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Toward the Detection and Imaging of Ocean
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Abstract— Ocean microplastic concentrations are known to
vary significantly by location, with especially high levels in
the North Atlantic and North Pacific gyres. Most direct mea-
surements come from plankton net trawling made in these
regions; concentrations in other regions have been estimated
by microplastic transport models that depend on large-scale
ocean circulation patterns. However, global measurements of
microplastic distribution and its temporal variability are lacking.
A new method is presented for detecting and imaging the global
distribution of ocean microplastics from space. The method uses
spaceborne bistatic radar measurements of ocean surface rough-
ness and relies on an assumed reduction in responsiveness to
wind-driven roughening caused by surfactants that act as tracers
for microplastics near the surface. Annual mean microplastic
distributions estimated by the radars are generally consistent
with model predictions. The spaceborne observations are also
able to detect temporal changes that are not resolved by the
models. For example, seasonal dependencies are observed at mid-
latitudes in both Northern and Southern Hemispheres, with lower
concentrations noted in the winter months. Time lapse images
at finer spatial and temporal scales reveal episodic bursts of
microplastic tracers in the outflow from major river discharges
into the sea. This new method will provide better monitoring of
ocean microplastics and will support future model development
and validation.

Index Terms— GNSS data, miscellaneous applications, oceans
and water.

I. INTRODUCTION AND MOTIVATION

ANNUAL global production of plastic has increased every
year since the 1950s, reaching 359 million metric tons

in 2018 [1], [2]. This trend in conjunction with inadequate
waste management infrastructure and practices results in unse-
cure plastic debris disposal (e.g., open, uncontrolled land-
fills) [3]. Mismanaged plastics are more likely to be carried
to river drainage zones that subsequently distribute into the
world’s oceans [3]–[5]. The presence of plastic debris in the
ocean was first documented in the 1970s [6], and estimates
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show plastic now accounts for 80%–85% of marine litter [7].
Plastics rarely biodegrade; rather they break down via solar
UV radiation and wave mechanics into smaller particles called
microplastics [4], [7]–[10].

Most ocean plastic concentration data come from plankton
net trawling [10], [11]. However, net trawling has a low sample
rate and design flaws that may be underestimating true plastic
concentrations [4], [9]. Plastic concentrations are also not
well sampled outside of the North Atlantic and North Pacific
gyres [9], [10]. In addition, the rate of redistribution of plastics
in the ocean varies widely. Estimates of their drift velocity
can exceed 1 m/s under persistent, moderate wind conditions,
resulting in transport of ∼100 km/day [12]. Furthermore,
concentrations of plastic debris in close proximity can vary by
more than three orders of magnitude in the span of 24 h [13].
This highlights the effects of complex transport mechanisms
and spatiotemporal variability that net trawl sampling is unable
to adequately resolve [13]–[15].

Remote sensing offers a means to help understand the
dynamics of plastic transport and locate potential accumu-
lation zones [15], [16]. The integration of remote sensing
and in situ observations has been proposed as the next step
in monitoring marine plastic pollution [16]. Remote-sensing
methods, including optical sensing, synthetic aperture radar,
hyperspectral imaging, and thermal infrared sensing, have
the potential to either track plastics directly or infer plastic
concentrations through proxy measurements. However, they
have not yet been developed for widespread plastic detection in
the open ocean [15]–[17]. An alternate approach is presented
here with the potential to provide more global coverage and
to resolve changes in microplastic distribution and transport
dynamics on time scales of weeks to months.

II. OVERVIEW OF REMOTE SENSING APPROACH

The detection of microplastics near the ocean surface is
derived from measurements made by the CYGNSS low Earth
orbiting bistatic radars, which are designed to measure wind
speed above the ocean [18], [19]. The strength of radar
reflections from the ocean depends on the wind-driven rough-
ening of the surface. Radars used to measure winds rely
on a nominal relationship between wind speed and ocean
roughness [20], [21]. These satellite systems produce global
maps of ocean winds, which are widely used for atmospheric
and oceanographic applications [22], [23].

The radar measurements are repurposed here to estimate
ocean microplastic concentrations by examining deviations of
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Fig. 1. Global distribution of ocean microplastic number density (#/km2) predicted by van Sebille et al. [10], with the two control regions (CR1 and CR2)
highlighted by black boxes. In these regions, ocean microplastic concentration, other damping factors, and the presence of atmospheric stability conditions
affecting ocean surface roughness are all consistently low, resulting in characteristically high MSS anomalies. Radar measurements in these regions are used
to define a baseline relationship between ocean surface wind speed and roughness against which anomalies are detected in other parts of the ocean.

the measured ocean roughness from the roughness predicted
by a nominal relationship between it and ocean surface wind
speed. Here, roughness is characterized by the mean square
slope (MSS) of the surface height. In order to compare mea-
sured to predicted values, an independent source of wind speed
is needed that is colocated with the measured roughness. The
NOAA Global Data Assimilation System (GDAS) reanalysis
product is used [24]. An estimate of MSS is made from
the wind speed using an empirical model derived from a
large population of colocated samples of wind and MSS in
regions of the ocean believed to contain low concentrations of
ocean microplastics [10]. The selected regions are outside of
the intertropical convergence zone (ITCZ), where persistent
anomalous atmospheric instability conditions can alter the
responsiveness of the ocean surface to wind roughening. MSS
anomaly, the difference between measured and predicted ocean
surface roughness for a given wind speed, is used as an
indicator of microplastic concentration. A negative anomaly
indicates that the surface of the ocean was roughened less
by the wind than it would have been had the microplastics
not been present. The magnitude of the negative anomaly
indicates the estimated concentration of microplastics present.
The connection between MSS anomaly and ocean microplastic
concentration may in fact be indirect, as discussed below.

The results presented below demonstrate a strong correlation
between variations in ocean microplastic concentration and
MSS anomaly. We hypothesize that the presence of ocean
microplastics is accompanied by surfactant tracers, and that
surfactant wave damping is causing the observed reduction
in responsiveness of the surface to wind-driven roughen-
ing. Surfactants are ubiquitous in marine environments, and
their damping properties in relation to gravity-capillary waves
have been studied [25]–[27]. Additionally, surfactants are
known to accumulate in ocean convergence zones along with
microplastics [15], so it is not unreasonable to assume their
transport mechanisms may be similar. Floating material in the
ocean, including plastic particles, surfactants, oils, and marine
organisms can aggregate in common locations when surface

currents transport buoyant matter to the boundaries between
converging fronts [15], [28]. There is also evidence that
increased concentrations of surfactants in wastewater facilities
may significantly increase microplastic concentrations in efflu-
ents [29]. While these relationships suggest that surfactants
may act as tracers of surface-level microplastics from their
sources to the accumulation zones, future investigations are
needed into the similarities and differences of microplastic
and surfactant transport dynamics and into confounding factors
affecting wave suppression to fully validate our hypothesis.

III. DESCRIPTION OF DATA AND MODELS

CYGNSS Level 2, Version 2.1 wind speed data
(time-tagged, 25-km resolution) [30] and GDAS wind
vectors (6 h, 0.25◦ resolution) [24] for the time period June 1,
2017–May 31, 2018 are used. The GDAS dataset provides
10-m referenced ocean vector wind components (u, v), from
which wind speed is derived as (u2 + v2)1/2. Matchups
between the two data sets are performed using a linear
interpolation in time of the GDAS winds that are closest
in location to CYGNSS. CYGNSS data during April 13,
2018–April 17, 2018 and January 5, 2018 are excluded due
to errors in satellite calibration and file reading, respectively.
Additionally, any samples with quality control flags set for
the Fully Developed Seas wind speed product are excluded.

The empirical relationship between colocated wind and
MSS is established using the full year of data within two
control regions: [10◦–25◦S, 105◦–120◦E] and [10◦–20◦N,
128◦–143◦E]. For all analysis, MSS anomaly measurements
colocated with wind speeds within 3–11 m/s are used.

Global distributions of microplastic concentration produced
by the three ocean microplastic models described in [10]
(1◦ × 1◦ spatial resolution) were used. The annual average
global map of MSS anomaly derived from CYGNSS observa-
tions that was matched up with the microplastic concentrations
was spatially averaged to the same (1◦ × 1◦) resolution.

The van Sebille ocean microplastic concentration model
shown in Fig. 1 is a single global distribution produced
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at the end of a 50-year model run. It assumes sources of
plastic originate along coastlines with concentrations that are
proportional to human population within 200 km of the coast
and scaled by each country’s mismanaged waste. Plastic is
advected based on particle travel probabilities calculated from
a historical global set of satellite tracked drifter buoys from
the NOAA Global Drifter Program, and the model does not
include sinks for plastic to leave the ocean system [10].

The Lebreton model assumes sources of plastic originate at
major river mouths, along coastlines, and on major shipping
routes, with higher concentrations proportional to levels of
human population and urban development. The source func-
tion also increases in concentration throughout its runtime
based on global plastic production data. Plastics are advected
based on ocean velocity fields from the HYCOM global
circulation model, and the model also does not include sinks.
Lebreton produces a single output of global microplastic
distribution after a 30-year run time [10].

The Maximenko model assumes its plastic source is a global
uniform distribution throughout the ocean. Plastic is advected
using the same historical database of drifter buoys as van
Sebille. Notably, unlike the other two models, the Maximenko
model includes a sink mechanism that allows plastic particles
to exit the system by “washing ashore” when they enter
its coastal grid cells. Maximenko produces a single global
microplastic distribution after a ten-year run time [10].

IV. DESCRIPTION OF MICROPLASTIC

RETRIEVAL ALGORITHM

Regions of the ocean are first selected within which
microplastic concentrations are believed to be low based
on a global microplastic distribution model developed by
van Sebille et al. [10]. The van Sebille model is shown
in Fig. 1 with the low-concentration “control regions” high-
lighted. Although the equatorial latitudes in the Pacific
and Atlantic Oceans are known to contain the lowest
concentrations of microplastics, these regions are excluded
from the partitioned regions due to the ITCZ’s persis-
tent anomalous atmospheric stability condition. Within the
low-concentration control regions, CYGNSS measurements of
the MSS of the ocean surface are assembled for the period
June 1, 2017–May 31, 2018. Each measurement is colocated
in time and space with the nearest estimate of ocean surface
wind speed made by the NOAA GDAS reanalysis model. The
GDAS model incorporates in situ, radar, and other satellite
observations but does not use CYGNSS wind speeds [24].
Reliance on a reference wind model that does not use
CYGNSS observations should help mitigate any coupling
between them in the derivation of the MSS anomaly.

A density scatterplot of all (wind speed, MSS) pairs within
the control regions for the year is shown in Fig. 2. The
figure clearly illustrates that local wind speed is but one of
several factors that controls the MSS of the ocean surface.
MSS is determined by a broad range of the surface roughness
spectrum, including both small (capillary) waves which are
directly forced by local winds and longer (swell) waves
that are highly correlated with capillary waves in an ideal,

Fig. 2. Density scatterplot of ocean surface wind speed and MSS roughness
for a one-year period within the control regions highlighted in Fig. 1.
The solid black line is a parametric fit to the samples which provides a
nominal relationship between wind speed and MSS in ocean waters with low
microplastic concentration.

fully developed sea state, but are, in practice, only partially
correlated due to dynamic ocean processes such as currents
and wind speed variations [31]. The scatter seen in Fig. 2 of
the samples about the best-fit line is caused by the other
factors that influence the MSS. This will be shown later to
introduce uncertainty into the estimation of ocean microplastic
concentration.

A least-squares parametric fit of the Katzberg empirical
L-Band MSS model [32] to the samples in the scatterplot
produces the following relationship:

MSSmod =
{

0.0035(U + 0.62) if U ≤ 3.49m/s

0.0035(6 ln(U) − 3.39) if U > 3.49m/s
(1)

where U is the ocean surface wind speed referenced to 10 m
height in a neutral stability atmosphere, as reported by GDAS.

The normalized MSS anomaly at any location, either within
or outside of the control regions, is defined as

MSSanom = MSSobs − MSSmod

MSSmod
(2)

where MSSobs is the MSS measured by CYGNSS and MSSmod

is the MSS estimated from colocated GDAS winds using (1).
MSSanom is the fractional deviation of observed from expected
MSS. A normalized version of the anomaly is used so that
conditions with different degrees of roughness can be directly
compared. Within the control region, the expectation is that
the MSS anomaly will be close to zero since the MSS model
is trained using those data. Away from the control region, our
hypothesis is that the MSS anomaly will become increasingly
negative as greater concentrations of ocean microplastic tracers
suppress the roughening of the ocean surface by surfactant
wave damping.

Estimates of microplastic concentration are made from the
MSS anomaly using an empirical relationship between them
that is derived from a large population of colocated values. The
microplastic concentration values used to train the empirical
relationship are provided by the van Sebille model [10].
We choose this model because its variations in concentration
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Fig. 3. Comparison between normalized MSS anomaly and microplastic
number density (#/km2) predicted by the van Sebille model using one year
of MSS observations. The microplastic number density concentrations are
averaged into MSS anomaly bins of 0.005 width. The region of negative
anomaly between −0.1227 and −0.0478, denoted by the vertical black
lines accounts for ∼61% of all samples and is used to train an empirical
relationship. Standard deviation of microplastic concentrations within each
bin is shown with the dashed lines. Statistics are taken with respect to
log10(#/km2).

have the highest correlation with the observed variations in
MSS anomaly. However, the use of other models produces
generally similar results, as discussed below in Section IV.
Only observations within the wind speed range 3–11 m/s
are used because the correlation between MSS anomaly and
microplastic concentration is found to weaken at lower and
higher wind speeds. The range 3–11 m/s accounts for a large
majority of samples, so this restriction does not significantly
reduce the sample size. MSS anomaly measurements are
spatially binned into a 1◦ × 1◦ latitude-by-longitude grid and
averaged over one year. Microplastic concentration values are
similarly spatially binned and the two values are compared.
The comparison is shown in Fig. 3 after the microplastic
number density concentrations have been averaged over MSS
anomaly bin widths of 0.005 to smooth the relationship.
The comparison is shown in Fig. 3. The standard deviations
of binned microplastic concentrations are denoted by the
dashed blue lines. The relationship can be broken up into
three segments according to the number of samples that are
averaged together in each MSS anomaly bin. The segment
with greater than N = 600 samples per bin lies between MSS
anomaly values of −0.1227 and −0.0478 (designated by the
two vertical lines in Fig. 3). This value of N corresponds
to the 95% confidence level and 4% margin of error for the
average; ∼61% of all samples lie within this range of MSS
anomalies. The other 39% of samples lie above and below
this range. The bins with higher MSS anomalies correspond
to conditions in which ocean surface roughening is more
sensitive to wind forcing. The samples with lower (more
negative) MSS anomalies correspond to conditions in which
ocean surface roughening is highly insensitive to wind forcing.
Over the central range of MSS anomalies, the relationship is
quite smooth and monotonic, with increasing negative MSS
anomalies generally corresponding to higher ocean microplas-
tic concentrations. A log-linear regression is performed using

TABLE I

BIAS AND RMSD COMPARISON TO REFERENCE MODELS

the samples in the central range. The resulting relationship
between plastic number density and wave damping is given
by

ρ = 2035 exp(−23.18 MSSanom) (3)

where ρ is the number density of ocean microplastics in units
of #/km2.

V. VALIDATION OF MICROPLASTIC

RETRIEVAL ALGORITHM

Validation of the retrieved microplastic concentration is
performed in two parts. First, estimates are compared with the
original plastic concentration model with which the retrieval
algorithm was trained. Since the training and validation
data are the same, this is largely a consistency test of
the retrieval process. The estimates are also compared with
other microplastic concentration models as an independent
assessment of performance. The models are also compared
with one another to assess the inherent uncertainties in the
models themselves. Second, the model used to train the
empirical retrieval algorithm is varied and the impact that
has on retrieval performance is considered. The van Sebille
model was chosen as the baseline because it has the highest
correlation with observed MSS anomalies, as measured by
the rms difference between the model concentration and the
concentration estimated from the observations. These values
are labeled “rms diff” in Table I. Using the other available
models has a relatively small impact on overall performance.

A. Comparison to Model Concentrations

The microplastic concentrations estimated from CYGNSS
measurements vary over time and are found to have seasonal
dependencies which are discussed in the following. For this
reason, we compare the annual average retrieved concentra-
tions to the van Sebille model.

A density scatterplot of model versus retrieved microplastic
concentrations is shown in Fig. 4(a). The highest density
of samples occurs along the 1:1 line of perfect agreement.
Samples with a significant deviations from the 1:1 line may
be due to retrieval errors, to variable conditions not corrected
by taking a simple annual average of the retrieval, or to errors
in the model itself. Note also that the model has a significantly
wider dynamic range of values at the low end. Fig. 4(b) shows
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Fig. 4. (a) Density scatterplot of ocean microplastic concentration (#/km2)
retrieved by CYGNSS using an algorithm trained against the van Sebille
model versus the van Sebille model values. Highest density samples occur
along the 1:1 line of perfect agreement. (b) Histogram of the difference
between model and retrieval. The mean difference (bias) is close to zero
and the rms difference is 1.01 log10(#/km2).

a histogram of the difference between model and retrieval.
The mean difference between model and retrieval (the retrieval
bias) is 0.002, and the RMS difference is 1.003 log10(#/km2).

The retrieval is also compared with a model devel-
oped by Lebreton [10]. Retrieval bias and RMSD results
when compared with the Lebreton model are 0.474 and
1.307 log10(#/km2), respectively. The bias is higher than that
of the van Sebille comparison, which is to be expected since
the retrieval was trained with van Sebille. The RMSD is only
slightly larger in this case, suggesting that the retrieval has
not been “over tuned” to one particular model. Comparing
the two models to one another, their mean difference is
0.471 and their rms difference is 0.906 log10(#/km2). The
model-to-model RMSD is slightly lower than the differences
between the retrieval and either model, suggesting that most
of that difference can be attributed to uncertainties in the
models themselves, with a small additional component due
to errors in the retrieval algorithm. The comparison statistics
are summarized in Table I.

B. Dependence on Training Model

The retrieval algorithm described in Section III used the van
Sebille model as its reference. A similar algorithm develop-
ment is considered here using other reference models. In each
case, observed MSS anomalies, averaged over one year, are
colocated with the microplastic concentration predicted by the
model, and a log-linear regression is performed over the same
central range of MSS anomaly values within which 61% of the
samples lie. This is done using the van Sebille and Lebreton
models described above as well as with a third model devel-
oped by Maximenko [10]. The resulting matchups between

Fig. 5. Similar matchup between MSS anomaly observations and model-
predicted ocean microplastic concentrations as shown in Fig. 3 for three
different microplastic models. The matchup with van Sebille from Fig. 3 is
included here for ease of comparison. In all three cases, the MSS anomaly
agrees well with plastic concentration over the central range of values
delimited by the vertical lines.

observed MSS anomalies and all three modeled microplastic
concentrations are shown in Fig. 5. In each case, variations
in MSS anomaly can be seen to be highly correlated with
microplastic concentration, with increasing concentrations
associated with increasingly negative anomalies. The physical
explanation for this correlation is a reduction in the respon-
siveness of the ocean surface to roughening by winds that
is caused either by the microplastics themselves or by some
tracer (e.g., surface surfactants) with similar ocean transport
behavior. A log-linear regression between the MSS anomaly
and each of the three model concentrations results in Pearson
correlation coefficients of 0.95 (van Sebille), 0.94 (Lebreton),
and 0.92 (Maximenko). The previous validation discussion
considered the case where the retrieval algorithm was trained
using the van Sebille model and evaluated using the Lebreton
model. The opposite test was also conducted, training with
Lebreton and evaluated with van Sebille, and the comparison
results are also included in Table I. In both cases, the overall
retrieval performance is consistent and comparable. Compar-
isons involving the Maximenko model were also considered,
but the results are heavily influenced by the large difference
between it and the other two models. Maximenko generally
predicts much lower microplastic concentrations, most likely
because its model includes a sink mechanism that washes out
plastics from the ocean at the coastal boundaries, whereas the
other two do not.

VI. RETRIEVAL RESULTS

A comparison between the ocean microplastic distribution
predicted by van Sebille and retrieved from MSS anomaly
observations is shown in Fig. 6, together with the MSS
anomaly distribution from which it was derived. An annual
average of the observations is used to reduce seasonal or
other time-dependent variations and more closely represent
the steady-state distribution predicted by the model. In general,
regions of higher and lower microplastic concentration tend to
agree. In particular, the high concentration region colloquially
referred to as the Great Pacific Garbage Patch, highlighted by
the red box in Fig. 6, is resolved by the MSS-based retrieval.
By the same token, the region bounded by the white box
in the figure is associated with low predicted microplastic
concentrations by the model. This region is found to have
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Fig. 6. Global distribution of (a) ocean MSS anomaly observations,
(b) microplastic concentration (#/km2, log10 scale) predicted by the van
Sebille model, and (c) retrieved microplastic concentration (#/km2, log10
scale) from the observations. Regions of high and low microplastic concen-
tration are indicated by red and white boxes, respectively, and correspond to
regions of large and small MSS anomaly.

MSS anomalies near zero and correspondingly low retrieved
microplastic concentrations. Note that the retrieval does suffer
from over reporting of microplastics in the equatorial ITCZ.
This is believed to be due to anomalous atmospheric stability
conditions there, which also tend to suppress roughening.
It should be noted that differences exist between the microplas-
tic concentration estimated by the van Sebille model [Fig. 6(b)]
and the concentration derived from the radar observations
[Fig. 6(c)]. For example, differences can be seen in the eastern
part of the Indian Ocean and near some coastlines. These
discrepancies may result from uncertainties in the model or
in derived concentrations.

The results in Fig. 6 are of an annual average on a global
scale. Observations made on shorter temporal and finer spatial
scales are considered next to examine more localized, time-
dependent changes in the microplastic concentration. It is
important to note that finer time and space observations
will tend to increase the dynamic range of MSS anomalies
compared with annual averages over global scales.

Global monthly maps of microplastic concentration for
June, September, and December 2017 and March 2018 are
shown in Fig. 7 to highlight seasonal changes observed in plas-
tic distribution. Seasonal maps are averaged over 30 days with
spatial resolution of 1◦x 1◦ latitude-by-longitude, incremented
by 0.25◦ × 0.25◦. The shifts in concentration from season-to-
season tend to occur gradually, as demonstrated by the time
lapse video of global ocean microplastic concentration over
one full year that is available in the Supplemental Material.

The strong seasonal dependence of ocean microplastic
concentration at mid-latitudes in the Pacific is further illus-
trated in Fig. 8, which plots monthly average values for its
northern [20◦–35◦N, 150◦E–130◦W] and southern [20◦–35◦S,
180◦–100◦W] segments over a full year. The time-dependent
global average is also included for comparison. Concentrations
in both hemispheres are highest in their respective summer
months and lowest in winter. This dependence may be due

Fig. 7. Monthly average microplastic number density concentration
(#/km2, log10 scale) for June–September–December 2017 and March 2018.
Both Atlantic and Pacific basins have generally higher concentrations in
austral and boreal summer. The northern Indian Ocean has highest concentra-
tions in the spring. These seasonal patterns tend to repeat. See Supplemental
Material for a time lapse animation of the global distribution.

Fig. 8. Monthly average microplastic concentration (#/km2, log10 scale) for
the North Pacific [20◦–35◦ N, 150◦ E–130◦ W], South Pacific [20◦–35◦ S,
180◦–100◦ W] and globally. Pacific mid-latitude concentrations are higher in
both the boreal and austral summer, and lower in both of their winter months.

to seasonal atmospheric and oceanic circulation patterns. For
example, mid-latitude regions of the Pacific Ocean experi-
ence stronger currents and increased vertical mixing in the
winter months of both hemispheres [33]. Increased vertical
mixing would tend to decrease near-surface concentrations
of microplastics and surfactants, thus reducing their wave
damping effect.

Fig. 7 also illustrates the fact that microplastic concentra-
tions in the North Indian Ocean tend to be highest in late
winter/early spring and lowest in early summer. The Indian
monsoon season typically extends from June to September.
The Indonesia Throughflow current, which serves as the
primary path for Pacific Ocean circulation into the North-
ern Indian Ocean, also slows significantly during the winter
months due to the regional monsoon rain patterns [33]. Both
of these weather patterns could be contributing to the seasonal
changes observed in estimated concentration, through a com-
bination of decreased inflow from the Pacific in the winter
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Fig. 9. Estimated microplastic outflow into the East China Sea. (a) Annual
average microplastic number density concentration (#/km2, log10 scale)
serves as a reference. One week averages over (b) June 22, 2017–June 28,
2017, (c) October 27, 2017–November 2, 2017, and (d) December 2,
2017–December 8, 2017 reveal short lived bursts of high microplastic con-
centration emerging from the Qiantang (b) and Yangtze (c) and (d) River
mouths and dispersing into the East China Sea in the region highlighted by
red circles.

and increased rainwater dilution in the summer. However,
these conclusions should be qualified by noting that anomalous
atmospheric conditions resulting from the shifting ITCZ may
also be affecting observations in the Indian Ocean.

Time lapse images of microplastic concentration on smaller
spatial and temporal scales can also reveal localized sources
and transport behavior. Episodic outflow events originating
near Shanghai, China are highlighted in Fig. 9. Fig. 9(b)–(d)
show microplastic concentrations averaged over one-week
periods with spatial resolution of 2◦ × 2◦ latitude-by-
longitude, incremented by 0.1◦ × 0.1◦, in June, October, and
December 2017, respectively. For reference, Fig. 9(a) shows
the annual average values. The areas containing the mouths of
the Yangtze and Qiantang Rivers, where they empty into the
East China Sea, are highlighted by red circles in the figure.
Each of the one-week averages shows evidence of outflow and
dispersion from the rivers into the sea, whereas the annual
average does not. In general, these outflow events tend to be
short lived and so do not contribute significantly to the annual
average values.

Further examples of episodic outflow events are found near
the Ganges River. These are shown in Fig. 10. Fig. 10(b)–(d)
exhibit plumes of high microplastic concentration from
August, November, and December 2017, respectively, that
originate near the mouth of the Ganges River and disperse into
the Bay of Bengal. Plumes are again indicated by a red circle.
Fig. 10(b)–(d) show a one-week microplastic average and use
the same spatial resolution (2◦ × 2◦ latitude-by-longitude,
incremented by 0.1◦ × 0.1◦) as in Fig. 9. Areas surrounding
the Ganges River mouth in the annual average map [Fig. 10(a)]
remain unaffected by these outflow events.

A closer examination of the transport dynamics associated
with these outflow events is possible using a Hopfmuller dia-
gram across the East China Sea. In the diagram, microplastic
concentration is averaged along the latitudinal extent of the
Qiantang and Yangtze River mouths (from 31◦N to 32◦N) and
is plotted as a function of longitude and time. The results are

Fig. 10. Estimated microplastic outflow into the Bay of Bengal. (a) Annual
average microplastic number density concentration (#/km2, log10 scale) serves
as a reference. One week averages over (b) August 18, 2017–August 24,
2017, (c) October 29, 2017–November 4, 2017, and (d) December 17,
2017–December 23, 2017 reveal short-lived bursts of high microplastic
concentration emerging from the Ganges River mouth and dispersing into
the Bay of Bengal in the region highlighted by red circles.

Fig. 11. Hopfmuller diagram of estimated microplastic outflow from the
Qiantang and Yangtze Rivers into the East China Sea. Inclined ridges of high
concentration (highlighted by dashed back lines) are indicative of west-to-east
transport of the outflow. The slope of the dashed lines determines the transport
velocity.

shown in Fig. 11 for June–July 2017. Transport of water with
high microplastic concentration is identified in the diagram
by characteristic ridges moving from west to east across the
East China Sea. Several such ridges are highlighted in the
figure by dashed black lines. The slope of a ridge corresponds
to its transport velocity, with velocities of 0.95–3.52 m/s
determined for the ones highlighted in the figure. Independent
estimates of microplastic transport velocity lie in a range
of 0.56–2.89 m/s [12], [34], which is generally consistent
with the Hopfmuller-based estimates. The microplastic outflow
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observed from the mouths of the Qiantang and Yangtze Rivers
is intermittent and without a readily discernible periodicity
or other pattern. The outflow events may be associated with
increases in industrial production activity or in managed river
discharge.

VII. CONCLUSION

A new method is presented for detecting and imaging ocean
microplastic concentration from space using measurements of
ocean surface roughness made by the CYGNSS constellation
of bistatic radar receivers. The presence of microplastics is
found to correlate well with the suppression of roughening
of the ocean surface by winds, and the concentration of
the microplastics correlates with the degree of suppression.
An empirical detection algorithm is developed based on this
correlative relationship, and is used to produce time lapse
images of global and regional microplastic distributions that
have not previously been possible. Basin scale images across
the North and South Pacific Ocean resolve seasonal variations
in microplastic concentration that are consistent with seasonal
patterns of ocean circulation and vertical mixing. Higher
resolution images on shorter time scales resolve episodic river
discharge events, followed by transport across the East China
Sea.

It is important to qualify these results by noting that,
while there is a strong correlation between the observed MSS
anomaly and modeled microplastic concentration, the retrieval
algorithm developed here is empirical and may not be based
on a direct physical connection between the presence of ocean
microplastics and the suppression of ocean surface roughening
by wind. Because the relationship used to derive the retrieval
algorithm is correlative, it is possible that the roughening
suppression is caused by something else that is also correlated
with the presence of microplastics. One possible candidate for
such an intermediary is surfactants on the ocean surface. There
is evidence that they share similar transport mechanisms in
the ocean as microplastics [15], and there is also evidence
that they can have a damping effect on wind-driven ocean
roughening [25]–[27]. These properties make surfactants a
potential tracer for microplastics. Further study is needed to
identify the underlying physical mechanism(s) for the rough-
ness suppression and, if it is caused indirectly by surfactants
and not directly by the microplastics themselves, to better
understand how their transport mechanisms are related.
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