking a single real ship target in data
take III (see Table II) in the presence of false targets and with
and without using track management is shown in Fig. 21.

As shown in Fig. 21,Target ID_0 belongs to a real ship
target, whereas Target ID_1 and Target ID_2 are the false
targets, which are also termed “ghost targets.” With track
management, it was possible to terminate such target tracks
after a short time.

Fig. 22. Illustration of the Doppler aliasing effect of a single target. In the
figure, the actual and the aliased range histories belonging to the same target
are shown in blue and orange, respectively. Red dots indicate the CPIs.

VI. DOPPLER ALIASING

Another major challenge while tracking targets in the range-
Doppler domain is the effect of Doppler aliasing. It is a special
condition that occurs mainly when the Doppler shift of the tar-
get is larger than the PRF limit of the radar system [39]–[41].
Larger Doppler shifts of the target are the consequences of
either its high radial velocity [see (4)] or squinted radar
acquisition geometry or too low PRF. As a result, the tar-
get appears back-folded (or aliased) in the range-Doppler
domain.

To illustrate the aliasing effect, an exemplary range history
of a single moving target in the range-Doppler plane is
shown in Fig. 22. The target track has already been initialized
(see CPI k0 in Fig. 22), and the detections are tracked in
subsequent CPIs. As the tracking continues, at CPI = kals,
the KF predicts the Doppler frequency that is smaller than
−PRF/2 [see (17)]. The target detection to be used to assign
to this track is found approximately one PRF apart and nearly
at the same range (aliased detection). This is because the
target’s Doppler frequency shifts that are smaller than −PRF/2
are back-folded and detected from PRF/2 onward (see the
ambiguous trajectory in Fig. 22). As a result, the tracker
initiates a new track for the aliased detection (see the orange
curve in Fig. 22). However, in reality, there is only one target
in the scene (complete blue curve in Fig. 22). Detecting
and correcting the aliased Doppler frequency are essential
in order to extract the true range-Doppler history of the
target.

For resolving the Doppler aliasing, the Doppler frequency
of the aliased detection must be updated during tracking/track
management. If the target is moving toward −PRF/2 and the
aliasing occurred in the right, as shown in Fig. 22, then the
Doppler frequency of the aliased detection is subtracted by one
PRF, and if the target is moving toward PRF/2 and the aliasing
is detected on the left, then one PRF is added to the aliased
Doppler frequency. By doing this, new track initiation from
the aliased target can be avoided, and a single unambiguous
target track in range-Doppler can be extracted.

Fig. 23 shows the real single ship trajectory reconstruction
before and after solving the Doppler aliasing. The PRF used
is approximately 1.2 kHz. In Fig. 23(a), after tracking the ship
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Fig. 23. Real ship track (a) before and (b) after the aliasing correction.
The corresponding real ship signal was already shown in Fig. 21(a). The
point of aliasing is marked in the figure. The tracking is performed in the
range-Doppler domain; only for visualization purposes, the tracks are shown
in the time domain.

for nearly 1 s, it is found aliased. That is why, in Fig. 23(a),
the Target ID_0 dies after a certain time (see Section V), and
a new target is initialized (Target ID_1). However, after the
aliasing is corrected, only one target appears during the entire
illumination time [see Target ID_0 in Fig. 23(b)].

VII. SIMULATION AND EXPERIMENTAL RESULTS

WITH REAL DATA

A. Simulation Results

In the simulation, we considered three moving targets. The
targets have overlapping range histories in the time domain
[see Fig. 24(b)]. The effects of missing target detections, false
targets, and Doppler aliasing are artificially included in the
simulation. Simulated radar data acquisition and moving target
parameters are given in Table VI.

The tracking results of the three simulated moving targets
are shown in Fig. 24. Tracking is implemented in the range-
Doppler domain; only for visualization purposes, we show the
target tracks in the time domain.

In Fig. 24(b), the gaps are artificially introduced for Target
ID_0 (blue) and Target ID_2 (green) that are filled by the
KF-based predictions [see (17)]. Moreover, they are also found
aliased at 2.4 and 7.9 s, respectively, which, in the end, resulted
in several ambiguous targets, as shown in Fig. 24(a). The rea-
son is that the PRF is not sufficiently high (see Table VI where
the PRF is 1.5 kHz) to capture the larger Doppler shifts caused
due to their higher ground velocities (20 and 35 m/s for Target
ID_0 and Target ID_2, respectively). In addition, without using
track management, the artificially added false target tracks are
also never terminated. However, from Fig. 24(b), it is clear

TABLE VI

MOVING TARGET SIMULATION PARAMETERS

Fig. 24. Simulated tracked range histories of three targets (a) without
and (b) with considering the motion model, track management, and Doppler
aliasing. Artificially introduced gaps, false detections, and aliasing points are
marked in the figure.

that, after using KF (see Section IV-C) and track management
(running here approximately after every 2 s) and recognizing
and correcting the Doppler back-folding (see Section VI),
the number of targets is reduced from 14 to 3 (plus 2 artificially
introduced false targets).

B. Real Experimental Results Using Single-Channel Data

1) Tracking Results: Fig. 25(b) shows the tracking results
of a real moving ship in circularly acquired X-band HH
polarized F-SAR airborne radar data. Additional information
related to the tracked targets is listed in Table VII. Details
about the acquired circular radar data were already given in
Table I.
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Fig. 25. (a) Circularly acquired real single-channel HH pol RC X-band radar
data. (b) Tracking results shown in the time domain after applying the detec-
tion and tracking algorithm in the range-Doppler domain. The police ship,
false and unknown targets, and gaps are marked in the figure. (c) Zoomed-in
detail of the successively extracted ship data patch in the time domain.

In the data, the detected and clustered real ship signal
(see Section III) is tracked using the (CV+CA) motion
model-based KF (see Section IV-C) and the data association
method presented in Section IV-F. From detection to tracking,
all the algorithms are implemented in the range-Doppler
domain.

As shown in Fig. 25(b), there are total of nine tracked
targets. It is also observed that, if the gaps are significantly
larger (in the order of several minutes), multiple new tracks
from a single target can be created (see Fig. 25(b) and
Table VII where the single police ship has five different target
tracks).

In addition, some false targets or clutter are also detected,
which are very well handled by the track management system
(see Section V). Since there were larger gaps in the data,
the tracks were, therefore, checked after every 4 s (see
Table VII where the false targets are tracked for more than 4 s).

Using the tracked range information of the ship, the data
belonging to the ship signal are also successively extracted in

TABLE VII

TRACK DURATION OF EACH TRACKED TARGET FROM THE TRACKING
RESULTS SHOWN IN FIG. 25(B)

the time domain and are shown in Fig. 25(c). The extracted
ship signals are later on used for generating high-resolution
ISAR image sequences.

We point out here that the gaps in the radar data shown
in Fig. 25(a) are due to the small 3-dB azimuth antenna
beamwidth of the F-SAR X-band acquisition (≈8◦). Since the
antenna also cannot be steered electronically or mechanically,
during a circular flight with a ship moving in the circle center,
the crosswind may cause a significant yaw angle so that the
ship is not always illuminated.

To evaluate the tracker performances, there exist several
metrics, such as optimal subpattern assignment (OSPA) [42] or
generalized OSPA (GOSPA) [43]. Metrics such as OSPA are
already implemented on real X-band marine radar data [5], [8].
In order to evaluate such metrics, information such as the true
ground position of the target and the time duration of its true
trajectory in the region of interest must be known.

In this article, due to the use of only a single receiving
channel (see Table I), we do not have the angle information
of the target. As a result, the tracks cannot be projected on
the ground, and therefore, comparison with the AIS-based
ground-truth data is not possible. In addition, as shown
in Fig. 1(a) and (c), due to the antenna pattern weighting,
wider antenna beam, and the nonideal platform motion, it is
also impossible to know exactly when the target will enter
and exit the beam. Therefore, the true time on target cannot
be determined.

In the simulations presented in Section VII-A, we have
demonstrated that, in terms of the total number of tracked
targets, disregarding the crucial components of a tracker can
significantly worsen its performance [see Fig. 24(a)].

2) Target’s Range Position Accuracy in Circular Data: In
this section, we present the range position accuracy results
of the controlled police ship using both X- and L-band real
single-channel airborne radar data acquired simultaneously
during the circular flight track. Details about the flight exper-
iment and the police ship are given in Section II. The X-band
circular radar data with the police ship were already shown
in Fig. 25(a), and the details about the L-band circular radar
data can be found in [17].
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Fig. 26. Range position differences computed over the azimuth time for
the controlled police ship in both X- and L-band real airborne radar data
acquired simultaneously during the circular flight track. The corresponding
X-band circular radar data were already shown in Fig. 25(a). Gaps marked
in the figure, e.g., between 250 and 305 s, occur when the target is not
illuminated by the radar antenna beam. In the figure, red and green vertical
dashed lines with colored guard zones correspond to the time instants when the
ship moving direction was perpendicular (either toward or away) and parallel
or antiparallel with respect to the aircraft flight direction, respectively.

For the accuracy assessment, the measured range position of
the ship is compared with its true range position. The measured
range position of the ship is derived from the COG of the ship
cluster (see Section III). Since the COG of the ship cluster is a
single position and can be anywhere on the ship, the measured
range position of the ship is biased by the ship size (see
Table II where the ship’s length and beam are 66 and 11 m,
respectively).

The reference range position of the ship is calculated by
using the GPS position of the ship and the position of the
aircraft at the same azimuth time. Note here that the position
of the GPS antenna on the ship is not known. Therefore,
the reference range position of the ship is also biased by the
ship size.

After having the measured and the reference range positions
of the ship at each azimuth time, the range position differences
are computed, and the results are shown in Fig. 26.

From Fig. 26, it can be seen that there are significant gaps in
the computed range position differences in the X-band circular
data compared to the L-band data. This is because the X-band
3-dB azimuth antenna beamwidth is in the order of 8◦ (see
Table I), which is smaller than the L-band antenna beamwidth
(≈18◦). Moreover, during a circular flight, the crosswind
significantly changes the yaw angle of the aircraft, and the
target is not always illuminated by the narrower antenna beam
of the X-band radar.

Furthermore, it is also observed that the range position
differences vary significantly during the total illumination
time. Ship amplitude fluctuations and its constantly changing
moving direction with respect to the aircraft (magenta curve
in Fig. 26) are responsible for changing the measured and true
range positions of the ship because of the bias caused by the
ship size.

The minimum and maximum range position differences
for the X- and L-band circular radar data are (0.002 m,
23.25 m) and (0.005 m and 32.22 m), respectively. For both
the frequency bands, the observed maximum range position
differences are within 66 m, which is the length of the ship.

Fig. 27. Some ISAR images obtained from the extracted RC ship data shown
in Fig. 25(c). The data were extracted after using the tracking information.
The images correspond to different azimuth times, and the coherent integration
time for each image is 1.7 s.

Finally, the calculated RMSEs of the tracked ship range
history in X- and L-band radars are 13.18 and 13.75 m,
respectively. For the ship that has a length of 66 m and a
beam of 11 m, the calculated RMSE can be considered very
good.

3) Preliminary ISAR Imaging Results: One primary advan-
tage of circular flights is that, due to the very long obser-
vation time, dozens or even hundreds of ISAR images of
the ships can be obtained under different aspect angles and
used later on for ship classification and recognition purposes.
In Fig. 27, a small cut of such an ISAR image sequence is
shown.

The images were generated from the extracted data patch
depicted in Fig. 25(c) by applying the ISAR processor dis-
cussed in [17]. A coherent integration time of 1.7 s was
used for each ISAR image. The achievable azimuth (cross-
range) resolution is a function of the radar data wavelength,
the coherent integration time, and the target motion itself [18].

C. Geocoding Results Using Multichannel Data
The airborne radar data discussed so far in this article

were acquired using only a single receiving channel (see
Section II). With only one receiving channel, it was not
possible to do along-track interferometry that would allow the
DOA angle estimation of the detected target and the projection
of radar-based target detections on the ground.

To complete the processing chain of our airborne
radar-based maritime surveillance concept, we have provided
some preliminary geocoded results using real multichannel
experimental radar data.

Multichannel data are exploited to compute additionally the
DOA angle of the detected target. With the known DOA angle,
the geographical aircraft position, and the Euler angles from
the aircraft’s inertial measurement unit (IMU), the target tracks
in the range-Doppler domain can directly be mapped onto
the ground so that the target’s geographical coordinates are
obtained.

In November 2019, a multichannel flight campaign using
DLR’s DBFSAR system was carried out in the North Sea
near Cuxhaven, Germany. More details related to the radar
sensor and the multichannel data can be found in [22]. The
aircraft was flying at an altitude of approximately 2400 m
above ground and was also equipped with a dual-channel AIS
receiver.

The multichannel DBFSAR system and acquisition para-
meters are listed in Table VIII. Parameters such as the
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Fig. 28. Preliminary results from the real multichannel RC airborne data using DLR’s DBFSAR system. The experiment was conducted in November 2019 in
the North Sea near Cuxhaven, Germany. The data were acquired during a linear flight track. (a) Focused radar image in the X-band VV-polarization from one
of the receiving channels. (b) Its corresponding RC radar data. Land and ocean clutter regions are marked in the figure. (c) Extracted ocean data [from the
yellow box in (b)] containing moving ships but no land clutter. Two very bright ships are visible in the upper right part of the figure. (d) Binary target detection
map of the data shown in (c) after applying a CFAR detector. (e) Ship tracking results obtained after applying our proposed tracking algorithm. Tracked ships
with their individual IDs are marked in the figure. The entire detection and the tracking algorithms are implemented in the range-Doppler domain. Only for
visualization purposes, the results are projected back to the time domain. (f) ISAR image of the ship track corresponding to ID_15 in (e). The ship’s name is
HAM 316. The coherent integration time is 1.023 s, which results in a cross-range resolution of approximately 0.6 m. Some strong multipath reflection from
the crane is observed.

radar wavelength and 3-dB azimuth antenna beamwidth were
already given in Table I.

Some preliminary results with the multichannel radar data
from the North Sea flight campaign are shown in Fig. 28.

As shown in the figure, there are more than just two ships
in the data as revealed by the binary detection map [see
Fig. 28(d)]. The detected and clustered ships were tracked
in the range-Doppler domain using the approach proposed in
this article. In total, there were 21 tracked targets. Since there
is track management running in parallel, the false tracks are
terminated after a short time [see ID_4 and ID_6 in Fig. 28(e)].
Fig. 28(f) shows the ISAR image generated for ship ID_15.
The ship name is HAM 316, which is a dredger of dimensions

129 m × 22 m. This ship contains several cranes and booms
on the deck; one of them causes a strong multipath reflection
clearly recognizable in the ISAR image.

The tracked range histories shown in Fig. 28(e) were then
mapped on the ground after computing the DOA angle of
the targets. The projected ground tracks were then compared
with the available AIS ground truth data. For demonstration
purposes, we have selected here only two ships namely HAM
316 and LANGELAND (ID_15 and ID_17 in Fig. 28(e),
respectively). The geocoding results are shown in Fig. 29.

We found a good agreement between the geocoded target
detections and the AIS tracks, giving an average position
estimation accuracy of better than 30 m. Such an accuracy for
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TABLE VIII

MULTICHANNEL RADAR SYSTEM AND ACQUISITION
GEOMETRY PARAMETERS

Fig. 29. Google Earth visualization of the geocoded radar-based detections of
the ships, HAM 316 and LANGELAND (orange), and received AIS position
messages (white).

an extended target can be considered very good for radar-based
ship monitoring using an airborne radar sensor.

A detailed investigation on ISAR imaging, multichannel
data preprocessing, DOA estimation, and geocoding tech-
niques is out of the scope of this article.

VIII. CONCLUSION

This article proposed a novel range-Doppler-based ship
tracking algorithm suitable for the RC airborne radar data.
The algorithm is applicable for linear and circular flight
tracks, as shown in this article. However, there exists also
no restriction for arbitrary flight tracks if the aircraft position
and the associated Euler angles are efficiently incorporated
in the estimation, and the data are processed using small
CPIs. Due to the algorithm structure and the use of mainly
azimuth FFTs, the algorithm is expected to have the real-time
capability. For sure, this requires an efficient implementation
in a parallelized way on a multicore or multiprocessor com-
puter, taking also into account graphical processing units. The
algorithm includes a detector and clustering module followed
by a tracking module. The former detects and calculates the
COG of the ship cluster, which is tracked over azimuth. The
latter has the following components:

1) a KF with motion models based on CV and CA to handle
missed target detections;

2) a simple but efficient data association block to do MTT
and also to resolve detection uncertainties;

3) a powerful track management system running simulta-
neously within the tracker to terminate the false and
already finished tracks;

4) a Doppler aliasing block to extract the true target range
history and, hence, the unambiguous Doppler history by
identifying and considering the Doppler back-folding.

The complete tracking module, including track management,
is designed using an SQLite database as the core. This article
also showed some preliminary ISAR imaging and geocoding
results by using the tracking information of the ship. The
proposed methodology was validated by using simulated and
real experimental radar data acquired with DLR’s airborne
radar sensors, F-SAR and DBFSAR, from altitudes of up
to 5600 m above ground. Although not covered and dis-
cussed in detail in this article, we want to point out again
that the proposed algorithm can easily be adapted for a
multichannel radar system as well. With multiple receiving
antennas arranged in the along-track direction, the tracked
target Doppler and range histories can be projected on the
ground (i.e., the actual geographical position can be obtained)
by using the estimated DOA angles, as shown in the example
in Fig. 29. To the best of our knowledge, such a detailed and
comprehensive investigation of ship tracking using moving
airborne radar sensors is, up to now, not available in the open
literature.
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